Skip to main content

Emerging Robotic Technologies and Innovations for Hospital Process Improvement

  • Chapter
  • First Online:
Robotics in Knee and Hip Arthroplasty

Abstract

The field of robotics is revolutionizing a myriad of industries, by augmenting or supporting workers in manufacturing, assembly, transportation, warehousing, logistical support, and surgery. Despite the pervasive concern that robots may cost jobs, the experience with collaborative robots suggests that these emerging technologies improve efficiencies, productivity, and workplace satisfaction while at the same time having the potential to create new jobs. Surgical robots have made striking inroads in healthcare; on the other hand, the development and incorporation of robots programmed for autonomous logistical support or for collaborating in physical therapy, nursing, perioperative support, and pharmacy have lagged far behind. This chapter reviews emerging robotic innovations which may increasingly play a role in various hospital operational processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Peters G, Woolley JT. The American presidency project, https://www.presidency.ucsb.edu/documents/remarks-upon-signing-bill-creating-the-national-commission-technology-automation-and.

  2. One Hundred Year Study on Arti cial Intelligence (AI100), Stanford University, https://ai100.stanford.edu/sites/default/files/ai100report10032016fnl_singles.pdf. Accessed Sept 2018.

  3. Chui M, Manyika J, Miremadi M. Where machines could replace humans – and where they can’t (yet). McKinsey Quarterly July 2016. https://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/where-machines-could-replace-humans-and-where-they-cant-yet. Accessed Sept 2018.

  4. Daugherty PR, Wilson HJ. Human + machine. Reimagining work in the age of AI. Boston: Harvard Business Review Press; 2018.

    Google Scholar 

  5. https://www.marketresearchengine.com/medical-robots-market Accessed 3 Sept 2018.

  6. The 2016 Economic report of the president. National Archives and Records Administration, National Archives and Records Administration, obamawhitehouse.archives.gov/blog/2016/02/22/2016-economic-report-president.

  7. Graetz G, Michaels G. Robots at work London School of Economics and Political Science, 2015, Robots at Work, cep.lse.ac.uk/pubs/download/dp1335.pdf.

  8. Melanson A. Three ways robots boost wages. Aethon, 11 Mar 2016, www.aethon.com/three-ways-robotics-boost-wages/.

  9. Gombolay M, Yang XJ, Hayes B, Seo N, Liu Z, Wadhwania S, Yu T, Shah N, Golen T, Shah J. Robotic assistance in coordination of patient care http://people.csail.mit.edu/gombolay/Publications/Gombolay_RSS_2016.pdf.

  10. Bloss R. Mobile hospital robots cure numerous logistic needs. Indust Robot Int J. 2011;38(6):567–71.

    Article  Google Scholar 

  11. DiGiose N. Hospitals hiring robots, February 2013. URL http://www.electronicproducts.com/ComputerPeripherals/Systems/Hospitalshiringrobots.aspx.

  12. Hu J, Edsinger A, Lim YJ, Donaldson N, Solano M, Solochek A, Marchessault R. An advanced medical robotic system augment- ing healthcare capabilities-robotic nursing assistant. In: Robotics and Automation (ICRA), 2011 IEEE international conference on: IEEE; 2011. p. 6264–9.

    Google Scholar 

  13. Murai R, Sakai T, Kawano H, Matsukawa Y, Honda Y, Campbell KC, et al. A novel visible light communication system for enhanced control of autonomous delivery robots in a hospital. In: System integration (SII), 2012 IEEE/SICE international symposium on: IEEE; 2012. p. 510–6.

    Google Scholar 

  14. Research report: healthcare robotics 2015–2020. Robotics Business Review, 26 Jan 2015, www.roboticsbusinessreview.com/download/research-report-healthcare-robotics-2015-2020/.

  15. US Department of Labor, Bureau of Labor Statistics, Occupational Outlook Handbook, December 10, 2018, http://www.bls.gov/ooh/About/Projections-Overview.htm.

  16. Kuehn BM. No end in sight to nursing shortage: bottleneck at nursing schools a key factor. JAMA. U.S. National Library of Medicine, 10 Oct. 2007, www.ncbi.nlm.nih.gov/pubmed/17925507.

    Article  CAS  Google Scholar 

  17. CSAIL, Adam Conner-Simons |. Robot helps nurses schedule tasks on labor floor. MIT News, 13 July 2016, news.mit.edu/2016/robot-helps-nurses-schedule-tasks-on-labor-floor-0713.

  18. Dismukes RK, Berman BA, Loukopoulous LD. The limits of expertise: rethinking pilot error and the causes of airline accidents: Ashgate Publishing; 2007.

    Google Scholar 

  19. Dixon SR, Wickens CD. Automation reliability in unmanned aerial vehicle control: a reliance-compliance model of automation dependence in high workload. Hum Factors. 2006;48(3):474–86.

    Article  Google Scholar 

  20. Meier E. Ergonomic standards and implications for nursing. Nurs Econ. 2001;19(1):31–2.

    Google Scholar 

  21. Hu J. et al. An advanced medical robotic system augmenting healthcare capabilities - robotic nursing assistant. 2011 IEEE international conference on robotics and automation, 2011, https://doi.org/10.1109/icra.2011.5980213.

  22. Liu E. Duke engineers, nurses develop robotic nursing assistant. The Chronicle, 22 Nov 2016., www.dukechronicle.com/article/2016/11/duke-engineers-nurses-develop-robotic-nursing-assistant.

  23. Ozkil AG, et al. Service robots for hospitals: a case study of transportation tasks in a hospital. 2009 IEEE international conference on automation and logistics, 2009, https://doi.org/10.1109/ical.2009.5262912.

  24. Poulin E. Benchmarking the hospital logistics process a potential cure for the ailing health care sector. CMA Manag. 2003;77(1):20–3.

    Google Scholar 

  25. “Aethon - TUG™: the automated robotic delivery system,” http://www.aethon.com/products/logistics.php.

  26. “University of Maryland Medical Center DECREASES CYCLE TIME, INCREASES NURSE SATISFACTION with TUG Robots and MedEx System ‘Chain of Custody’ Solutions.” www.aethon.com/Wp-Content/Uploads/2014/08/UMMC-Case-Study-2011b.Pdf, Aethon.

  27. King R, “Soon, that nearby worker might be a robot,” Bloomberg Businessweek, June 2, 2010, http://www.businessweek.com/stories/2010-06-02/soon-that-nearby-worker-might-be-a-robotbusinessweek-business-news-stock-market-and-financial-advice.

  28. Kirby J. Patent: counting machines. England 8 September 19070. Patent #: GB1358378.

    Google Scholar 

  29. Thomsen C. Automation and Robotics - Practical Technology. September 2004. http://thethomsengroup.com/TTGI%20Pages/Articles%20Studies%20&%20Presentations/2005%20Business%20Briefings.pdf. Accessed 5 Apr 2017.

  30. Walsh KE, Chui MA, Kieser MA, Williams SM, Sutter SL, Sutter JG. Exploring the impact of an automated prescription-filling device on community pharmacy technician workflow. J Am Pharm Assoc (2003). 2011;51(5):613–8. https://doi.org/10.1331/JAPhA.2011.09166.

    Article  Google Scholar 

  31. Lin AC, Huang Y-C, Punches G, Chen Y. Effect of a robotic prescription-filling system on pharmacy staff activities and prescription-filling time. Am J Health Syst Pharm. 2007;64(17):1832–9. https://doi.org/10.2146/ajhp060561.

    Article  PubMed  Google Scholar 

  32. Chapuis C, et al. Automated drug dispensing system reduces medication errors in an intensive care setting. Crit Care Med. 2010;38(12):2275–81. https://doi.org/10.1097/ccm.0b013e3181f8569b.

    Article  PubMed  Google Scholar 

  33. Jacob M, Li YT, Akingba G, Wachs JP. Gestonurse: a robotic surgical nurse for handling surgical instruments in the operating room. J Robot Surg. 2012;6:53–63.

    Article  Google Scholar 

  34. Lingard L, Espin S, Whyte S, et al. Communication failures in the operating room: an observational classification of recurrent types and effects. Qual Saf Health Care. 2004;13:330–4.

    Article  CAS  Google Scholar 

  35. Firth-Cozens J. Why communication fails in the operating room. Qual Saf Health Care. 2004;13(5):327.

    Article  CAS  Google Scholar 

  36. Halverson AL, Casey JT, Andersson J, Anderson K, Park C, Rademaker AW, Moorman D. Communication failure in the operating room. Surgery. 2010;149(3):305–10.

    Article  Google Scholar 

  37. Carthey J, de Laval MR, Wright DJ, et al. Behavioural markers of surgical excellence. Saf Sci. 2003;41:409–25.

    Article  Google Scholar 

  38. Zheng B, Taylor MD, Swanstrom L. An observational study of surgery-related activities between nurses and surgeons during laparoscopic surgery. Am J Surg. 2009;197:497–502.

    Article  Google Scholar 

  39. Treat MR, et al. Initial clinical experience with a partly autonomous robotic surgical instrument server. Surg Endosc. 2006;20(8):1310–4. https://doi.org/10.1007/s00464-005-0511-0.

    Article  CAS  PubMed  Google Scholar 

  40. Perez-Vidal C, Carpintero E, Garcia-Aracil N, Navarro-Sabater JM, Azorin JM, Candela A, Fernandez E. Steps in the development of a robotic scrub nurse. Robot Auton Syst. 2012;60(6):901–11. https://doi.org/10.1016/j.robot.2012.01.005.

    Article  Google Scholar 

  41. Wachs JP, Jacob MG, Li YT, Akingba AG. Does a robotic scrub nurse improve economy of movements? Proc SPIE. 2012;8316:8316E.

    Google Scholar 

  42. Levinson DR. Adverse events in Hospitals: National Incidence among Medicare Beneficiaries. Washington, DC: US Department of Health & Human Services, Office of the Inspector General; 2010. Accessed Jan 26, 2013. https://oig.hhs.gov/oei/reports/oei-06-09-00090.pdf.

    Google Scholar 

  43. Lefevre F, et al. Iatrogenic complications in high-risk, elderly patients. Arch Intern Med. 1992;152(10):2074–80.

    Article  CAS  Google Scholar 

  44. Eaton J. Filthy surgical instruments: the hidden threat in America’s operating rooms. In: MedTechMentor’s value equations. 2012. http://www.ideasforsurgery.com/2012/02/23/filthy-surgical-instruments-the-hidden-threat-in-americas-operating-rooms/.

  45. Chobin N. The real costs of surgical instrument training in sterile processing revisited. AORN J. 2010;92:185–93.

    Article  Google Scholar 

  46. Blackmore CC, Bishop R, Luker S, Williams BL. Applying lean methods to improve quality and safety in surgical sterile instrument processing. Jt Comm J Qual Patient Saf. 2013;39(3):99–105.

    Article  Google Scholar 

  47. AAMI. Reprocessing. 2011 Summit. Priority issues from the AAMI/FDA medical device Reprocessing Summit. https://www.aami.org/meetings/summits/reprocessing/Materials/2011_Reprocessing_Summit_publication.pdf.

  48. Azizi J, Anderson SG, Murphy S, Pryce S. Uphill grime: process improvement in surgical instrument cleaning. AORN J. 2012;96:152–62.

    Article  Google Scholar 

  49. The TEMPEST - the colossally effective new washer for industry-leading surgical and laparoscopic instrument cleaning. In: Tempest surgical instrument washer - laparoscopic instrument washer. 2011. http://www.fisherbiomedical.com/tempest/surgical-instrument-washer.htm.

  50. Automated cleaning technology for cannulated & robotic surgical instruments. In: Southwest Solutions Group. 2017. http://www.southwestsolutions.com/infection-control-systems/automated-cleaning-technology-cannulated-robotic-surgical-instruments.

  51. Madhavan R. Robotic tools in hospitals. IEEE Robot Automat. 2011;11:99.

    Article  Google Scholar 

  52. Fully automated loading/unloading solution: an ergonomic revelation. 2013. http://ic.getinge.com/Documents/hc/knowledge-education/case-studies/Getinge%20case%20study%20Varberg%20EN.pdf.

  53. Munoz-Price LS, Birnbach DJ, Lubarsky DA, Arheart KL, Fajardo-Aquino Y, Rosalsky M, et al. Decreasing operating room environmental pathogen contamination through improved cleaning practice. Infect Control Hosp Epidemiol. 2012;33:897–904.

    Article  Google Scholar 

  54. Carling PC, Briggs JL, Perkins J, Highlander D. Improved cleaning of patient rooms using a new targeting method. Clin Infect Dis. 2006;42:385–8.

    Article  Google Scholar 

  55. Catalanotti A, Abbe D, Simmons S, Stibich M. Influence of pulsed-xenon ultraviolet light-based environmental disinfection on surgical site infections. Am J Infect Control. 2016;44:e99. https://doi.org/10.1016/j.ajic.2015.12.018.

    Article  PubMed  Google Scholar 

  56. Ellerbe R. A model to project the supply and demand of physical therapists 2010–2025. www.apta.org, 17 Apr 2017, www.apta.org/WorkforceData/ModelDescriptionFigures/.

  57. Memtsoudis SG, Dy CJ, Ma Y, Chiu YL, Della Valle AG, Mazumdar M. In-hospital patient falls after total joint arthroplasty: incidence, demographics, and risk factors in the United States. J Arthroplasty. 2012;27:823–8.

    Article  Google Scholar 

  58. Wasserstein D, Farlinger C, Brull R, Mahomed N, Gandhi R. Advanced age, obesity and continuous femoral nerve blockade are independent risk factors for inpatient falls after primary total knee arthroplasty. J Arthroplast. 2013;28:1121–4.

    Article  Google Scholar 

  59. Vlahov D, Myers AH, al-Ibrahim MS. Epidemiology of falls among patients in a rehabilitation hospital. Arch Phys Med Rehabil. 1990;71:8.

    CAS  PubMed  Google Scholar 

  60. Mandl LA, Lyman S, Quinlan P, Bailey T, Katz J, Magid SK. Falls among patients who had elective orthopaedic surgery: a decade of experience from a Musculoskeletal Specialty Hospital. J Orthop Sports Phys Ther. 2013;43:91–6.

    Article  Google Scholar 

  61. Pelt CE, Anderson AW, Anderson MB, Dine CV, Peters CL. Postoperative falls after total knee arthroplasty in patients with a femoral nerve catheter: can we reduce the incidence? J Arthroplast. 2014;29:1154–7.

    Article  Google Scholar 

  62. Berggren M, Englund U, Olofsson B, Nordström P, Gustafson Y, Stenvall M. Effects of geriatric interdisciplinary home rehabilitation on complications and readmissions after hip fracture: a randomized controlled trial. Clin Rehabil. 2018:1–10.

    Google Scholar 

  63. Johnson RL, Duncan CM, Ahn KS, Schroeder DR, Horlocker TT, Kopp SL. Fall-prevention strategies and patient characteristics that impact fall rates after total knee arthroplasty. Anesth Analg. 2014;119:1113–8.

    Article  Google Scholar 

  64. Jørgensen CC, Kehlet H. Fall-related admissions after fast-track total hip and knee arthroplasty -- cause of concern or consequence of success? Clin Interv Aging. 2013;8:1569–77.

    Article  Google Scholar 

  65. Geok Chua KS, Keong Kuah CW. Innovating with rehabilitation technology in the real world: promises, potentials, and perspectives. Am J Phys Med Rehabil. 2017;96(Suppl):S150–6.

    Article  Google Scholar 

  66. Iosa M, Morone G, Cherubini A, et al. The three laws of neurorobotics: a review on what neurorehabilitation robots should do for patients and clinicians. J Med Biol Eng. 2016;36:1–11.

    Article  Google Scholar 

  67. https://www.gminsights.com/industry-analysis/healthcare-assistive-robot-market.

  68. Marchal-Crespo L, Reinkensmeyer DJ. Review of control strategies for robotic movement training after neurologic injury. J. Neuroeng Rehabil. 2009;6:20. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2710333&tool=pmcentrez&rendertype=abstract (Online).

    Article  Google Scholar 

  69. Milot M-H, Spencer SJ, Chan V, Allington JP, Klein J, Chou C, Bobrow JE, Cramer SC, Reinkensmeyer DJ. A crossover pilot study evaluating the functional outcomes of two different types of robotic movement training in chronic stroke survivors using the arm exoskeleton BONES. J Neuroeng Rehabil. 2013;10:112.

    Article  Google Scholar 

  70. Ali SA, Miskon MF, Shukor AZ, Bahar MB, Mohammed MQ. Review on application of haptic in robotic rehabilitation technology. Int J Appl Eng Res. 2017;12(12):3203–13. ISSN 0973-4562, © Research India Publications. http://www.ripublication.com.

    Google Scholar 

  71. Solis J. Development of a human-friendly walking assisting robot vehicle designed to provide physical support to the elderly. Science Direct IFAC-PapersOnLine. 2016;49-21:656–61.

    Article  Google Scholar 

  72. Shirota C, van Asseldonk E, Matjačić Z, Vallery H, Barralon P, Maggioni S, Buurke JH, Veneman JF. Robot-supported assessment of balance in standing and walking. J Neuroeng Rehabil. 2017;14:80. https://doi.org/10.1186/s12984-017-0273-7.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Schuck A, Labruyere R, Vallery H, Riener R, Alexander Duschau-Wicke A. Feasibility and effects of patient-cooperative robot-aided gait training applied in a 4-week pilot trial. J Neuroeng Rehabil. 2012;9:31.

    Article  Google Scholar 

  74. Krebs HI, Hogan N. Robotic therapy: the tipping point. Am J Phys Med Rehabil. 2012;91(11 0 3):S290–7. https://doi.org/10.1097/PHM.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Henderson KG, Wallis JA, Snowdon DA. Active physiotherapy interventions following total knee arthroplasty in the hospital and inpatient rehabilitation settings: a systematic review and meta-analysis. Physiotherapy. 2018;104:25–35.

    Article  Google Scholar 

  76. Esquenazi A, Packel A. Robotic-assisted gait training and restoration. Am J Phys Med Rehabil. 2012;91(11 Suppl 3):S217–27. ; quiz S228-31. https://doi.org/10.1097/PHM.0b013e31826bce18.

    Article  PubMed  Google Scholar 

  77. van Hedel HJA, Severini G, Scarton A, O’Brien A, Reed T, Gaebler-Spira D, Egan T, Meyer-Heim A, Graser J, Chua K, Zutter D, Schweinfurther R, Möller JC, Paredes LP, Esquenazi A, Berweck S, Schroeder S, Warken B, Chan A, Devers A, Petioky J, Paik NJ, Kim WS, Bonato P, Boninger M, ARTIC network. Advanced Robotic Therapy Integrated Centers (ARTIC): an international collaboration facilitating the application of rehabilitation technologies. J Neuroeng Rehabil. 2018;15:30. https://doi.org/10.1186/s12984-018-0366-y.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Barry DT. Innovations influencing physical medicine and rehabilitation: adaptation, artificial intelligence, and physical medicine and rehabilitation. PM R. 2018;10:S131–43. www.pmrjournal.org.

    Article  Google Scholar 

  79. Lee S, Sankai Y. Virtual impedance adjustment in uncon- strained motion for an exoskeletal robot assisting the lower limb. Adv Robot. 2005;19:773–95.

    Article  Google Scholar 

  80. Kawamoto H, Taal S, Niniss H, Hayashi T, Kamibayashi K, Eguchi K, et al., editors. Voluntary motion support control of robot suit HAL triggered by bioelectrical signal for hemiplegia. Conf Proc IEEE Eng Med Biol Soc. 2010; 2010:462–6.

    Google Scholar 

  81. Yoshikawa K, Mutsuzaki H, Sano A, Koseki K, Fukaya T, Mizukami M, Yamazaki M. Training with hybrid assistive limb for walking function after total knee arthroplasty. J Orthop Surg Res. 2018;13:163.

    Article  Google Scholar 

  82. Tanaka Y, Oka H, Nakayama S, Ueno T, Matsudaira K, Miura T, Tanaka K, Tanaka S. Improvement of walking ability during postoperative rehabilitation with the hybrid assistive limb after total knee arthroplasty: a randomized controlled study. SAGE Open Med. 2017;5:1–6.

    Article  Google Scholar 

  83. Riek LD. Healthcare robotics. Commun ACM. 2017;60(11):68–78. https://doi.org/10.1145/3127874.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jess H. Lonner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lonner, J.H., Zangrilli, J., Saini, S. (2019). Emerging Robotic Technologies and Innovations for Hospital Process Improvement. In: Lonner, J. (eds) Robotics in Knee and Hip Arthroplasty. Springer, Cham. https://doi.org/10.1007/978-3-030-16593-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16593-2_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16592-5

  • Online ISBN: 978-3-030-16593-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics