Skip to main content

Human Microbiota and Personalized Cancer Treatments: Role of Commensal Microbes in Treatment Outcomes for Cancer Patients

  • Chapter
  • First Online:
Precision Medicine in Cancer Therapy

Part of the book series: Cancer Treatment and Research ((CTAR,volume 178))

Abstract

The human gut microbiota consists of about 3.8 × 1013 microorganisms that play an essential role in health, metabolism, and immunomodulation. These gut microbes alter therapeutic response and toxicity to cancer therapies including cytotoxic chemotherapy, radiation therapy, kinase inhibitors, and immunotherapy agents. The gut microbiota generates short-chain fatty acids that are significant regulators of histone post-translational modifications that fundamentally regulate gene expression, linking the microbiota to cellular metabolism and transcriptional regulation. The short-chain fatty acids not only act locally but can be taken up in the blood stream to inhibit the activity of histone deacetylases, regulate gene expression in distant organs as well as the effector function of CD8+ T cells. Cancer and the treatments for it negatively impact the microbiome often resulting in dysbiosis. This can diminish a patient’s response to treatment as well as increase systemic toxicities from these therapies. In addition to the gut microbiota, microbes have been detected in tumors that can modulate chemotherapeutic drug response and can result in immune suppression. The gut microbiota and tumor-associated bacteria may be a significant contributor to the interindividual differences and heterogeneous responses to cancer therapies and drug tolerability and strategies that support and/or manipulate the microbiota to improve therapeutic outcome is an emerging area for personalized cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kurnit KC et al (2018) Precision oncology decision support: current approaches and strategies for the future. Clin Cancer Res 24(12):2719–2731

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jameson GS et al (2014) A pilot study utilizing multi-omic molecular profiling to find potential targets and select individualized treatments for patients with previously treated metastatic breast cancer. Breast Cancer Res Treat 147(3):579–588

    Article  CAS  PubMed  Google Scholar 

  3. Von Hoff DD et al (2010) Pilot study using molecular profiling of patients’ tumors to find potential targets and select treatments for their refractory cancers. J Clin Oncol 28(33):4877–4883

    Article  Google Scholar 

  4. Weiss GJ et al (2013) A pilot study using next-generation sequencing in advanced cancers: feasibility and challenges. PLoS ONE 8(10):e76438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sender R, Fuchs S, Milo R (2016) Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 14(8):e1002533

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sender R, Fuchs S, Milo R (2016) Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 164(3):337–340

    Article  CAS  PubMed  Google Scholar 

  7. Morrison DJ, Preston T (2016) Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 7(3):189–200

    Article  PubMed  PubMed Central  Google Scholar 

  8. Krautkramer KA et al (2017) Metabolic programming of the epigenome: host and gut microbial metabolite interactions with host chromatin. Transl Res 189:30–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Krautkramer KA et al (2016) Diet-microbiota interactions mediate global epigenetic programming in multiple host tissues. Mol Cell 64(5):982–992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Koh A et al (2016) From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165(6):1332–1345

    Article  CAS  PubMed  Google Scholar 

  11. Luu M et al (2018) Regulation of the effector function of CD8(+) T cells by gut microbiota-derived metabolite butyrate. Sci Rep 8(1):14430

    Article  PubMed  PubMed Central  Google Scholar 

  12. Luu M, Steinhoff U, Visekruna A (2017) Functional heterogeneity of gut-resident regulatory T cells. Clin Transl Immunology 6(9):e156

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ellmeier W, Seiser C (2018) Histone deacetylase function in CD4(+) T cells. Nat Rev Immunol 18(10):617–634

    Article  CAS  PubMed  Google Scholar 

  14. Tan M et al (2011) Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146(6):1016–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fellows R et al (2018) Microbiota derived short chain fatty acids promote histone crotonylation in the colon through histone deacetylases. Nat Commun 9(1):105

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cook GM et al (1994) Emendation of the description of acidaminococcus fermentans, a trans-aconitate- and citrate-oxidizing bacterium. Int J Syst Bacteriol 44(3):576–578

    Article  CAS  PubMed  Google Scholar 

  17. Wei W et al (2017) Class I histone deacetylases are major histone decrotonylases: evidence for critical and broad function of histone crotonylation in transcription. Cell Res 27:898–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Huang H, Wang DL, Zhao Y (2018) Quantitative crotonylome analysis expands the roles of p300 in the regulation of lysine crotonylation pathway. Proteomics, e1700230

    Google Scholar 

  19. Haiser HJ, Turnbaugh PJ (2013) Developing a metagenomic view of xenobiotic metabolism. Pharmacol Res 69(1):21–31

    Article  CAS  PubMed  Google Scholar 

  20. Bjorkholm B et al (2009) Intestinal microbiota regulate xenobiotic metabolism in the liver. PLoS ONE 4(9):e6958

    Article  PubMed  PubMed Central  Google Scholar 

  21. Selwyn FP et al (2016) Regulation of hepatic drug-metabolizing enzymes in germ-free mice by conventionalization and probiotics. Drug Metab Dispos 44(2):262–274

    Article  PubMed  PubMed Central  Google Scholar 

  22. Selwyn FP, Cui JY, Klaassen CD (2015) RNA-seq quantification of hepatic drug processing genes in germ-free mice. Drug Metab Dispos 43(10):1572–1580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Roy S, Trinchieri G (2017) Microbiota: a key orchestrator of cancer therapy. Nat Rev Cancer 17(5):271–285

    Article  CAS  PubMed  Google Scholar 

  24. Zhu P et al (2004) Induction of HDAC2 expression upon loss of APC in colorectal tumorigenesis. Cancer Cell 5(5):455–463

    Article  CAS  PubMed  Google Scholar 

  25. Ashktorab H et al (2009) Global histone H4 acetylation and HDAC2 expression in colon adenoma and carcinoma. Dig Dis Sci 54(10):2109–2117

    Article  CAS  PubMed  Google Scholar 

  26. Chen JH et al (2017) Valproic acid (VPA) enhances cisplatin sensitivity of non-small cell lung cancer cells via HDAC2 mediated down regulation of ABCA1. Biol Chem 398(7):785–792

    CAS  PubMed  Google Scholar 

  27. Krumm A et al (2016) Enhanced histone deacetylase activity in malignant melanoma provokes RAD51 and FANCD2-triggered drug resistance. Cancer Res 76(10):3067–3077

    Article  CAS  PubMed  Google Scholar 

  28. Ye P et al (2016) Histone deacetylase 2 regulates doxorubicin (Dox) sensitivity of colorectal cancer cells by targeting ABCB1 transcription. Cancer Chemother Pharmacol 77(3):613–621

    Article  CAS  PubMed  Google Scholar 

  29. Zhang Z et al (2016) Silencing of histone deacetylase 2 suppresses malignancy for proliferation, migration, and invasion of glioblastoma cells and enhances temozolomide sensitivity. Cancer Chemother Pharmacol 78(6):1289–1296

    Article  CAS  PubMed  Google Scholar 

  30. Zhao H et al (2016) HDAC2 overexpression is a poor prognostic factor of breast cancer patients with increased multidrug resistance-associated protein expression who received anthracyclines therapy. Jpn J Clin Oncol 46(10):893–902

    Article  PubMed  Google Scholar 

  31. Viaud S et al (2013) The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342(6161):971–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Iida N et al (2013) Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 342(6161):967–970

    Article  CAS  PubMed  Google Scholar 

  33. Hahn AW et al (2018) Targeting bacteroides in stool microbiome and response to treatment with first-line VEGF tyrosine kinase inhibitors in metastatic renal-cell carcinoma. Clin Genitourin Cancer 16(5):365–368

    Article  PubMed  Google Scholar 

  34. Park J et al (2015) Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6 K pathway. Mucosal Immunol 8(1):80–93

    Article  CAS  PubMed  Google Scholar 

  35. Calcinotto A et al (2018) Microbiota-driven interleukin-17-producing cells and eosinophils synergize to accelerate multiple myeloma progression. Nat Commun 9(1):4832

    Article  PubMed  PubMed Central  Google Scholar 

  36. Paulos CM et al (2007) Microbial translocation augments the function of adoptively transferred self/tumor-specific CD8+ T cells via TLR4 signaling. J Clin Invest 117(8):2197–2204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Derosa L et al (2018) The intestinal microbiota determines the clinical efficacy of immune checkpoint blockers targeting PD-1/PD-L1. Oncoimmunology 7(6):e1434468

    Article  PubMed  PubMed Central  Google Scholar 

  38. Routy B et al (2018) Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359(6371):91–97

    Article  CAS  PubMed  Google Scholar 

  39. Zitvogel L et al (2018) The microbiome in cancer immunotherapy: diagnostic tools and therapeutic strategies. Science 359(6382):1366–1370

    Article  CAS  PubMed  Google Scholar 

  40. Matson V et al (2018) The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 359(6371):104–108

    Article  CAS  PubMed  Google Scholar 

  41. Sivan A et al (2015) Commensal bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350(6264):1084–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vetizou M et al (2015) Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350(6264):1079–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Urbaniak C et al (2014) Microbiota of human breast tissue. Appl Environ Microbiol 80(10):3007–3014

    Article  PubMed  PubMed Central  Google Scholar 

  44. McCoy AN et al (2013) Fusobacterium is associated with colorectal adenomas. PLoS ONE 8(1):e53653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Geller LT, Straussman R (2018) Intratumoral bacteria may elicit chemoresistance by metabolizing anticancer agents. Mol Cell Oncol 5(1):e1405139

    Article  PubMed  Google Scholar 

  46. Geller LT et al (2017) Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science 357(6356):1156–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ribas A, Wolchok JD (2018) Cancer immunotherapy using checkpoint blockade. Science 359(6382):1350–1355

    Article  CAS  Google Scholar 

  48. Rodig SJ et al (2018) MHC proteins confer differential sensitivity to CTLA-4 and PD-1 blockade in untreated metastatic melanoma. Sci Transl Med 10(450)

    Article  PubMed  Google Scholar 

  49. Gopalakrishnan V et al (2018) Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359(6371):97–103

    Article  CAS  PubMed  Google Scholar 

  50. Plottel CS, Blaser MJ (2011) Microbiome and malignancy. Cell Host Microbe 10(4):324–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pushalkar S et al (2018) The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov 8(4):403–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang H et al (2017) Breast tissue, oral and urinary microbiomes in breast cancer. Oncotarget 8(50):88122–88138

    PubMed  PubMed Central  Google Scholar 

  53. Ma C et al (2018) Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science 360(6391)

    Google Scholar 

  54. Grivennikov SI et al (2012) Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 491(7423):254–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cremonesi E et al (2018) Gut microbiota modulate T cell trafficking into human colorectal cancer. Gut 67(11):1984–1994

    Article  CAS  PubMed  Google Scholar 

  56. Mima K et al (2016) Fusobacterium nucleatum in colorectal carcinoma tissue according to tumor location. Clin Transl Gastroenterol 7(11):e200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gur C et al (2015) Binding of the fap2 protein of fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity 42(2):344–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Montrose DC et al (2016) Celecoxib alters the intestinal microbiota and metabolome in association with reducing polyp burden. Cancer Prev Res (Phila) 9(9):721–731

    Article  CAS  Google Scholar 

  59. Hojo M et al (2018) Gut microbiota composition before and after use of proton pump inhibitors. Dig Dis Sci 63(11):2940–2949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Peterson CT et al (2018) Effects of turmeric and curcumin dietary supplementation on human gut microbiota: a double-blind, randomized, placebo-controlled pilot study. J Evid Based Integr Med 23:2515690X18790725

    Article  Google Scholar 

  61. ElRakaiby M et al (2014) Pharmacomicrobiomics: the impact of human microbiome variations on systems pharmacology and personalized therapeutics. OMICS 18(7):402–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Alexander JL et al (2017) Gut microbiota modulation of chemotherapy efficacy and toxicity. Nat Rev Gastroenterol Hepatol 14(6):356–365

    Article  CAS  PubMed  Google Scholar 

  63. Panebianco C, Andriulli A, Pazienza V (2018) Pharmacomicrobiomics: exploiting the drug-microbiota interactions in anticancer therapies. Microbiome 6(1):92

    Article  PubMed  PubMed Central  Google Scholar 

  64. Redman MG, Ward EJ, Phillips RS (2014) The efficacy and safety of probiotics in people with cancer: a systematic review. Ann Oncol 25(10):1919–1929

    Article  CAS  PubMed  Google Scholar 

  65. Taur Y et al (2018) Reconstitution of the gut microbiota of antibiotic-treated patients by autologous fecal microbiota transplant. Sci Transl Med 10(460)

    Article  PubMed  PubMed Central  Google Scholar 

  66. Riscuta G et al (2018) Diet, microbiome, and epigenetics in the era of precision medicine. Methods Mol Biol 1856:141–156

    Article  PubMed  Google Scholar 

  67. Paul B et al (2015) Influences of diet and the gut microbiome on epigenetic modulation in cancer and other diseases. Clin Epigenet 7:112

    Article  Google Scholar 

  68. Erickson AR et al (2012) Integrated metagenomics/metaproteomics reveals human host-microbiota signatures of Crohn’s disease. PLoS ONE 7(11):e49138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Verberkmoes NC et al (2009) Shotgun metaproteomics of the human distal gut microbiota. ISME J 3(2):179–189

    Article  CAS  PubMed  Google Scholar 

  70. Zhang X et al (2017) Deep metaproteomics approach for the study of human microbiomes. Anal Chem 89(17):9407–9415

    Article  CAS  PubMed  Google Scholar 

  71. Lai LA et al (2019) Metaproteomics study of the gut microbiome. Methods Mol Biol 1871:123–132

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Gately .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gately, S. (2019). Human Microbiota and Personalized Cancer Treatments: Role of Commensal Microbes in Treatment Outcomes for Cancer Patients. In: Von Hoff, D., Han, H. (eds) Precision Medicine in Cancer Therapy . Cancer Treatment and Research, vol 178. Springer, Cham. https://doi.org/10.1007/978-3-030-16391-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16391-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16390-7

  • Online ISBN: 978-3-030-16391-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics