Skip to main content

Environmental Sustainability and Climate Change

  • Chapter
  • First Online:
Achieving the Sustainable Management of Forests

Part of the book series: Sustainable Development Goals Series ((SDGS))

Abstract

In this chapter, the environmental benefits of forests for minimising the impact of soil erosion, mitigating floods and droughts and coastal protection are discussed. The linkage between forests and climate change can be both negative through emissions and positive through sequestration of carbon dioxide. At present forests are net contributors to emissions and further loss of forest will both increase overall emissions and reduce the capacity of forests to mitigate emissions from other sources. Agro-ecological zones are likely to change due to global warming which may mean forests replacing agriculture in some areas and vice versa. The current low market price of carbon limits the role that forests can play due to the high transaction costs of implementing CDM and REDD+ initiatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asdak, C., Jarvis, P. G., van Gardingen, P., & Fraser, A. (1998). Rainfall interception loss in unlogged and logged forest areas of Central Kalimantan, Indonesia. Journal of Hydrology, 206, 237–244.

    Article  Google Scholar 

  • Atkinson, A., V. Siegal, E. Pakhonov and P. Rothery, (2004), Long-term decline in krill stocks and increase in scalps within the Southern Ocean. Nature, Nov.4. 432(7013): 100–3.

    Article  CAS  Google Scholar 

  • Azevedo, C. P., Sanquetta, C. R., Natalino, J., Silva, M., Machado, S. A., Souza, O. R., et al. (2008). Simulation of forest management strategies.In the Amazon using the SYMFOR model. Acta Amazonica, 38(1). Manaus.

    Google Scholar 

  • Cao, S. G. A., Sanchez-Azofafa, G. A., Duran, S. M., & Calvo-Rodriguez, S. (2016). Estimation of above ground net primary productivity in secondary tropical dry forests using the Carnegie-Ames-Stanford-approach (CASA) model. Environmental Research Letters, 11, 075004.

    Article  Google Scholar 

  • Church, J. A., & White, N. J. (2006). A 20th century acceleration in global sea-level rise. Geophysical Research Letters, 33, L01602. https://doi.org/10.1029/2005GL024826

    Article  Google Scholar 

  • Clark, D. B., Hurtado, J., & Saatchi, S. S. (2015). Tropical rainforest structure, tree growth and dynamics along a 2.700 metre elevational transect in Costa Rica. PLoS One, 10(4), e0122905.

    Article  Google Scholar 

  • Dai, A., Trenberth, K. E., & Qian, T. (2004). A global data set of Palmer drought severity index for 1870-2002: Relationship with soil moisture and effect of surface warming. Journal of Hydrometeorology, 5, 1117–1130.

    Article  Google Scholar 

  • Delucia, E. H. J., Hamilton, G., Nandu, S. L., Thomas, R. B., Andrews, J. A., Finzi, A., et al. (1999). Net primary production of a forest ecosystem with experimental CO2 enrichment. Science, 284(5417), 1177–1179.

    Article  CAS  Google Scholar 

  • Dong, S. X., Davies, S. J., Ashton, P. S., Banyaravejchewin, S., Supardi, N. N. N., Kasim, A. R., et al. (2015). Variability in solar radiation and temperature explains observed patterns and trends in tree growth rate across four ötropical forests. Proceedings of the Royal Society B, 279(1744), 3923–3931. https://doi.org/10.1098/rspb.2012.1124

    Article  Google Scholar 

  • Ernsting, A, & Rughani, D. (2007). Reduced emissions from deforestation: Can carbon trading save our ecosystems? www.biofuelwatch.org.uk

  • Federico, S., Tubella, F. N., Salvatore, M., Jacobs, H., & Schmudhuber, J. (2015). New estimates of CO2 forest emissions and removals 1990 – 2015. Forest Ecology and Management, 352, 89–98.

    Article  Google Scholar 

  • Field, C. B., & Kaduk, J. (2004). The carbon balance of old-growth forest: Building across approaches. Ecosystems, 7, 525–533.

    Article  CAS  Google Scholar 

  • Fraser, A. I., & Gardiner, J. B. H. (1967). Rooting and stability in Sitka spruce (Forestry Commission Bulletin No. 40). London: H.M.S.O.

    Google Scholar 

  • Fraser, A. I., & Jewell, N. (2008). The impact of loss of forest cover on river system hydrology and human settlements. Manila: Report to Asian Development Bank.

    Google Scholar 

  • Gardner, T. A., Cote, I. M., Gill, J. A., Grant, A., & Watkinson, A. R. (2005). Hurricanes and Caribbean coral reefs: Impacts, recovery patterns and role in long-term decline. Ecology, 86, 174–184.

    Article  Google Scholar 

  • GOFC-GOLD. (2014). A sourcebook of methods and procedures for monitoring and reporting anthropogenic greenhouse gas emissions and removals associated with deforestation, gains and losses of carbon stocks in forests remaining, forests and forestation. Wageningen: GOFC-GOLD.

    Google Scholar 

  • Gregg, W. W., Conkright, M. E., Ginoux, P., O’Reilly, J. E., & Casey, N. W. (2003). Ocean primary production and climate: Global decadal changes. Geophysical Research Letters, 30, 1809. https://doi.org/10.1029/2003GL016889

    Article  Google Scholar 

  • Hoegh-Guldberg, O. (1999). Climate change, coral bleaching and the future of the world’s coral reefs. Marine and Freshwater Research, 50, 839–866.

    Article  Google Scholar 

  • Hovani, L. (2015). Lessons on Jurisdictional REDD+ from Berau District, East Kalimantan. The Nature Conservancy.

    Google Scholar 

  • Hughes, L. (2000), Biological consequences of global warming: is the signal already apparent? Trends in Ecology and Evolution 15, (2), 56–61.

    Article  CAS  Google Scholar 

  • Kartic, K. M., Annadurai, R., & Ravichandran, P. T. (2014). Assessment of soil erosion susceptibility in Koyhagiri Taluk using the revised universal soil loss equation and geospatial technology. Journal of Scientific and Research Publications, 4(10).

    Google Scholar 

  • Matsumoto, M. (2010). Changes in forest cover and biomass in Lao PDR. Japanese Forest Products Research Institute.

    Google Scholar 

  • McMahon, S. M., Parker, G. B., & Miller, D. R. (2010). Evidence for a recent increase in forest growth. Proceedings of the National Academy Science USA, 107(8), 3611–3615.

    Article  CAS  Google Scholar 

  • Mir, S. I., Sahid, I., Gasim, M. B., Rahim, S. A., & Turiman, M. E. (2015). Prediction of soil and nutrient losses from Lake Chini watershed, Pahang, Malaysia. Journal of Physical Science, 28(1), 53–70.

    Google Scholar 

  • Misir, N., Misir, M., Karahalil, V., & Yavuz, H. (2007). Characterisation of soil erosion and its implication for forest management. Journal of Environmental Biology, 28(2), 185–191.

    Google Scholar 

  • Moi, V. T. (2007). Soil erosion and nitrogen leaching in northern Vietnam: Experimentation and modelling. Ph.D. thesis, Wageningen University, The Netherlands.

    Google Scholar 

  • Nemani, R. R., Keeling, C. D., Hashimoto, H., Jolly, W. M., Piper, S. C., Tucker, C. J., et al. (2003). Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300, 1560–1563.

    Article  CAS  Google Scholar 

  • Pattanayak, S., & Mercer, D. E. (1996). Valuing soil conservation benefits of agroforestry practices (FPEI Working Paper No. 59) (21 pp). Research Triangle Park, NC: Southeastern Center for Forest Economics Research.

    Google Scholar 

  • Peng, S. B., Huang, J. L., Sheehy, J. E., Laza, R. C., Visperas, R. M., Zhong, X. H., et al. (2004). Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences of the United States of America, 101, 9971–9975.

    Article  CAS  Google Scholar 

  • Renard, K. G., Foster, G. R., Weesies, G. A., & Porter, P. (1991). The revised universal soil loss equation. Journal of Soil and Water Conservation, 46(1), 30–33.

    Google Scholar 

  • Rivera, R., MacDonagh, P., Garibaldi, J., Toma, T., & Cubbage, F. (2008). Impacts of conventional and reduced impact logging on growth and stand composition four years after harvest in a neotropical forest in Misiones, Argentina. Scientia Forestalis/Forest Sciences, 36(77), 21–31.

    Google Scholar 

  • Sagarin, R. D., Barry, J. P., Gilman, S. E., & Baxter, C. H. (1999). Climate-related change in an intertidal community over short and long time scales. Ecological Monographs, 69, 465–490.

    Article  Google Scholar 

  • Sheikh, A. H., Pairis, S., & Alam, A. (2011). Integration of the universal soil loss equation for soil loss estimates in a Himalaya watershed. Recent Research in Science and Technology, 3(3), 61–67.

    Google Scholar 

  • Trenberth, K. E., Jones, P. D., Ambenje, P. G., Bojariu, R., Easterling, D. R., Klein Tank, A. M. G., et al. (2007). Observations: Surface and atmospheric climate change. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, & H. L. Miller (Eds.), Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change (pp. 235–336). Cambridge: Cambridge University Press.

    Google Scholar 

  • World Bank. (2018). State and trends in carbon pricing. Washington, DC: World Bank.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fraser, A. (2019). Environmental Sustainability and Climate Change. In: Achieving the Sustainable Management of Forests. Sustainable Development Goals Series. Springer, Cham. https://doi.org/10.1007/978-3-030-15839-2_8

Download citation

Publish with us

Policies and ethics