Skip to main content

Application of Novel Polymeric Materials Supporting 3D Printing Technology in the Development of Anatomical Models and Regenerative Medicine

  • Conference paper
  • First Online:
Innovations in Biomedical Engineering (IBE 2018)

Abstract

The article is focused on the new polymer material which could be used for hip endoprosthesis. Nowadays the most common materials which are used are metal alloys, ceramics and polyethylene. The aim of this study was to present the properties of modified polycarbonate (PC) with the particular consideration of tribological and mechanical properties and proving that this material could be successfully used beside existing and currently chosen materials. For mentioned materials conducted a few tests. Among of them were hardness measurements, static stretching tests and study of abrasive wear resistance. Obtained results allowed to conclude about using the material as not only a part of hip endoprosthesis but a whole implant. The novel obtained polymeric materials based on the PC modified with nanosilica presents instead of bacteriostatic properties improved resistance to volumetric wear. The nanoparticles of silica do not negative affect on the friction coefficient. The obtained results clearly presents that the material possess better coefficient of friction combined with lower volumetric wear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Affatato, S.: The history of biomaterials used in total hip arthroplasty (THA). In: Advances in Biomaterials and Their Tribological interactions, pp. 19–36 (2014)

    Google Scholar 

  2. Niemczewska-Wójcik, M.: Wear mechanisms and surface topography of artificial hip joint components at the subsequent stages of tribological tests. Meas. J. Int. Meas. Confederation 107, 89–98 (2017)

    Article  Google Scholar 

  3. Houcke, J.V., Khanduja, V., Pattyn, C., Audenaert, E.: The history of biomechanics in total hip arthroplasty. Indian J. Orthop. 51(4), 421–433 (2017)

    Article  Google Scholar 

  4. Hodge, W.A., Fijan, R.S., Carlson, K.L., Burgess, R.G., Harris, W.H., Mann, R.W.: Contact pressures in the human hip joint measured in vivo. Proc. Nat. Acad. Sci. U.S.A. 83(9), 2879–2883 (1986)

    Article  Google Scholar 

  5. Askari, E., Flores, P., Dabirrahmani, D., Appleyard, R.: A review of squeaking in ceramic total hip prostheses. Tribol. Int. 93, 239–256 (2015)

    Article  Google Scholar 

  6. Alvarado, J., Maldonado, R., Marxuach, J., Otero, R.: Biomechanics of hip and knee prostheses. Engineering 1–20 (2003)

    Google Scholar 

  7. Si, H.B., Zeng, Y., Cao, F., Pei, F.X., Shen, B.: Is a ceramic-on-ceramic bearing really superior to ceramic-on-polyethylene for primary total hip arthroplasty? A systematic review and meta-analysis of randomised controlled trials. Hip Int. 25(3), 191–198 (2015)

    Article  Google Scholar 

  8. The Polish Committee for Standardization: Pomiar twardości sposobem Vickersa. Część 1: Metoda badań (PN-EN ISO 6507-1:2007) (2007)

    Google Scholar 

  9. The Polish Committee for Standardization: Tworzywa sztuczne. Oznaczanie właściwości mechanicznych przy statycznym rozciąganiu. Część 1: Zasady ogólne. (PN-EN ISO 527-1:2012) (2012)

    Google Scholar 

  10. The Polish Committee for Standardization: Tworzywa sztuczne. Oznaczanie właściwości mechanicznych przy statycznym rozciąganiu. Część 2: Warunki badań tworzyw sztucznych przeznaczonych do prasowania, wtrysku i wytłaczania (PN-EN ISO 527-2:2012) (2012)

    Google Scholar 

  11. Covestro (Bayer). Makroln 2600 PC Datasheet. http://en.tecves.com/materials/148/makrolon-2600. Accessed 2 Feb 2018

  12. Madej, T., Ryniewicz, A.M.: Modelling and strength simulations in a hip joint equipped with an overlay prosthesis as a diagnostic procedure before the hip. Tribologia 2, 115–128 (2013)

    Google Scholar 

  13. https://www.tworzywa.pl/wiedzopedia/baza-tworzyw/81,poliweglan-pc,polimer.html. Accessed 15 July 2018

  14. Swinarew, A., Flak, T., Okła, H., Kubik, K., Rozwadowska, B., Gabor, J., Łężniak, M.: Organiczny materiał bakteriostatyczny, nr zgłoszenia: P. 420670. (in Polish)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Szymon Swinarew .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Swinarew, A.S. et al. (2019). Application of Novel Polymeric Materials Supporting 3D Printing Technology in the Development of Anatomical Models and Regenerative Medicine. In: Tkacz, E., Gzik, M., Paszenda, Z., Piętka, E. (eds) Innovations in Biomedical Engineering. IBE 2018. Advances in Intelligent Systems and Computing, vol 925. Springer, Cham. https://doi.org/10.1007/978-3-030-15472-1_31

Download citation

Publish with us

Policies and ethics