Skip to main content

MRI at the Time of External Beam Treatment

  • Chapter
  • First Online:
MRI for Radiotherapy

Abstract

Magnetic resonance image-guided radiation therapy (MR-IGRT) offers simultaneous tracking of the target during treatment delivery while taking advantage of the excellent soft tissue contrast of MRI for daily tumor localization. This chapter highlights the state of the art for MR-IGRT clinical applications, including details regarding MR-based tri-cobalt, low-field and high-field MR-linacs. In addition, treatment planning considerations, respiratory gating, tumor tracking, and adaptive radiation therapy are described. Specific applications to clinical disease sites are provided along with emerging clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya S, Fischer-Valuck BW, Kashani R, Parikh P, Yang D, Zhao T, Green O, Wooten O, Li HH, Hu Y, Rodriguez V, Olsen L, Robinson C, Michalski J, Mutic S, Olsen J. Online magnetic resonance image guided adaptive radiation therapy: first clinical applications. Int J Radiat Oncol Biol Phys. 2016a;94:394–403.

    Article  Google Scholar 

  • Acharya S, Fischer-Valuck BW, Mazur TR, Curcuru A, Sona K, Kashani R, Green O, Ochoa L, Mutic S, Zoberi I. Magnetic resonance image guided radiation therapy for external beam accelerated partial-breast irradiation: evaluation of delivered dose and intrafractional cavity motion. Int J Radiat Oncol Biol Phys. 2016c;96:785–92.

    Article  Google Scholar 

  • Ates O, Ahunbay EE, Moreau M, Li XA. A fast online adaptive replanning method for VMAT using flattening filter free beams. Med Phys. 2016;43:2756–64.

    Article  Google Scholar 

  • Bainbridge H, Salem A, Tijssen RHN, Dubec M, Wetscherek A, Van Es C, Belderbos J, Faivre-Finn C, McDonald F. Magnetic resonance imaging in precision radiation therapy for lung cancer. Transl Lung Cancer Res. 2017;6:689–707.

    Article  Google Scholar 

  • Bohoudi O, Bruynzeel AME, Senan S, Cuijpers JP, Slotman BJ, Lagerwaard FJ, Palacios MA. Fast and robust online adaptive planning in stereotactic MR-guided adaptive radiation therapy (SMART) for pancreatic cancer. Radiother Oncol. 2017a;125:439–44.

    Article  CAS  Google Scholar 

  • Bohoudi O, Bruynzeel A, Senan S, Slotman B, Palacios M, Lagerwaard F. SP-0494: using a MRI-guided radiation therapy system for prostate cancer patients. Radiother Oncol. 2017b;123:S263.

    Article  Google Scholar 

  • Cruite I, Schroeder M, Merkle EM, Sirlin CB. Gadoxetate disodium-enhanced MRI of the liver: part 2, protocol optimization and lesion appearance in the cirrhotic liver. Am J Roentgenol. 2010;195:29–41.

    Article  Google Scholar 

  • Cuculich PS, Schill MR, Kashani R, Mutic S, Lang A, Cooper D, Faddis M, Gleva M, Noheria A, Smith TW, Hallahan D, Rudy Y, Robinson CG. Noninvasive cardiac radiation for ablation of ventricular tachycardia. N Engl J Med. 2017;377:2325–36.

    Article  Google Scholar 

  • Decker G, Mürtz P, Gieseke J, Träber F, Block W, Sprinkart AM, Leitzen C, Buchstab T, Lütter C, Schüller H. Intensity-modulated radiotherapy of the prostate: dynamic ADC monitoring by DWI at 3.0 T. Radiother Oncol. 2014;113:115–20.

    Article  Google Scholar 

  • Fischer-Valuck BW, Green OL, Mutic S, Gay H, Michalski JM. Vector analysis of bladder cancer patient setup utilizing a magnetic resonance image guided radiation therapy (MR-IGRT) system. Int J Radiat Oncol Biol Phys. 2016;96:E261.

    Article  Google Scholar 

  • Fischer-Valuck BW, Henke L, Green O, Kashani R, Acharya S, Bradley JD, Robinson CG, Thomas M, Zoberi I, Thorstad W. Two-and-a-half-year clinical experience with the world’s first magnetic resonance image guided radiation therapy system. Adv Radiat Oncol. 2017;2:485–93.

    Article  Google Scholar 

  • Foroudi F, Pham D, Rolfo A, Bressel M, Tang CI, Tan A, Turner S, Hruby G, Williams S, Hayne D. The outcome of a multi-centre feasibility study of online adaptive radiotherapy for muscle-invasive bladder cancer TROG 10.01 BOLART. Radiother Oncol. 2014;111:316–20.

    Article  Google Scholar 

  • Glitzner M, Fast MF, de Senneville BD, Nill S, Oelfke U, Lagendijk J, Raaymakers B, Crijns S. Real-time auto-adaptive margin generation for MLC-tracked radiotherapy. Phys Med Biol. 2016;62:186.

    Article  Google Scholar 

  • Green OP, Goddu S, Mutic S. SU-E-T-352: commissioning and quality assurance of the first commercial hybrid MRI-IMRT system. Med Phys. 2012;39:–3785.

    Google Scholar 

  • Gunnlaugsson A, Kjellén E, Hagberg O, Thellenberg-Karlsson C, Widmark A, Nilsson P. Change in prostate volume during extreme hypo-fractionation analysed with MRI. Radiat Oncol. 2014;9:22.

    Article  Google Scholar 

  • Hammel P, Huguet F, van Laethem J-L, Goldstein D, Glimelius B, Artru P, Borbath I, Bouché O, Shannon J, André T. Effect of chemoradiotherapy vs chemotherapy on survival in patients with locally advanced pancreatic cancer controlled after 4 months of gemcitabine with or without erlotinib: the LAP07 randomized clinical trial. JAMA. 2016;315:1844–53.

    Article  CAS  Google Scholar 

  • Henke L, Kashani R, Yang D, Zhao T, Green O, Olsen L, Rodriguez V, Wooten HO, Li HH, Hu Y. Simulated online adaptive magnetic resonance–guided stereotactic body radiation therapy for the treatment of oligometastatic disease of the abdomen and central thorax: characterization of potential advantages. Int J Radiat Oncol Biol Phys. 2016;96:1078–86.

    Article  Google Scholar 

  • Henke L, Kashani R, Robinson C, Curcuru A, DeWees T, Bradley J, Green O, Michalski J, Mutic S, Parikh P, Olsen J. Phase I trial of stereotactic MR-guided online adaptive radiation therapy (SMART) for the treatment of oligometastatic or unresectable primary malignancies of the abdomen. Radiother Oncol. 2018;126:519–26.

    Article  Google Scholar 

  • P.ICRU83. Recording and reporting intensity modulated photon beam therapy, IMRT (ICRU). 2010.

    Google Scholar 

  • Ipsen S, Blanck O, Oborn B, Bode F, Liney G, Hunold P, Rades D, Schweikard A, Keall PJ. Radiotherapy beyond cancer: target localization in real-time MRI and treatment planning for cardiac radiosurgery. Med Phys. 2014;41:120702.

    Article  CAS  Google Scholar 

  • Keall PJ, Mageras GS, Balter JM, Emery RS, Forster KM, Jiang SB, Kapatoes JM, Low DA, Murphy MJ, Murray BR. The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med Phys. 2006;33:3874–900.

    Article  Google Scholar 

  • Keall PJ, Barton M, Crozier S, Australian MRI-Linac Program. The Australian magnetic resonance imaging-linac program. Semin Radiat Oncol. 2014;24:203–6.

    Article  Google Scholar 

  • Kerkmeijer LG, Fuller CD, Verkooijen HM, Verheij M, Choudhury A, Harrington KJ, Schultz C, Sahgal A, Frank SJ, Goldwein J. The MRI-linear accelerator consortium: evidence-based clinical introduction of an innovation in radiation oncology connecting researchers, methodology, data collection, quality assurance, and technical development. Front Oncol. 2016;6:215.

    Article  Google Scholar 

  • King BL, Butler WM, Merrick GS, Kurko BS, Reed JL, Murray BC, Wallner KE. Electromagnetic transponders indicate prostate size increase followed by decrease during the course of external beam radiation therapy. Int J Radiat Oncol Biol Phys. 2011;79:1350–7.

    Article  Google Scholar 

  • Klein S, Van Der Heide UA, Lips IM, Van Vulpen M, Staring M, Pluim JP. Automatic segmentation of the prostate in 3D MR images by atlas matching using localized mutual information. Med Phys. 2008;35:1407–17.

    Article  Google Scholar 

  • Kontaxis C, Bol G, Lagendijk J, Raaymakers B. A new methodology for inter-and intrafraction plan adaptation for the MR-linac. Phys Med Biol. 2015;60:7485.

    Article  Google Scholar 

  • Koshy M, Malik R, Mahmood U, Husain Z, Sher DJ. Stereotactic body radiotherapy and treatment at a high volume facility is associated with improved survival in patients with inoperable stage I non-small cell lung cancer. Radiother Oncol. 2015;114:148–54.

    Article  Google Scholar 

  • Lagendijk JJ, Raaymakers BW, Van Vulpen M. The magnetic resonance imaging-linac system. Semin Radiat Oncol. 2014;24:207–9.

    Article  Google Scholar 

  • Li HH, Rodriguez VL, Green OL, Hu Y, Kashani R, Wooten HO, Yang D, Mutic S. Patient-specific quality assurance for the delivery of 60co intensity modulated radiation therapy subject to a 0.35-T lateral magnetic field. Int J Radiat Oncol Biol Phys. 2015;91:65–72.

    Article  CAS  Google Scholar 

  • Lim-Reinders S, Keller BM, Al-Ward S, Sahgal A, Kim A. Online adaptive radiation therapy. Int J Radiat Oncol Biol Phys. 2017;99:994–1003.

    Article  Google Scholar 

  • Liu L, Wu N, Ouyang H, Dai J, Wang W. Diffusion-weighted MRI in early assessment of tumour response to radiotherapy in high-risk prostate cancer. Br J Radiol. 2014;87:20140359.

    Article  CAS  Google Scholar 

  • Mahadevan A, Blanck O, Lanciano R, Peddada A, Sundararaman S, D’Ambrosio D, Sharma S, Perry D, Kolker J, Davis J. Stereotactic body radiotherapy (SBRT) for liver metastasis–clinical outcomes from the international multi-institutional RSSearch® Patient Registry. Radiat Oncol. 2018;13:26.

    Article  Google Scholar 

  • Malayeri AA, El Khouli RH, Zaheer A, Jacobs MA, Corona-Villalobos CP, Kamel IR, Macura KJ. Principles and applications of diffusion-weighted imaging in cancer detection, staging, and treatment follow-up. Radiographics. 2011;31:1773–91.

    Article  Google Scholar 

  • Malinowski K, McAvoy TJ, George R, Dietrich S, D’Souza WD. Incidence of changes in respiration-induced tumor motion and its relationship with respiratory surrogates during individual treatment fractions. Int J Radiat Oncol Biol Phys. 2012;82:1665–73.

    Article  CAS  Google Scholar 

  • Matsuo Y, Ueki N, Takayama K, Nakamura M, Miyabe Y, Ishihara Y, Mukumoto N, Yano S, Tanabe H, Kaneko S. Evaluation of dynamic tumour tracking radiotherapy with real-time monitoring for lung tumours using a gimbal mounted linac. Radiother Oncol. 2014;112:360–4.

    Article  Google Scholar 

  • McDonald F, Lalondrelle S, Taylor H, Warren-Oseni K, Khoo V, McNair H, Harris V, Hafeez S, Hansen V, Thomas K. Clinical implementation of adaptive hypofractionated bladder radiotherapy for improvement in normal tissue irradiation. Clin Oncol. 2013;25:549–56.

    Article  CAS  Google Scholar 

  • McPartlin AJ, Li X, Kershaw LE, Heide U, Kerkmeijer L, Lawton C, Mahmood U, Pos F, van As N, van Herk M. MRI-guided prostate adaptive radiotherapy–a systematic review. Radiother Oncol. 2016;119:371–80.

    Article  CAS  Google Scholar 

  • Meijer GJ, van der Toorn P-P, Bal M, Schuring D, Weterings J, de Wildt M. High precision bladder cancer irradiation by integrating a library planning procedure of 6 prospectively generated SIB IMRT plans with image guidance using lipiodol markers. Radiother Oncol. 2012;105:174–9.

    Article  Google Scholar 

  • Moyer VA. Screening for lung cancer: US Preventive Services Task Force recommendation statement. Ann Intern Med. 2014;160:330–8.

    PubMed  Google Scholar 

  • Murray LJ, Dawson LA. Advances in stereotactic body radiation therapy for hepatocellular carcinoma. Semin Radiat Oncol. 2017;27:247–55.

    Article  Google Scholar 

  • Murthy V, Masodkar R, Kalyani N, Mahantshetty U, Bakshi G, Prakash G, Joshi A, Prabhash K, Ghonge S, Shrivastava S. Clinical outcomes with dose-escalated adaptive radiation therapy for urinary bladder cancer: a prospective study. Int J Radiat Oncol Biol Phys. 2016;94:60–6.

    Article  Google Scholar 

  • Mutic S, Dempsey JF. The ViewRay system: magnetic resonance-guided and controlled radiotherapy. Semin Radiat Oncol. 2014;24:196–9.

    Article  Google Scholar 

  • Navarria P, De Rose F, Ascolese AM. SBRT for lung oligometastases: who is the perfect candidate? Rep Pract Oncol Radiother. 2015;20:446–53.

    Article  Google Scholar 

  • Noel CE, Parikh PJ, Spencer CR, Green OL, Hu Y, Mutic S, Olsen JR. Comparison of onboard low-field magnetic resonance imaging versus onboard computed tomography for anatomy visualization in radiotherapy. Acta Oncol. 2015;54:1474–82.

    Article  Google Scholar 

  • Nyman J, Hallqvist A, Lund J-Å, Brustugun O-T, Bergman B, Bergström P, Friesland S, Lewensohn R, Holmberg E, Lax I. SPACE—a randomized study of SBRT vs conventional fractionated radiotherapy in medically inoperable stage I NSCLC. Radiother Oncol. 2016;121:1–8.

    Article  Google Scholar 

  • Park SY, Kim CK, Park BK, Park W, Park HC, Han DH, Kim B. Early changes in apparent diffusion coefficient from diffusion-weighted MR imaging during radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys. 2012;83:749–55.

    Article  Google Scholar 

  • Pasquier D, Lacornerie T, Vermandel M, Rousseau J, Lartigau E, Betrouni N. Automatic segmentation of pelvic structures from magnetic resonance images for prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys. 2007;68:592–600.

    Article  Google Scholar 

  • Pathmanathan AU, van As NJ, Kerkmeijer LGW, Christodouleas J, Lawton CAF, Vesprini D, van der Heide UA, Frank SJ, Nill S, Oelfke U, van Herk M, Li XA, Mittauer K, Ritter M, Choudhury A, Tree AC. Magnetic resonance imaging-guided adaptive radiation therapy: a “game changer” for prostate treatment? Int J Radiat Oncol Biol Phys. 2018;100:361–73.

    Article  Google Scholar 

  • Pollard JM, Wen Z, Sadagopan R, Wang J, Ibbott GS. The future of image-guided radiotherapy will be MR guided. Br J Radiol. 2017;90:20160667.

    Article  Google Scholar 

  • Raaymakers BW, Lagendijk JJ, Overweg J, Kok JG, Raaijmakers AJ, Kerkhof EM, van der Put RW, Meijsing I, Crijns SP, Benedosso F, van Vulpen M, de Graaff CH, Allen J, Brown KJ. Integrating a 1.5 T MRI scanner with a 6 MV accelerator: proof of concept. Phys Med Biol. 2009;54:N229–37.

    Article  CAS  Google Scholar 

  • Raaymakers B, Jürgenliemk-Schulz I, Bol G, Glitzner M, Kotte A, van Asselen B, de Boer J, Bluemink J, Hackett S, Moerland M. First patients treated with a 1.5 T MRI-Linac: clinical proof of concept of a high-precision, high-field MRI guided radiotherapy treatment. Phys Med Biol. 2017;62:L41.

    Article  CAS  Google Scholar 

  • Ramey SJ, Padgett KR, Lamichhane N, Neboori HJ, Kwon D, Mellon EA, Brown K, Duffy M, Victoria J, Dogan N. Dosimetric analysis of stereotactic body radiation therapy for pancreatic cancer using MR-guided Tri-60Co unit, MR-guided LINAC, and conventional LINAC-based plans. Pract Radiat Oncol. 2018;8(5):e312–21.

    Article  Google Scholar 

  • Rangaraj D, Zhu M, Yang D, Palaniswaamy G, Yaddanapudi S, Wooten OH, Brame S, Mutic S. Catching errors with patient-specific pretreatment machine log file analysis. Pract Radiat Oncol. 2013;3:80–90.

    Article  Google Scholar 

  • Ringe KI, Husarik DB, Sirlin CB, Merkle EM. Gadoxetate disodium-enhanced MRI of the liver: part 1, protocol optimization and lesion appearance in the noncirrhotic liver. Am J Roentgenol. 2010;195:13–28.

    Article  Google Scholar 

  • Ritter T, Quint DJ, Senan S, Gaspar LE, Komaki RU, Hurkmans CW, Timmerman R, Bezjak A, Bradley JD, Movsas B. Consideration of dose limits for organs at risk of thoracic radiotherapy: atlas for lung, proximal bronchial tree, esophagus, spinal cord, ribs, and brachial plexus. Int J Radiat Oncol Biol Phys. 2011;81:1442–57.

    Article  Google Scholar 

  • Rosenberg S, Labby Z, Wojcieszynski A, Hullett C, Geurts M, Bayliss R, Hill P, Paliwal B, Bayouth J, Bassetti M. First reported real-time MRI guided liver stereotactic body radiation therapy treatments: experience and clinical implications. Int J Radiat Oncol Biol Phys. 2015;93:S19.

    Article  Google Scholar 

  • Rudra S, Jiang N, Rosenberg S, Olsen J, Parikh P, Bassetti M, Lee P. High dose adaptive MRI guided radiation therapy improves overall survival of inoperable pancreatic cancer. Int J Radiat Oncol Biol Phys. 2017;99:E184.

    Article  Google Scholar 

  • Safety EPOM, Kanal E, Barkovich AJ, Bell C, Borgstede JP, Bradley WG Jr, Froelich JW, Gimbel JR, Gosbee JW, Kuhni-Kaminski E. ACR guidance document on MR safe practices: 2013. J Magn Reson Imaging. 2013;37:501–30.

    Article  Google Scholar 

  • van Schie MA, Steenbergen P, Dinh CV, Ghobadi G, van Houdt PJ, Pos FJ, Heijmink SW, van der Poel HG, Renisch S, Vik T. Repeatability of dose painting by numbers treatment planning in prostate cancer radiotherapy based on multiparametric magnetic resonance imaging. Phys Med Biol. 2017;62:5575.

    Article  Google Scholar 

  • Shaverdian N, Yang Y, Hu P, Hart S, Sheng K, Lamb J, Cao M, Agazaryan N, Thomas D, Steinberg M. Feasibility evaluation of diffusion-weighted imaging using an integrated MRI-radiotherapy system for response assessment to neoadjuvant therapy in rectal cancer. Br J Radiol. 2017;90:20160739.

    Article  Google Scholar 

  • Shioyama Y, Nagata Y, Komiyama T, Takayama K, Shibamoto Y, Ueki N, Yamada K, Kozuka T, Kimura T, Matsuo Y. Multi-institutional retrospective study of stereotactic body radiation therapy for stage I small cell lung cancer: Japan Radiation Oncology Study Group (JROSG). Int J Radiat Oncol Biol Phys. 2015;93:S101.

    Article  Google Scholar 

  • Sun B, Rangaraj D, Boddu S, Goddu M, Yang D, Palaniswaamy G, Yaddanapudi S, Wooten O, Mutic S. Evaluation of the efficiency and effectiveness of independent dose calculation followed by machine log file analysis against conventional measurement based IMRT QA. J Appl Clin Med Phys. 2012;13:140–54.

    Article  Google Scholar 

  • Team NLSTR. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011;365:395–409.

    Article  Google Scholar 

  • Tsien C, Cao Y, Chenevert T. Clinical applications for diffusion MRI in radiotherapy. Semin Radiat Oncol. 2014;24:218–26.

    Google Scholar 

  • Tuomikoski L, Collan J, Keyriläinen J, Visapää H, Saarilahti K, Tenhunen M. Adaptive radiotherapy in muscle invasive urinary bladder cancer—an effective method to reduce the irradiated bowel volume. Radiother Oncol. 2011;99:61–6.

    Article  Google Scholar 

  • Kishan AU, Lee P. MRI-guided radiotherapy: opening our eyes to the future. Integr Cancer Sci Ther. 2016;3(2):420–7. https://doi.org/10.15761/ICST.1000181.

    Article  Google Scholar 

  • Verma V, Simone CB, Allen PK, Gajjar SR, Shah C, Zhen W, Harkenrider MM, Hallemeier CL, Jabbour SK, Matthiesen CL. Multi-institutional experience of stereotactic ablative radiation therapy for stage I small cell lung cancer. Int J Radiat Oncol Biol Phys. 2017;97:362–71.

    Article  Google Scholar 

  • Vestergaard A, Muren LP, Lindberg H, Jakobsen KL, Petersen JB, Elstrøm UV, Agerbæk M, Høyer M. Normal tissue sparing in a phase II trial on daily adaptive plan selection in radiotherapy for urinary bladder cancer. Acta Oncol. 2014;53:997–1004.

    Article  CAS  Google Scholar 

  • Vestergaard A, Hafeez S, Muren LP, Nill S, Høyer M, Hansen VN, Grønborg C, Pedersen EM, Petersen JB, Huddart R. The potential of MRI-guided online adaptive re-optimisation in radiotherapy of urinary bladder cancer. Radiother Oncol. 2016;118:154–9.

    Article  Google Scholar 

  • Wen N, Kim J, Doemer A, Glide-Hurst C, Chetty IJ, Liu C, Laugeman E, Xhaferllari I, Kumarasiri A, Victoria J, Bellon M, Kalkanis S, Siddiqui MS, Movsas B. Evaluation of a magnetic resonance guided linear accelerator for stereotactic radiosurgery treatment. Radiother Oncol. 2018;127(3):460–6.

    Article  Google Scholar 

  • Yang Y, Cao M, Sheng K, Gao Y, Chen A, Kamrava M, Lee P, Agazaryan N, Lamb J, Thomas D. Longitudinal diffusion MRI for treatment response assessment: preliminary experience using an MRI-guided tri-cobalt 60 radiotherapy system. Med Phys. 2016;43:1369–73.

    Article  Google Scholar 

  • Yun J, Wachowicz K, Mackenzie M, Rathee S, Robinson D, Fallone B. First demonstration of intrafractional tumor-tracked irradiation using 2D phantom MR images on a prototype linac-MR. Med Phys. 2013;40:051718.

    Article  Google Scholar 

  • Zindler JD, Thomas CR, Hahn SM, Hoffmann AL, Troost EG, Lambin P. Increasing the therapeutic ratio of stereotactic ablative radiotherapy by individualized isotoxic dose prescription. J Natl Cancer Inst. 2016;108:djv305.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Roach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roach, M., Glide-Hurst, C.K. (2019). MRI at the Time of External Beam Treatment. In: Liney, G., van der Heide, U. (eds) MRI for Radiotherapy. Springer, Cham. https://doi.org/10.1007/978-3-030-14442-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14442-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14441-8

  • Online ISBN: 978-3-030-14442-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics