Skip to main content

A Public Code for Precision Big Bang Nucleosynthesis with Improved Helium-4 Predictions

  • Conference paper
  • First Online:
Nuclei in the Cosmos XV

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 219))

Abstract

A Mathematica code (“PRIMAT”) for big bang nucleosynthesis (BBN), has been made publicly available. Its network includes more than 400 reactions with their updated thermonuclear reaction rates. In particular, it takes advantage of the recently improved weak reaction rates that include all the required theoretical corrections to reach a level of accuracy of \(10^{-4}\) on \(^4\mathrm{He}\). Once the uncertainties on the reaction rates and neutron lifetime are taken into account, we obtain \(Y_p = 0.24709 \pm 0.00017\), D/H = (\(2.459 \pm 0.036) \times 10^{-5}\) and Li/H = (\(5.623 \pm 0.247)\times 10^{-10}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Aver, K.A. Olive, E.D. Skillman, The effects of He I \(\lambda \) 10830 on helium abundance determinations. J. Cosmol. Astropart. Phys 7, 011 (2015)

    Article  ADS  Google Scholar 

  2. R.J. Cooke, M. Pettini, C.C. Steidel, One percent determination of the primordial deuterium abundance. Astrophys. J. 855, 102 (2018)

    Article  ADS  Google Scholar 

  3. A. Coc, P. Petitjean, J.-P. Uzan et al., New reaction rates for improved primordial D/H calculation and the cosmic evolution of deuterium. Phys. Rev. D 92, 123526 (2015)

    Article  ADS  Google Scholar 

  4. C. Pitrou, A. Coc, J.-P. Uzan, E. Vangioni, Precision big bang nucleosynthesis with improved Helium-4 predictions. Phys. Rep. 754, 1 (2018). arXiv:1801.08023 [astro-ph.CO]. https://doi.org/10.1016/j.physrep.2018.04.005

    Article  ADS  MathSciNet  Google Scholar 

  5. A. Coc, S. Goriely, Y. Xu, M. Saimpert, E. Vangioni, Standard big bang nucleosynthesis up to CNO with an improved extended nuclear network. Astrophys. J. 744, 158 (2012)

    Article  ADS  Google Scholar 

  6. A. Coc, E. Vangioni, Primordial nucleosynthesis. Int. J. Mod. Phys. E, 26, 1741002 (2017). arXiv:1707.01004 [astro-ph.CO]

    Article  ADS  Google Scholar 

  7. Á. Gómez Iñesta, C. Iliadis, A. Coc, Bayesian estimation of thermonuclear reaction rates for deuterium+deuterium reactions. Astrophys. J. 849, 134 (2017)

    Article  ADS  Google Scholar 

  8. C. Iliadis, K.S. Anderson, A. Coc, F.X. Timmes, S. Starrfield, Bayesian estimation of thermonuclear reaction rates. Astrophys. J. 831, 107 (2016)

    Article  ADS  Google Scholar 

  9. L. Sbordone, P. Bonifacio, E. Caffau et al., The metal-poor end of the Spite plateau I. Stellar parameters, metallicities, and lithium abundances. Astron. Astrophys. 522, A26 (2010) (2016)

    Article  Google Scholar 

  10. A.P. Serebrov, E.A. Kolomensky, A.K. Fomin et al., Neutron lifetime measurements with a large gravitational trap for ultracold neutrons. Phys. Rev. C 97, 055503 (2018)

    Article  ADS  Google Scholar 

  11. L.E. Marcucci, G. Mangano, A. Kievsky, Viviani, Implication of the proton-deuteron radiative capture for big bang nucleosynthesis. Phys. Rev. Lett. 116, 102501 (2016)

    Google Scholar 

  12. S. Zavatarelli et al., A new measurement of the D(p,\(\gamma )^3\)He crosssection in the BBN energy range at LUNA, these proceedings

    Google Scholar 

  13. Damone, L.A. et al., \(^7\)Be(n,p) cross section measurement for the cosmological lithium problem at the n_TOF facility at CERN, these proceedings

    Google Scholar 

  14. I. Wiedenhoever et al., Cross sections of \(^7\)Be+d measured at low energies and implications for Big-Bang nucleosynthesis, these proceedings

    Google Scholar 

  15. A. Coc, K.A. Olive, J.-P. Uzan, E. Vangioni, Big bang nucleosynthesis constraints on scalar-tensor theories of gravity. Phys. Rev. D 73, 083525 (2006)

    Article  ADS  Google Scholar 

  16. A. Coc, N.J. Nunes, K.A. Olive, J.-P. Uzan, E. Vangioni, Coupled variations of fundamental couplings and primordial nucleosynthesis. Phys. Rev. D 76, 023511 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Coc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Coc, A., Pitrou, C., Uzan, JP., Vangioni, E. (2019). A Public Code for Precision Big Bang Nucleosynthesis with Improved Helium-4 Predictions. In: Formicola, A., Junker, M., Gialanella, L., Imbriani, G. (eds) Nuclei in the Cosmos XV. Springer Proceedings in Physics, vol 219. Springer, Cham. https://doi.org/10.1007/978-3-030-13876-9_57

Download citation

Publish with us

Policies and ethics