Chapter 5)
Tacit Knowledge in Software Evolution Shethie

Jan Ole Johanssen, Fabien Patrick Viertel, Bernd Bruegge,
and Kurt Schneider

Requirement elicitation is an essential activity to identify functional and non-
functional requirements of a software system. In long-living software systems,
requirements identification and update are particularly challenging. This typically
results in an incomplete set of requirements. The reasons for this lie in continuous
changes over the lifetime of the software system, followed by a substantial part of
the requirements that remains unspoken: Users, and generally any stakeholder of a
software system, might not be consciously aware of new or evolved needs or of the
associated reasons. As a result, they are unable to express and verbalise requirements
that relate to this knowledge, which is called tacit knowledge. This chapter details
the identification and externalisation of tacit knowledge during both the design time
and run time of a long-living and continuously evolving system. The overall goal is
to detect deviations between explicitly elicited requirements and implicitly derived
requirements. We discuss two cases in which the identification and externalisation
of tacit knowledge is crucial for high-quality software systems.

In the first case, tacit knowledge about security is identified and externalised
by heuristics as an example for non-functional requirements elicited during design
time. Previously externalised knowledge is encoded in heuristics and filters for
machine learning, which classify general requirements into more and less security-
related ones. As a consequence, security experts can focus their time and effort on
the more security-related requirements. In the long term of a long-living software
system, externalising and reusing tacit security knowledge will be embedded in a
cyclic learning process.

J. O. Johanssen (P4) - B. Bruegge
Technische Universitit Miinchen, Institut fiir Informatik 11, Garching, Germany
e-mail: jan.johanssen @tum.de; bruegge @in.tum.de

F. P. Viertel - K. Schneider
Leibniz Universitit Hannover, Fachgebiet Software Engineering, Hannover, Germany
e-mail: fabien.viertel @inf.uni-hannover.de; kurt.schneider @inf.uni-hannover.de

© The Author(s) 2019 77
R. Reussner et al. (eds.), Managed Software Evolution,
https://doi.org/10.1007/978-3-030-13499-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13499-0_5&domain=pdf
mailto:jan.johanssen@tum.de
mailto:bruegge@in.tum.de
mailto:fabien.viertel@inf.uni-hannover.de
mailto:kurt.schneider@inf.uni-hannover.de
https://doi.org/10.1007/978-3-030-13499-0_5

78 J. O. Johanssen et al.

The second case focuses on tacit knowledge captured during the run time of a
system to improve the functional aspects of a software system. Usage monitoring
allows to understand the difference between the specified and observed behaviour
of a user. A system is inconsistent or incomplete if the requirements are incorrectly
implemented or an important feature has not yet been identified and implemented.
Traditional approaches address these problems only by using bug reports and change
requests. We claim that the identification and extraction of tacit usage knowledge
help to reveal misunderstandings and leads to feature requests without the active
verbalisation by the users of the software system.

5.1 Toward Identification and Extraction of Tacit Knowledge

Software systems are built on a set of requirements established during requirements
engineering. Requirements elicitation is a major activity of requirements engineer-
ing aiming at a complete representation of the system under development and its
external behaviour [Dav93].

Long-living systems face challenges even if state-of-the-art requirement elicita-
tion practices are applied. A component without confidential data but with Internet
access may turn into a security-related one when it is connected to yet another
component that contains customer data. Likewise, a simple view may be easy to
use in its initial version, but during the system’s lifetime, new visual components
are added, affecting the way the interface was originally designed. Each set of
requirements may look simple by itself; however, in combination, they may require
specific attention. Even a system that is initially considered secure or user-friendly
may eventually become vulnerable or confusing by the continuous changes of the
long-living system.

Developers may have some understanding of security or usability concerns
but only a very limited knowledge for recognising related aspects. When they
implement new functionality or integrate components, they may not recognise
implicit vulnerabilities or usability problems. They would need a hint or breakdown
to raise their attention. In addition, existing requirements relate to and have an
impact on more aspects than initially defined. At the same time, the attempt to obtain
a complete specification of requirements often leads to analysis paralysis [Bro+98]:
The intention to analyse an aspect in its entirety slows down the process and finally
paralyses it. In this chapter, we focus on the aspects of the following requirements:

* Non-functional requirements and their impact that neither customers nor
developers are aware of during requirements elicitation at design time.

* Functional requirements that evolve during the run time of a software system
that end users are unable to express.

Tacit knowledge is knowledge deeply ingrained in a person’s mind [PS09]; a
person will apply such knowledge repeatedly but may not be able to verbalise this
given knowledge. For example, security experts avoid code injection vulnerabilities

5 Tacit Knowledge in Software Evolution 79

as part of their expertise. Likewise, developers keep the user interface simple
and easy to use without explicit requirement. When their activity of competence
is interrupted while they apply this tacit knowledge—the breakdown—they will
remember the rationale. In many cases, domain experts are not even aware that their
expertise depends on this knowledge and that this knowledge might be useful for
others. We follow the hypothesis that the utilisation of tacit knowledge allows the
requirements of long-living systems to be kept consistent and complete throughout
the lifecycle of the system. We analyse two perspectives on tacit knowledge: design
time and run time.

A Design Time Perspective on Requirements. Systems evolve over time. During
the initial design phase, certain aspects might be considered irrelevant. For instance,
a supermarket system designed without the Internet in mind would not consider
attacks or vulnerabilities that arise when the system is extended to an online store
during its evolution. Thus, security requirements and the awareness for security-
related aspects of functional requirements may have not been considered during the
initial design phase. To cope with this situation, developers extend the functionality
but often overlook the need to adapt associated non-functional requirements, such
as security, that result from the change. Over time, this neglect will turn an initially
secure system into an insecure and vulnerable one.

A Runtime Perspective on Requirements. Information on users and on how they
practically employ a system might not be present during requirement elicitation.
Therefore, systems might not deal well with users, and previously made decisions
require refinements. In addition, new requirements are demanded since they become
relevant only when the software is used during a later point in time. Users and their
intention change over time, which results in changed requirements that evolved by
frequently using the software. Two approaches were developed to handle the lack
of usage knowledge, that is how software is being utilised by end users: To support
requirements elicitation, the concept of a stakeholder was introduced to software
engineering [Con94]. Stakeholders represent the interests of clients, customers, and
developers—but often neglect the interests of end users and are difficult to identify
if a user has not been able to participate in the requirements elicitation [SFG99,
Con94]. In the field of human-computer interaction—and in other fields such as
marketing [Jen94]—another approach was established to deal with not yet existing
users: personas, so-called “hypothetical archetypes” [C0099], refer to a fictional
and synthetic character that one would imagine a user could look like, focusing on
certain characteristics. Personas are derived from a limited population sample and
reflect specific characteristics of users.

We present evolutionary approaches for both perspectives, namely to identify
neglected non-functional requirements, such as security during design time, and
to identify functional requirements by observing real users during run time. Both
approaches share similar challenges: discover, understand, and transform users’ tacit
knowledge into explicit knowledge.

To transform tacit knowledge to explicit non-functional requirements during
design time, we describe an approach that identifies security-related requirements
semi-automatically using natural language processing. Our approach is able to

80 J. O. Johanssen et al.

retrieve vulnerabilities from requirements written in natural language based on
security incidents.

We describe a formative approach for understanding users from runtime infor-
mation, which begins with personas as the starting point for the classification of real
users. This is similar to a greedy algorithm, which starts with a local optimum—
an assumption of how a hypothetical stakeholder [RC03] could look like—and
continues searching for a better user understanding.

Both approaches apply iterative and evolutionary procedures. We begin with an
empty starting situation, for example knowing nothing about security requirements
or the user’s preferences. Both approaches aim to improve the current set of
requirements for a given problem and the understanding of the real users by
continuously transforming tacit knowledge into explicit knowledge. Ultimately, this
process will result in:

* Increasing the system’s usability and customisation towards the needs of users
by software releases that better fit the requirements of customers and the
expectations of users

e Improving and maintaining the quality of development for long-living systems
by co-evolving non-functional requirements, such as security or usability

The chapter is structured as follows. In Sect. 5.2, we provide an overview of the
foundations of tacit knowledge. In Sects. 5.3 and 5.4, we introduce our approaches
and highlight their application in a concrete example. The approaches address the
two main challenges as described in Sect. 3.1: identification and extraction of tacit
knowledge, as well as detection of deviations in requirements. In Sect.5.5, we
present related work. Section 5.6 provides a summary, outlook, and suggestions
for further reading.

5.2 Foundations

The aim of software engineering is to establish activities for specifying, developing,
and managing software evolution. However, these activities usually cannot capture
every aspect required for a complete specification. One reason for the incom-
pleteness of the specification lies in the inability of stakeholders to express their
requirements—even though they are aware of a need, generally referred to as tacit
knowledge.

Polanyi builds his definition of tacit knowledge on the fact that “we can know
more than we can tell” [PS09]: In his book The Tacit Dimension, he further
coins the term tacit by describing it as a skill, positioning the term closely to
physical actions such as riding a bicycle or playing an instrument—actions that are
learned over a long period and apparently impossible to describe in words. Polanyi
systematically describes the inner workings of a human when experiencing or, more
precisely, externalising tacit knowledge. He identifies the functional relationship
and structure of tacit knowledge, which allow to disassemble the individual parts of

5 Tacit Knowledge in Software Evolution 81

tacit knowledge. Further, semantic and ontological aspects lead to the phenomenal
structure of tacit knowing.

Gigerenzer [Gig08] uses the comparison of a native speaker that—while they can
find a sentence to be grammatically correct—they are usually unable to verbalise the
underlying grammar; he calls this gut feeling and uses the term interchangeably with
intuition and hunch [Gig08]. Gigerenzer continues to exemplify that humans tend
to choose logically unlikely alternatives when asked for predicting the likelihood of
two alternatives—the conjunction fallacy. They base their decision on impressions
rather than mathematical rationale [Gig08].

In his book The Reflective Practitioner: How Professionals Think in Action,
Donald A. Schon recognises similar patterns in working environment settings
[Sch83]. He coins the phrase that our knowing is in our action [Sch83]. He develops
the term tacit knowing in action by noticing that practitioners are continuously
making decisions during their day-to-day work, such as the assessment of situations
or quality criteria, without paying attention to the act of decision-making. However,
sometimes they are interrupted during this process and reflect on their action:
By extracting the underlying features of their judgements to criticising existing
approaches, they arrive at an improved embodiment [Sch83].

Nonaka and Takeuchi provide an extensive examination of the differences
between explicit knowledge, that is written down in rules, definitions, or handbooks,
and implicit knowledge, that is experiences of an individual that are based on
personal values and motivated by cultural aspects [NT12]. In their book The
Knowledge-Creating Company, the authors describe the dynamic interplay between
these two knowledge types as the key for knowledge creation in companies. They
establish a spiral model that contributes to the social process of knowledge sharing
that heavily depends on a collaborative interaction and leads to the externalisation
of knowledge, which makes it useful for companies.

Tacit knowledge is investigated in multiple fields, such as social, psychological,
or physiological science. Understanding and externalising tacit knowledge can be
valuable for other disciplines as well. For instance, Schneider acknowledges that
specific techniques are needed to capture requirements and additional information
when and where they surface: in natural language requirements specifications or by
observing activities by experts [Sch09].

5.3 Tacit Knowledge During Design Time

Tacit knowledge is not easily available for extraction, externalisation, and use by
others. A person with tacit knowledge acts in a knowledgeable way but is not able
to explain that knowledge. In the first part of this section, we describe a case in
which requirement engineers and developers deal with requirements. Since they are
usually not security experts, their experience in security is limited. Security experts
are knowledgeable about security but may be unable to apply that knowledge to a
given set of requirements. A large part of their security knowledge remains tacit.

82 J. O. Johanssen et al.

They need a breakdown in order to shift tacit knowledge to their conscience and
apply it. In the following heuristic approach, we use natural language processing,
ontologies, and frames to guide and focus the attention of security experts to use
cases (UCs) that are more security-related than others. This is supposed to reduce
their effort and help them focus on the most rewarding requirements for identifying
security problems.

This focus and contextualisation can help to externalise their respective tacit
knowledge. The externalised knowledge will also be stored for future use: It can
help improve the above-mentioned heuristic filtering mechanisms, thus improving
the automated part of classification.

5.3.1 Security in Requirement Documents

Security is an important quality aspect. It is not obvious whether a requirement is
security relevant or not. It will depend on other requirements and on the environment
that the software is used in: Depending on laws, different levels of security will be
required. Knowledge about security incidents or innovations in attacks has a major
influence on security. All these aspects are in constant flux and need to be monitored
to keep a long-living system secure.

Most customers and requirement engineers are not security experts. In the
requirement elicitation phase, some of them rely on their gut feeling in judging the
security relevance of requirements. This gut feeling or experience indicates certain
knowledge that is, however, difficult to grasp. Developers consider a requirement
security-related, but they cannot say why. It just looks suspicious to them. From
their perspective, the reason for that suspicion is facit knowledge.

Use cases and a specification document are artefacts resulting from requirement
activities. Use cases support the understanding of requirements and describe
what the system should do. In most cases, they are written in natural language,
which makes them more comprehensible for customers. Due to the large number
of requirements and use cases involved in a large long-living software system,
checking entire specifications and all use cases for security concerns would be very
laborious and, in most of the cases, impossible for economic reasons.

Therefore, we developed a semi-automatic approach for the classification of
natural language requirements with a special focus on use cases. As a result, only
parts of those artefacts are classified as security-related and then need an in-depth
investigation by security experts.

Even security experts cannot cover all relevant security knowledge to determine
whether a requirement is security-related or not. While developers and requirements
engineers are not aware of security concerns, security experts may not be able to
identify a concrete problem with respect to their large internalised knowledge about
potential attacks. Again, a lot of tacit knowledge needs a breakdown to come to the
foreground.

5 Tacit Knowledge in Software Evolution 83

This observation led us to the following research questions [Gar+14]:

* RQ1: How can security knowledge be organized in a way that it can be used for
assessing the requirements of a long-living software system?

* RQ2: How can requirements engineers identify security-critical issues in natural
language requirements semi-automatically?

* RQ3: How can requirements engineers be supported to extract proper security
knowledge from identified security-critical issues in requirements?

We need a security knowledge model to use and collect security-related knowl-
edge. Our approach uses heuristics to identify security vulnerabilities.

Our goal is to support the security assessment of requirement while using security
knowledge of reported security incidents. We focus on use cases. In Sect.5.3.2,
we show how related knowledge is modelled. Requirements are classified semi-
automatically. Among other techniques, we use Natural Language Processing
(NLP). The classification is performed based on the semantic of words in a
requirement. In Sect.5.3.3, the approach is described in detail. We describe the
identification of security issues by heuristics in the remainder of this section.
Furthermore, we explain the extraction of security knowledge from informal
sources, such as conversations. The knowledge base is filled from those sources.
Section 5.3.4 presents an evaluation on the case study using the iTrust medical health
care system.

5.3.2 Modelling of Security Knowledge

Security faces the challenge of unknown unknowns [MHOS]: we do not even know
what we don’t know. It is impossible to say which knowledge will be relevant in the
future. Relevant security knowledge, for example on new attacks, changes rapidly
over time.

Trustworthy data should be securely encrypted. Data Encryption Standard
(DES) met this requirement. In the mid-nineties, attacker knowledge revised that
perception. Nowadays, DES is considered insecure, so that another encryption
such as the extension Advanced Encryption Standard (AES) must be used to
meet the above-mentioned requirement of securely encrypting data. To prevent a
leak of data integrity, we use reasoning techniques to detect these data flows. A
detailed description of this procedure is provided in Sect.5.3.3 Therefore, security
knowledge must be maintained by human interaction iteratively.

Security Ontology
Security knowledge consists of knowledge about security incidents, operator obliga-

tions, and security guidelines—to name just a few. We collected various taxonomies
and ontologies for modelling incident-centric security knowledge from literature

84 J. O. Johanssen et al.

and derived an ontology covering the most important parts. According to Schreiber,
there are general ontologies and domain- and task-specific ontologies [Sch08]. The
creation of ontology includes the definition and hierarchical ordering of important
terms, their properties and relations, as well as their instances.

Our ontology is derived from literature and is a general security ontology. The
upper part of that ontology consists of generic terms and concepts related to security,
such as assets, vulnerabilities, and attacks. The lower part of the ontology details
those concepts with respect to the specifics of a given long-learning system. For
example, customer data are considered an asset, and the WiFi connection in a
CoCoME store may cause vulnerability.

For identifying the hierarchical structure of the upper ontology, a systematic
literature review was applied to identify security-related terms and their relations.
We addressed publications about concrete ontologies of security knowledge from
the area of threat modelling, risk analysis, computer and network security, software
vulnerabilities, and information security management. Furthermore, we consider
publications covering information systems, cyber-physical systems, distributed sys-
tems, and agent-based systems. The named security concepts of these publications
are considered for the concepts of our security ontology. To focus on security issues
in requirements engineering, publications should primarily consider the technical
security aspects of systems (e.g. protocols and encryption algorithms). Further
publications that describe applicable approaches were considered for capture and
enrich security knowledge. For the automatic search on digital libraries we used
the terms security, information system, software, ontology, and meta-model. To find
similar work that we did not find within the automatic search, the references of the
found work was checked for relevance. Publications until the beginning of February
2015 were considered. All found publications were selected based on the criteria in
the following steps.

First step

* Publication exists in full text and is written in English.

» Publication describes a realised, practical applicable approach.

* Publication addresses the modulation, application, or acquisition of security
knowledge in software engineering.

Second step

* Publication describes the terms of an ontology with respect to security and
their relations.
» The ontology presented in the publication is universally valid.

Third step

* The ontology describes a specific approach to capture knowledge related to
security.
* A concrete knowledge source is considered for the extraction of knowledge.

5 Tacit Knowledge in Software Evolution

85

Table 5.1 Publications considered for the creation of ontology [Gar+14]

Publication
Howard et al. [HL98]

Jung et al. [JHS99]

Mouratidis et al. [MGMO03]

Undercoffer et al. [UJP03]
Alvarez et al. [AP03]
Swiderski et al. [SS04]

Herzog et al. [HSDO07]
Tsoumas et al. [TG06]

Karyda et al. [Kar+06]
Barnum et al. [BS07]

Fenz et al. [FE09]
Elahi et al. [EYZ09]

Simmons et al. [Sim+09]

Principal security concepts

Action, target, access, tool, vulnerability, result, objective,
attacker

Asset, vulnerability, threat, security control, risk probability,
asset value, impact, EC environment

Constraints, secure entity (goals, tasks, resources), secure
dependency

Attack, system component, input, consequence, means,
location

Entry point, vulnerability, service, action, input length, http
headers, http verb, target, scope, privileges

Asset, entry point, trust level, attack, attacker, vulnerability,
countermeasure

Asset, threat, vulnerability, countermeasure

Asset, risk, threat, attack, threat agent, vulnerability, impact,
countermeasure, controls, security policy, stakeholder

Asset, countermeasure, objective, person, threat

Vulnerability, weakness, method of attack, attack consequence,
attacker skill, solution and mitigation, resource, context

Asset, organisation, security attribute, threat, threat source,
threat origin, vulnerability, control, severity scale

Vulnerability, effect, attack, security impact, malicious goal,
attacker, countermeasure, malicious action, component, actor

Attack vector, operational impact, defence, informational

impact, target (network, application, etc.)
Guo et al. [GW09] Attack, countermeasure, consequence, attacker, vulnerability,
IT product
Attack, countermeasure, asset, vulnerability, threat, security

goal

Miede et al. [Mie+10]

Eichler [Eicl1] Asset, threat, damage scenario, protection requirements,

safeguard, module

The resulting publications, including their security concepts, are listed in
Table 5.1. We identified ontology assets, entry points, trust level, system
components, attack, vulnerability, threat and countermeasure. These components are
mentioned in several of the considered publications, which leads to the structure of
our ontology. In the following, the components and their relations will be described
and explained with examples.

* An asset is an item of interest worth being protected (e.g. username and
password).

* Entry points define the interfaces to interact with the system. They provide access
to assets (e.g. login website, email, input field).

* A trust level describes which role has access to an asset using a specific entry
point (e.g. user, administrator).

86 J. O. Johanssen et al.

* System components model the regarded system focusing on assets and entry
points. This includes hardware, as well as software components (e.g. database,
logging).

* An attack is a sequence of malicious actions that are performed by an attacker
aiming at assets (e.g. cross-site scripting, denial-of-service attack).

* Vulnerability is a system property that facilitates unintended access or modifi-
cation of assets. It violates an explicit and implicit security policy. Entry points
may have or provide access to vulnerabilities (e.g. improper neutralisation of
input, missing encryption of sensitive data).

e A threat is the possibility to perform a successful attack on a specific asset.
Successful attacks exploit at least one vulnerability to cause damage (e.g. execute
unauthorised code or commands, expose sensitive data).

* A countermeasure mitigates a certain threat by fixing the respective vulnerability
(e.g. input validation, encryption of sensitive data).

In Fig.5.1, the upper parts of the ontology are displayed. This upper security
ontology has to be refined in terms of concepts and in terms of instances. For
example, there are various assets of a system, such as username or password, that
have to be considered. The concept assets of the ontology have to be instantiated by
these concrete assets.

Representation of Knowledge

To monitor different knowledge sources, it is necessary that the knowledge they
provide is represented in a uniform manner. Each knowledge item, such as security
incidents and use cases, has to be transformed into separate analysis models.
They form the so-called security abstraction model. A security abstraction model
represents a scenario that describes the use case with respect to security. It has been
defined based on the knowledge structure of our security ontology. As an example,
the description of a use case is that “a user enters his password into the web form”.
It contains “user” as trust level, “password” as the related asset, and “web form” as

System Component —> Asset < Threat
contains threatens
) A
mcludes Walns %'rovidesAccessTo realizes
contains
Trust Level - Entry Point Attack |« Attacker
accessibleBy : : performs
. contains ~~accessTo consistsOf
refines Y Y followedBy
Countermeasure — »| Vulnerability <€ Action
mitigates exploits

Fig. 5.1 Security ontology [Gér+14]

5 Tacit Knowledge in Software Evolution 87

Table 5.2 Step of use case in

. Concepts Use case
an abstraction model

Trust level ~ User
Assets Password
Entry point Web form

the entry point to that asset. Table 5.2 shows the textual representation of a use case
step. The model can contain one to multiple of these scenario steps.

5.3.3 Identification and Extraction of Tacit Security Knowledge

In general, our approach consists of two steps: (1) the identification of security
vulnerabilities in requirements and (2) the extraction and enrichment of security-
related knowledge. For applying our approach, the security ontology has to be
manually enriched with security-related terms and their relations to each other
by a domain or security expert. To consider requirements and security incidents
for the security assessment, the transformation into the previously mentioned
analysis model is necessary. These models will be generated automatically in the
security assessment approach with the consideration of word similarity and relations
between words which are part of both a use case and the ontology.

In the security requirement assessment process, use cases will be classified
with respect to the enriched security knowledge through heuristic findings. These
heuristics will be described in this section. The automatically generated results
of the classification and the heuristic findings will be passed to the requirements
engineer, who is now able to enrich the existing security knowledge based on
the findings of the security assessment. These findings now represent knowledge
consisting of security-related terms that are extracted from the security assessment
process and that are not part of the security knowledge base. The requirements
engineer can now enhance the knowledge base with this information.

Classification of Words

In general, use cases are written in natural language. Therefore, we use natural
language processing for their security assessment. Semantic similarity is defined
as the similar meaning of two potentially syntactical different words [Sch94a]. We
focus on nouns in the requirements and incidents. To identify the nouns, a statistical
part-of-speech tagger is inevitable [PPMO04]. If a security affiliation exists for these
nouns, they will be assigned to the attribute system component, entry points, asset,
and trust level of the security abstraction model. The modelled security knowledge
supports the assignment of extracted words to the attributes.

88 J. O. Johanssen et al.

The semantic similarity between nouns can be measured based on the structure
and content of WordNet. In WordNet, the nouns are organised in hierarchies [Fel98].
We adapt the method of the lowest common subsume (LCS) [JC97]. The concept
of LCS is a tree-like lexical taxonomy in which the similarity of words will be
described by the shortest path between them in the tree. If the information content
of the LCS is above a predefined threshold, the similarity between two words is very
low. Otherwise, both words are semantically similar. To get the LCS of two words,
the paths by using their hypernyms listed in WordNet will be derived.

Measurement of Similarity Between Security Abstraction Models

To identify the alignment of security, we utilise the Needleman-Wunsch algorithm
[NW70]. The algorithm is originally used to determine the similarity of amino acid
sequence of two proteins: All possible pairs of sequences could be represented as a
two-dimensional array. The similarity of two sequences is represented as a pathway
through the array. A smallest match when comparing a pair of amino acids can be
used, one from each protein. The maximum match is defined as the largest number
of amino acids of one protein that can be matched with those of another protein.

This comparison was transferred to the comparison of security abstraction
models with use cases. To detect whether a use case is security relevant or not,
all steps included will be compared to the collected security knowledge in the form
of steps of a security abstraction model. For this assessment, the previous explained
LCS method of semantic similarity is used. If the calculated LCS-value is above
a given threshold, there is likely a vulnerability in a given use case. The results
of every assessment are stored in a two-dimensional matrix, which is created for
every security abstraction model comparison. The matrix cells contain LCS-values
for the indication of similarity of two specific steps. In Table 5.3, an example of a
comparison of a use case with the steps UC1 and UC2 and a security incident (SI)
with the steps SI1 and SI2 are shown.

(Semi)-Automatic Acquisition of Tacit Knowledge

We interleaved the refinement and knowledge enrichment of the knowledge base in
the security relevance assessment of use cases as an active learning mechanism.
The requirement engineer actively decides to acquire potentially new security

Table 5.3 Extract of the
comparison of two security
abstraction models

Security incident
Step SI1 ~ Step SI2
Usecase Step UC1 0.5 1.5
Step UC2 1.0 0.1

5 Tacit Knowledge in Software Evolution 89

knowledge, such as the modification, reinforcement, and refinement of existing
knowledge.

For this enrichment, there are two different results of classification, which
process different information. The first are the true positives. In our approach, these
are use cases that would be correctly classified as security-related. They enhance
the knowledge through correctly classified terms. For example, if in the sentence
“The user enters an identification number and a pin” the pin will be identified
as security-related, we conclude via the existing linguistic dependency between
pin and identification number that both are security-related. Besides classifying
this sentence, the new insight can also be added as additional knowledge to the
knowledge base.

The knowledge base can even be extended by false positives. They will be
considered for specifying the terms for a certain domain. For this purpose, falsely
classified scenario steps identified by the similarity computation concluding the
attributes (system component, asset, entry point, and trust level) will be considered.
If the value of similarity for an attribute is under a predefined threshold, there is an
uncertainty for the classification. Therefore, the requirement engineer can actively
manage whether a term should be excluded or included for the security classification
approach. Afterwards, the learned security knowledge can be enriched by a security
expert with additional security information (e.g. security standards and guidelines).
Explicit security knowledge and precision grow over time.

5.3.4 Tacit Security Knowledge Examples

We applied our approach to the CoCoME case study. However, there is only
a limited number of security-related requirements in CoCoME. Most of those
had to be introduced for demonstrating the feasibility of our approach. Although
intentionally inserted problems may be useful for concept demonstration, there are
obvious threats to validity.

Therefore, we decided to strengthen the evaluation by using a second, larger
example provided by others. The iTrust medical system case study is used by
many researchers as a benchmark for security. Since it resembles CoCoME in many
aspects, findings are relevant for the application domain represented by CoCoME.

In iTrust, a medical health care system [11], patients are able to manage their
health records, such as medical items, and personnel can organise their work.
If sensitive patient data are stored, only a limited number of people should be
allowed to receive insights into this data. Therefore, security is inevitable to prevent
access by intruders. Version 23 of iTrust consists of 55 use cases written in natural
language, and the health care system is developed as web application. Our goal is
to evaluate whether our approach can support requirements engineers through the
security assessment of requirements.

Ten of the use cases of iTrust were selected as initial security knowledge for
the requirement elicitation. These use cases distinguish themselves from each other

90 J. O. Johanssen et al.

Table 5.4 Derived misuse

’ Concept Individuals
cases of the iThrust system MUCI
[Gir+14]
Asset Initial password, security key

Entry point Email

Trust level ~ User

MuUC2

Asset Address

Entry point Address field, health record, view, display
Trust level Patient, health care personnel

in such a way that they have at least one different actor and cover a different
functionality of iTrust.

Unfortunately, there is no security incident documentation in iTrust. Neverthe-
less, a security incident can also be seen as a use case for the attacker, whereas for
the requirements engineer it would be a misuse case (MUC). Therefore, we created
misuse cases with respect to the ten initial use cases. In our example, an MUC
represents the steps of a specific security incident, which is created based on known
security incidents that occurred in the past.

A security ontology was set up on the use cases and misuse cases. The terms
of the medical health care domain were considered to embed the domain-specific
knowledge in our knowledge base. Furthermore, the individuals of the misuse cases
listed in Table 5.4, like system components, assets, trust levels, and entry points,
were added as well.

Through the analysis of use cases, we identified for use case 1 (UC1) and use
case 6 (UC6) that they are ambivalent because there exists an misuse case, which
malicious users follow to attack the use cases. UC1 describes the sending of the
initial password for a user account, which is required to login to iTrust, to a user
via email after the creation of the account by the medical personnel. This leads
us to misuse case 1 (MUCI), in which a hacker intercepts the email and uses the
password to have access to the iTrust system. This procedure is called hijacking. In
UC6, the patient can manage their visits to health care professionals (e.g. doctors)
and is able to see a list of health care professionals who have insights into their
patient data. This leads to MUC?2, in which the address fields of the patient view
contain vulnerability that enables cross site scripting (XSS). XSS is one of the most
dangerous vulnerabilities in web applications. An improper neutralisation of input
enables XSS. An attacker is able to inject malicious browser-executable content
into the patient view to steal sensitive data (e.g. medical identification number or
password). The named misuse cases are listed in Table 5.4.

For the evaluation of our approach, we split the evaluation into two iterations.
For the first iteration, we considered 35 use cases in addition to the ten initial
use cases for the security assessment. The results of the heuristic approach were
compared to the results of the manual and previously done requirements elicitation.
Based on the true and false positives, security knowledge refinement was performed.

5 Tacit Knowledge in Software Evolution 91

Table 5.5 Evaluation results ACC FPR FNR

[Gar+14] 1st iteration (n=44)

Our approach MUCI 0.90 0.10 0.00
MuUC2 0.64 055 0.15
Naive Bayes MUC1/2 0.61 0.00 0.89
SVM MUC1/2 0.57 0.00 1.00
k-NN MUC1/2 057 0.15 0.83
2nd iteration (n=55)
Our approach MUCI 098 0.00 0.14
MUC2 0.84 0.14 0.23
Naive Bayes MUC1/2 0.71 0.11 0.67
k-NN MUC1/2 0.76 0.00 0.68

In the second iteration, the refined knowledge was used for the heuristic security
assessment of use cases.

For evaluating our approach, we compared its performance to the results of Naive
Bayes, Support Vector Machine (SVM), and the k-nearest neighbors algorithm
(k-NN). As quality facets, we considered the accuracy (ACC), false positive rate
(FPR), and false negative rate (FNR). Under the ACC, we understand the degree of
correctly classified use cases with respect to all of them. The false positive rate is
defined by the number of falsely classified security-related use cases. Conversely,
the false negative rate measures the falsely classified use cases as non-security-
related.

In the training phase, the initial use cases are labelled while considering the
misuse cases. If an misuse case is related to a use case, the use case is labelled
as security-related. Otherwise, it is labelled as non-security-related. A low FNR
implies that most of the use cases were found, which is desired. In the first iteration,
SVMs has an FPR of 1.0, which means that no security-related use cases were
found. Therefore, we were not able to refine knowledge based on heuristic findings.
Thus, we did not consider SVMs for further iterations. Viewing the results of
iteration 2, our approach in fact got ACC 0.98 for MUCI and 0.84 for MUC?2,
as well as an FNR for MUC1 with 0.14 and for MUC2 with 0.23 as the best
results. Only the FPR of MUC2 with 0.14 is higher than the other approaches. The
results are listed in Table 5.5. Nevertheless, this fact is regardless for the context
of requirements elicitation. It is required to find all of the security-related use
cases, which is affected by the FNR. Afterwards a security expert can sort out false
positives to achieve only security-related use cases.

5.4 Tacit Knowledge During Run Time

The requirement elicitation phase examines a software system in its completeness,
striving for a complete and correct description. This is usually being done by
developers through discussions with stakeholders, which are typically represented

92 J. O. Johanssen et al.

by customers or the initiator of a software project. However, the end user of a system
might pose different requirements. This is why requirement elicitation also includes
interviews with the end users of a software system. In particular, user feedback is
valuable in case it is collected during the run time of a system. Therefore, capturing
knowledge about how a software system is utilised in the field carries valuable
knowledge and represents an important aspect in software evolution.

The idea of collecting and improving software systems based on user feedback
is further encouraged by recent activities that evolved under the umbrella of
Continuous Software Engineering (CSE). At the core of its encompassing activities,
continuous delivery allows to distribute software increments in short cycles to users,
reducing the time between a developer’s change in the form of a commit pushed to
a software repository and the execution of its corresponding software artefact by an
end user within the target environment [Bos14, FS17].

In the remainder of this section, we establish a perspective on tacit knowledge
during run time. We present an approach on how tacit usage knowledge can be
extracted from observed user behaviour. Therefore, we introduce the application
domain, which we limit to users of mobile applications, and elaborate on the
taxonomy of feedback, which we use synonymously to usage knowledge—referring
to any knowledge that resulted from observing user behaviour. We conclude this
section by describing preliminary results of a current research project.

5.4.1 Usage Knowledge in Software Evolution

Systems are designed by developers and their interpretation of how users utilise
software, as described in Sect. 5.4.2. Information on users and on how they employ a
system is rarely present during requirement elicitation. The feedback and behaviour
of users reveal insights that help to evolve a long-living software system, in
particular regarding the following shortcomings:

» Existing requirements are no longer applicable and need to be refined.

* New requirements are demanded that have not been considered during the initial
phase of requirements elicitation.

* New user groups evolved, and users’ intentions and requirements changed over
time, which results in the need to adapt existing requirements.

Current software engineering practices apply iterative development processes
that allow for the integration of users’ feedback. This feedback can be divided
into two groups [MHRO9]: feedback that has been provided explicitly by the
user—conscious feedback—and feedback that they provide indirectly and thereby
implicitly—unconscious feedback—as an integral part of the application usage.
Figure 5.2 depicts the taxonomy of conscious and unconscious feedback.

Conscious feedback is usually utilised during software evolution and is a rich
source of usage knowledge. Users try to reach out to the developers, for example in
form of an app store review, via mail, or through any other social media platform.

5 Tacit Knowledge in Software Evolution 93

Feedback

/\

App Store Review | Social Media Entry | | Interaction | | Location ‘

Mail

1

D
D

Time

Fig. 5.2 A taxonomy of feedback provided by the end users of a mobile application

They relay their experience and clearly address a problem they had encountered. The
utilisation of unconscious feedback requires a more advanced procedure of usage
knowledge understanding since interactions, such as clicks or taps, or contextual
information, such as time and location, need to be processed; well-adjusted methods
can be used to retrieve such precise information about user interaction [Joh+18a].

It is unconscious feedback that enables the detection of tacit usage knowledge
that can be utilised for software evolution. Tacit knowledge in the context of usage
knowledge goes beyond user analytics. It describes the users’ feelings, ideas, and
insights about a software system that they are unable to express in conscious
feedback such as written text. In particular, it is knowledge that they apply without
knowing it, which might not follow the way the system was designed in the first
place.

We want to inspect runtime tacit knowledge with a concrete example. Imagine
a mobile application that offers users the possibility to read news articles that are
presented in full screen. The developers implemented two possibilities to enable
the navigation between entries: (a) using a swipe gesture or (b) selecting a dot at
the bottom of the page that represents every news entry currently available. First-
time users might only use the dots to navigate since it is the most obvious way.
However, this is tedious since the dots are tiny and hard to spot. It is only until the
moment the users discover the swipe gesture that they learn a new, more intuitive and
convenient way of navigation. When developers understand the users’ interaction
with the application, they are able to react and either improve the button navigation
or add a distinct introduction to the swipe navigation. Similarly, as an additional
example, navigating through a vertical list of entries on a mobile device can be
accomplished in different ways: Users may perform (a) a long-lasting, exaggerated
gesture or (b) multiple precise, yet repetitive, short swipes to move through the list.
While the first behaviour indicates easily readable content, the latter one might be
interpreted in a way that the list’s content is hardly understandable and requires the
full attention of a user.

94 J. O. Johanssen et al.
5.4.2 Modelling of Knowledge

In our following analysis, we assume four main entities as illustrated in Fig.5.3:
The User is the main actor who uses the Application, which represents a software
system.

User I-:: - = - «uses»= == - = Application

(2 ~<
«provides»

Intention TA Feedback

Fig. 5.3 Analysis of the application domain of usage knowledge

After and during the application usage, they provide Feedback, which can be
further differentiated, as depicted in Fig.5.2. The feedback is based on the user’s
Intention. This intention represents the user’s idea of how they expect the application
to accomplish a given task and how to behave given a certain interaction model
posed by the application. To capture the intangible concepts of a user’s intention,
Norman introduced the Conceptual Model, which aims to formalise different
perspectives on a similar issue [ND86]. He describes a relationship between the
conceptual model and the Mental Model of every stakeholder that interacts with an
application. In Fig.5.4, we sketch involved models, in which the actual reality is
represented by the conceptual model, which might be interpreted in different ways.

According to Norman, two models are derived from the conceptual model: a
System Model and a mental model. Both of them are related to and formed by a
variety of models. The system model is the result of the discussions of domain
experts while applying domain knowledge. They create artefacts—the software
increments—in accordance with their understanding of a design, functional, and
object model. The mental model encompasses the users’ perception on that specific
artefact. The mental model depends on educational, cultural, or other general
knowledge models that can be summarised under tacit knowledge. Eventually, it
is the User Interface that brings both models together. The overall goal is to achieve

| Conceptual Model |

7y
| |

| System Model | | Mental Model |—0| User ‘
| User Interface |—0| Application ‘

Fig. 5.4 Interpretation of the conceptual model as a system model and mental model [ND86] and
their combination with the application domain coloured in grey on the right part of the figure

5 Tacit Knowledge in Software Evolution 95

L . - Acquire data access
... misusing something =~ Attack system

Non-Functional
Requirements

- Waiting time k

(Tacit knowledge about ...)4——(... bypassing something }— - - - Interaction steps

- Application crash

Functional
Requirements

I . - New interaction model
... accomplishing something ~ 77 - New feature

Fig. 5.5 Categories of tacit knowledge in the context of software evolution

a natural mapping [Nor13] that is characterised by a minimal amount of model
disagreement. The disagreement of the system model and the mental model might
be measured in the user’s interaction with the application’s user interface, which is
built from the developer’s system model.

The user’s intention is closely bound to the tacit knowledge that users are unable
to describe. As shown in Fig.5.5, tacit knowledge can be categorised into three
groups, though there might be more ways of distinguishing tacit knowledge in
software evolution.

5.4.3 Identification and Extraction of Tacit Usage Knowledge

For the identification and extraction of tacit usage knowledge during run time,
we propose a semi-automated approach. First, the occurrence of potential tacit
knowledge needs to be detected, which should be accomplished using machine
learning—we introduce the concept of runtime personas for this purpose in the
next section. Second, in the event of tacit knowledge detection, a request for more
qualitative feedback is posted. Third, a manual step of integrating the detected
situation of tacit knowledge with the qualitative feedback of users is performed.
Steps 2 and 3 are described as the extraction of tacit usage knowledge in the last
part of this section.

Runtime Personas
Tacit knowledge needs to evolve; it is not existent at the moment a user starts using

a software system. It develops over time, figuratively, though the temporal aspect
can be part of the consideration. Other characteristics that indicate the familiarity of

96 J. O. Johanssen et al.

a user with the system might be clicks or any other quantifiable value summarized
under unconscious feedback.

We apply Polanyi’s terminology and assumptions for describing the identification
of tacit knowledge. He introduces the proximal term and the distal term [PS09].
Proximal terms are considered the origin of an action, a starting point, or any event,
such as interaction with the user interface, that eventually leads to a result. Such a
result is described by the distal term, which can be any end point, intention, or goal,
such as the execution of a software feature. During the first step of our approach, we
aim to identify the connection between these two terms, which previously remained
tacit. Polanyi states that there is a fluctuating link between the two of them, which
eventually ends in a bold, established relationship—the tacit knowledge. Figure 5.6
illustrates this evolvement of tacit knowledge separated over a time span of different
observations during the run time of a software system.

. Time

/ \ Observation 1 / \

\

Observation 2

Proximal ° /\/\/// ______ o Distal

Terms Term
How is Observation 3 What is
something achieved?

achieved?

0O— ~— ~— —O

Observation 4

/ Tacit \

Knowledge
\ How do the particulars relate to the result? /

Fig. 5.6 The relation between the proximal terms (red), distal term (blue), and tacit knowledge
(green). The proximal terms, for example taps by the users, are eventually mapped to the distal
term, for example the feature execution. According to Polanyi [PS09], tacit knowledge can be
understood as the established mapping between the proximal and distal terms

5 Tacit Knowledge in Software Evolution 97

Polanyi argues that “we are aware of the proximal term of an act of tacit
knowing in the appearance of its distal term” [PS09] and continues to define this
finding as the phenomenal structure [PS09]. Consequently, if we identified the
distal term of a given tacit knowledge while users established a mature connection
between both terms, we might be able to derive the proximal terms that are of
great value to start understanding software usage. For the purpose of collecting and
allocating observations, we introduce the concept of Runtime Personas. According
to Polanyi, tacit knowledge is a person-related concept, which matches the persona
definition. Run time personas form a container to capture the evolvement and
eventually the discovery of tacit knowledge. The evolvement of a run time persona
is initiated with traditional personas as a first, optimal representation of tacit
knowledge, while it gets enriched throughout multiple stages and new findings.

This process can be understood best by giving an example aligned with Fig. 5.6.
The distal term defines the results of an action—the consequence or outcome,
depending on the observation. In the context of software engineering, this could be
the execution of a feature, in particular related interactions with the user interface.
Referring to our initial examples, the distal term could be expressed in consuming a
list of information on a mobile application. It is the proximal terms, the particulars,
that a user may not be able to tell when using the software system. In our example, it
manifests itself in the way the user interacts with the list to traverse the list’s content.
The challenge lies in the discovery of the connection between this interaction and
the usage of the list, namely its corresponding distal term. Traditional personas
[Co099] serve as the starting point. They describe a person’s characteristics that
qualify them for the usage of a feature, in particular reaching the previously defined
distal term. Further, they encapsulate the observations resulting from the asymptotic
process of information extracting. For instance, Observation I refers to a situation
in which it is not clear if a user’s interaction leads to a feature usage. Observation
2 seems promising, but indications stopped before it could be clearly mapped to the
usage of the feature. Observation 3 represents the first time that a definite correlation
between the proximal and distal terms could be established, while it still includes
some fluctuations. Finally, Observation 4 encompasses a clear link between the two
terms, allowing for the derivation of tacit knowledge.

Extraction of Tacit Usage Knowledge

Adapting Polanyi’s hypothesis of the phenomenal structure of tacit knowledge to the
context of usage knowledge in software systems, users are aware of their interactions
from which they are attending to accomplish the feature—in appearance of that
specific feature. This allows for extracting the tacit knowledge in the event of
Observation 4.

We propose utilising a modal window that asks the user for qualitative feedback,
as shown in Fig.5.7. It is triggered as soon as a distinct relation between proximal
and distal terms is detected. In particular, we imagine gaining insights with regard
to the following questions:

98 J. O. Johanssen et al.

Fig. 5.7 Mockup of
requesting feedback from

user eccee T 9:41 PM L_J

Feedback Done

WHAT HAVE YOU BEEN DOING?

HOW HAVE YOU BEEN DOING IT?

DID YOU EXPERIENCE ANY PROBLEMS?

* What has the user been trying to do?
* How did the user try to achieve it?
* Did the user experience any problems during this process?

The qualitative feedback enables the developer to understand and externalise
the tacit knowledge carried out by the users during run time. For integrating the
usage observation with the qualitative feedback, we propose the introduction of a
dashboard [Joh+17b]. The dashboard is a central component of the CURES project.
Within this dashboard, we envision to visually display categories of equivalence
classes—either based on the usage knowledge or by groups of distal terms, namely
the performed features. This allows the developers to augment information from
multiple feedback and find an optimal solution for integrating the new findings
[Joh+17a].

A further extension to encourage users to provide more detailed information
about the performed action could include a predefined selection of features—the
distal term—potentially involved in the process. However, this would require the
possibility to make a distinction in features used, in particular features offered by
the software system.

5 Tacit Knowledge in Software Evolution 99

Besides the integration and utilisation of the tacit runtime knowledge during
design time tasks by the developer, recurring patterns of tacit knowledge can be
caught during run time and utilised by the developer. For example, referring to
Fig. 5.5, in case a user wants to bypass several process steps that in general cannot be
removed from the application, the system could still provide a shortcut functionality
as soon as this situation is detected.

5.4.4 Tacit Usage Knowledge Examples

We focus on the automatic creation of run time personas from usage behaviour
within mobile applications. In this section, we describe examples of tacit usage
knowledge from a current research project [Fro18].

We prepared an open-source mobile application with several modifications to
record explicit usage data, such as interactions with the user interface in the form of
taps and gestures, as well as other sensor data, such as gyroscope and tap pressure.
We designed a catalogue of tasks to stimulate interaction within the application;
for example, we asked to use a specific functionality of the application or to find
out particular information that required them to navigate through several views of
the application. The tasks were carefully chosen to encompass typical routines of
user interactions, as well as aspects that allow to recognise the users’ behaviour in
unexpected situations. Based on the task execution by more than 100 individuals,
we trained multiple classifiers to derive the following characteristics for our run
time personas.

* Person-related information aims to characterise attributes that are highly individ-
ual to users, such as age groups distinguished by age ranges or their proficiency
and skills in dealing with mobile applications, distinguished in beginner and
expert groups.

» Application-related information aims to define the user’s familiarity with the
application at hand. This is reflected in attributes such as the familiarity level,
while we distinguish between a beginner and expert level, and their mental phase
with respect to the application usage, that is if they are exploring the interface or
if they are productively working and interacting with its functionality.

» Application-related usability issues aim to reflect users’ behaviour given a
situation in which they encounter an unexpected system behaviour, such as
inconsistencies in the user interface or missing user interaction elements in the
user interface.

So far, based on the current evaluation of usage data, we receive good results
on detecting situations in which users encounter an application-related usability
issue. We hypothesise that this is based on the fact that they only occur during a
short period of time, which is revealed in a distinct set of obvious changes in user
behaviour. The exact characteristics of the features remain yet unknown. Equally
promising results can be reported for detecting application-related information.

100 J. O. Johanssen et al.

Here, the detection of the productivity status of a user results in especially good
results. However, we assume a systematic error in measuring the productivity of
a user. Currently, we label a behaviour as productive in case the user is on their
way to using a functionality. In case they are moving away from it, for example
navigating towards a view that is not related, leaving no further space to use the
functionality, we consider their status as exploring. The results of the classifier
depend on a threshold for distinguishing between these two states. Measurements
for person-related information highly depend on the splitting of both the test and
training data for the individual classifiers.

We observe that application-related information can be suitable for automatically
deriving run time persona attributes. We hypothesise that this is because of their
inherent semantic relation to the user interaction. Person-related information, on the
other hand, is more challenging in its extraction and consequently is less accurate to
detect. Multiple reasons for its low predictability might be found in the way of data
collection.

In general, the presented approach to collect run time personas’ characteristics
and the resulting classifiers need to be treated with caution. Firstly and most
importantly, the approach would highly benefit from even more individuals who
provide usage data. In our model under consideration, we have an unbalanced
distribution of person-related information. This could be the reasons why the models
for person-related information might perform worse than the application-related
information. We also acknowledge a high bias of the sample application that was
used to collect the usage data. We tried to minimise this effect by tailoring the task
scenarios around general user interface interactions that are typical for a majority of
mobile applications. Overall, we suppose that several machine learning features for
training a model remain undiscovered. Therefore, future research is required to find
more machine learning features that reveal the main behaviour characteristics of an
action.

5.5 Related Work

Tacit knowledge is present during various aspects of software evolution. For
instance, it has been shown that developers share important rationale through chat
messages to perform development tasks [Alk+17a, Alk+17b]. This observation
fosters our assumption that there is more knowledge in existing artefacts that has not
yet been externalised. In particular, LaToza et al. highlight knowledge that resides in
developers’ minds regarding the application of tools and activities to perform code
tasks during software development [LVDO06]. This chapter sets the focus on tacit
knowledge to improve requirements elicitation by capturing additional information
during the design and run time of a software system. In the following, we present
existing work.

AlHogail and Berri [AB12] propose the development of architecture to preserve
security knowledge within an organisation. They plan to perceive and distribute

5 Tacit Knowledge in Software Evolution 101

security knowledge to tackle the problem of availability of security experts in
software projects. This enables a faster reaction on security incidents. To preserve
security knowledge, a template is used. Tsoumas and Gritzalis [TG06] present a
security management approach for information systems containing security knowl-
edge of different sources. Several approaches deal with the management of security
knowledge in ontologies [Ras+01, KR07, BKKO05]. Lee et al. [Lee+06] introduce
an approach for the extraction of relevant concepts from documents to build a
problem domain ontology. Jung et al. [JHS99] developed a reasoning approach to
use past security accidents in the risk analysis of e-commerce systems. To apply this
approach, the problem must be formatted into a specific case representation, which
makes additional effort necessary.

Most of the approaches are not considering the evolution of security knowledge
intensively. The support of requirements engineers who use past events from
gathered security knowledge in the context of requirements elicitation was not taken
into account in most approaches. Furthermore, cases in which knowledge changes
over time were also not considered.

When switching the perspective from a software architect or requirement analyst
to end users, for example the users of a software system, the runtime aspects of
a software system provide a rich source of tacit knowledge. Following Roehm et
al’’s findings, developers try to make use of this by putting themselves in the shoes
of users to understand program behaviour and get first ideas to further act on it
[Roe+12].

By applying a semi-automatic approach, Damevski et al. mine large-scale
datasets of IDE interactions [Dam+17]. Therefore, they aim to identify inefficient
applications of IDE usage patterns relying on their observations of developers’
activities during their daily development tasks. They begin with an automated
approach that—after preparing the input data—encompasses a sequential pattern
mining and filtering activity. Hereafter, clusters are created to determine common
workflows of developers, which are verified by the authors and a developer survey.
The approach of Damevski et al. shares a concrete process model to derive
knowledge from usage behaviour for the specific domain of integrated development
environments (IDEs). Our approach presented in Sect. 5.4 reflects the core idea of
the approach presented by Damevski et al. In particular, we try to identify common
usage patterns of a software increment.

Zhang et al. present a quantitative bottom-up data-driven approach to create
personas in their paper Data-Driven Personas: Constructing Archetypal Users with
Clickstreams and User Telemetry [ZBS16]. Their approach on creating personas
solely relies on click streams, while we want to incorporate other data as well, such
as the location or any meta data that describes how and when clicks occurred in
order to provide additional semantics.

Almeida et al. acknowledge the presence of poorly designed applications
that prevent users from using them and sustainable maintenance and evolution
[Alm+15]. They introduce a usability smell catalogue that allows for their identi-
fication, as well as refactoring the problems in question. Similarly, we strive to find
behavioural smells that provide information about the users [Joh18].

102 J. O. Johanssen et al.

Gadler et al. apply log mining to derive the use of a system; utilising Hidden
Markov Models, they automatically represent user’s intention [Gad+17]. We want
to apply a similar approach to understand the users’ intention when interacting with
a new software increment.

5.6 Conclusion

To conclude this chapter, we provide a brief summary of tacit knowledge in software
evolution, an outlook on future challenges, as well as further reading suggestions.

5.6.1 Summary

We described two approaches to identify and extract tacit knowledge during the
design time and run time of software systems. During the development of the
approaches introduced in Sects. 5.3 and 5.4, we encountered various lessons learned,
which we summarise subsequently.

We acknowledge that requirements which become new features might be relevant
for security. Identifying tacit knowledge in the form of security knowledge is a
difficult task for which a good understanding of security and the domain of the
software is necessary. Nature language processing can support the requirement
engineer during this task.

Extracting tacit usage knowledge during run time raises various challenges. As
indicated in Fig. 5.6, potentially wrong usage behaviour might eventually transition
into a pattern that is of interest and relevant for a new feature or functionality of
an application. This learning phase needs to be a core element in the detection of
usage behaviour, making it an important reference that points to the tacit knowledge.
Likewise, it is important to distinguish tacit knowledge from any kind of noise
effects. Eventually, we learned that only a limited set of new features can be
detected, while the quality of insights highly depends on the application in question.

Further discussions on security and its maintenance are described in Chap. 9.
Linking the tacit usage knowledge to other knowledge types, such as decision
knowledge described in Chap.6, provides new possibilities to further support
software evolution.

5.6.2 Outlook

Tacit knowledge in the domain of software evolution promises future research
areas to improve processes and software quality. In the following, we elaborate on

5 Tacit Knowledge in Software Evolution 103

multiple aspects of design and runtime tacit knowledge that we propose to continue
to work on in the future.

We developed an approach to identify security-related requirements semi-
automatically using natural language processing. The success of our approach
depends on the quality of security knowledge. Detailed knowledge leads to a more
helpful base of security knowledge for our approach. One challenge is to retrieve
and model the security knowledge to make it accessible for further requirement
elicitation. Our approach can identify vulnerabilities in requirements written in
natural language based on security incidents. With the iThrust case study, we have
shown that our approach performs better than other approaches, such as Naive
Bayes, k-NN, and SVMs. To apply our approach in an industrial setting, we have to
evaluate the level of detail that is used to document security incidents. Furthermore,
we need to investigate if intermediate feedback on security issues in requirements
improves the elicitation of security requirements.

A general, major challenge for future research efforts regarding runtime tacit
knowledge will be the detection of deviations between explicitly elicited require-
ments and implicitly derived requirements based on users’ behaviour. In particular,
creating a traceability link between these requirement sources still poses a challenge
in the exploration of tacit usage knowledge.

Two additional challenges should be investigated to further evolve software
engineering regarding tacit knowledge during run time. We found a challenge in
detecting actual error conditions. In particular, this requires to decide whether a
behavioural pattern or sequence is relevant or if it is simply noise, which is irrelevant
for the evaluation (see Observation 1 and Observation 2 in Fig. 5.6). This challenge
results in a fundamental question: Is every behaviour relevant and is there such
a thing as noise? Furthermore, the actual interaction with users, as described in
Sect. 5.4.3, needs to be clearly defined. This includes the question on when a user
can be interrupted in order to retrieve their state, that is what they have been doing,
how they were doing it, and if they experienced any problems (see Fig.5.7). We
identified two requirements that need to be fulfilled to spot the appropriate moment
to interrupt a user and thereby prevent negative interruptions. First, a user should
only be interrupted if it can be guaranteed that it will not interfere with their current
workflow. Second, no critical process should be disturbed. Both requirements,
however, pose new challenges. A balance needs to be found to keep a minimal time
span between the interaction and the interruption. A delay, though, results in the
problem that traceability should be guaranteed; that is, the users’ feedback should
be allocated clearly to an interaction. We envision to develop a tacit knowledge
characteristic similar to the properties defined in database transactions: atomicity,
consistency, isolation, durability [HR83].

104 J. O. Johanssen et al.
5.6.3 Further Reading

In the project SecVolution, Biirger et al. presented a framework that analyses
the environment, security-related requirements, and observations to provide an
automated reaction to observed changes and to ensure a certain security level for
long-living information systems [Biir+18].

As part of our previous work, we developed a prototype called FOCUS for the
documentation of non-functional requirements while using execution traces, as well
as video screencasts underlined by audio comments [Sch06]. The documentation
can be created as a by-product via recording the application of a task [Sch06].One
field for using our tool is security. Therefore, we have enhanced this documentation
by a semi-automated approach to analyse security vulnerabilities based on remote
code exploits for Java applications [VKK17]. The analysis enables the localisation
of a source code vulnerability while distinguishing a penetration test recording with
arecording of the regular behaviour of the same application. Gértner et al. developed
a tool-based approach, which provides heuristic feedback on security-related aspects
of requirements to document decisions [Gér+14]. For this purpose, a decision model
is used to systematically capture and document requirements, design decisions, as
well as related rationale.

Pagano and Roehm described the difference between expected and observed user
behaviour based on different perceptions of the conceptual model [Pagl3, Roel5],
an aspect that we address in Sect. 5.4.2. Roehm et al. investigated derivations in the
descriptions of use cases with observed behaviour of users by applying machine
learning techniques [Roe+13a]. The interaction with user interface elements is
investigated by Roehm et al. using an approach to associate user interactions with
application bugs to enable failure reproduction [Roe+13b].

We provide and maintain the source code and further explanation of tools and
platforms for usage knowledge understanding in an online repository.!

Thttps://github.com/cures-hub.

https://github.com/cures-hub

5 Tacit Knowledge in Software Evolution 105

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	5 Tacit Knowledge in Software Evolution
	5.1 Toward Identification and Extraction of Tacit Knowledge
	5.2 Foundations
	5.3 Tacit Knowledge During Design Time
	5.3.1 Security in Requirement Documents
	5.3.2 Modelling of Security Knowledge
	Security Ontology
	Representation of Knowledge

	5.3.3 Identification and Extraction of Tacit Security Knowledge
	Classification of Words
	Measurement of Similarity Between Security Abstraction Models
	(Semi)-Automatic Acquisition of Tacit Knowledge

	5.3.4 Tacit Security Knowledge Examples

	5.4 Tacit Knowledge During Run Time
	5.4.1 Usage Knowledge in Software Evolution
	5.4.2 Modelling of Knowledge
	5.4.3 Identification and Extraction of Tacit Usage Knowledge
	Runtime Personas
	Extraction of Tacit Usage Knowledge

	5.4.4 Tacit Usage Knowledge Examples

	5.5 Related Work
	5.6 Conclusion
	5.6.1 Summary
	5.6.2 Outlook
	5.6.3 Further Reading

