
Chapter 3
Addressed Challenges

Reiner Jung, Lukas Märtin, Jan Ole Johanssen, Barbara Paech,
Malte Lochau, Thomas Thüm, Kurt Schneider, Matthias Tichy,
and Mattias Ulbrich

Software evolution is a necessity for present-day software development and the
operations of enterprise software systems and embedded systems, including produc-
tion lines. Evolution is driven by changing and new requirements originating from
user needs, alterations in the underlying hardware, and environmental changes, such
as cloud computing for enterprise systems and modifications of production lines
and processes. Current methods and processes in software system engineering are
not well suited to handle these drivers of change, as knowledge about the software
is predominantly stored in informal documents and not linked with other artefacts.
Furthermore, most parts of a software system are only represented in the form of a
source code, which carries knowledge only on what to do but not on why to do it.

We address these shortcomings with new ways and forms to describe and specify
artefacts used in the development and operation of software systems. Hence, we
must use and collect knowledge concerning the software system and its context at
runtime and apply it at design time to enrich the evolution.We support the discovery,
extraction, and handling of knowledge with novel methods and processes to foster

R. Jung (�)
Software Engineering Group, Department of Computer Science, Kiel University, Kiel, Germany
e-mail: reiner.jung@email.uni-kiel.de

L. Märtin
Institute for Programming and Reactive Systems, Technische Universität at Braunschweig,
Braunschweig, Germany
e-mail: l.maertin@tu-braunschweig.de

J. O. Johanssen
Technische Universität München, Institut für Informatik I1, Garching, Germany
e-mail: jan.johanssen@tum.de

B. Paech
Universität Heidelberg, Mathematikon - Institut für Informatik, Heidelberg, Germany
e-mail: paech@informatik.uni-heidelberg.de

© The Author(s) 2019
R. Reussner et al. (eds.), Managed Software Evolution,
https://doi.org/10.1007/978-3-030-13499-0_3

21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13499-0_3&domain=pdf
mailto:reiner.jung@email.uni-kiel.de
mailto:l.maertin@tu-braunschweig.de
mailto:jan.johanssen@tum.de
mailto:paech@informatik.uni-heidelberg.de
https://doi.org/10.1007/978-3-030-13499-0_3


22 R. Jung et al.

evolution and make it more reliable and the software maintainable, performant, and
secure. To enable these methods and processes, we provide and use new platforms
and environments.

During our research, we assessed our methods and processes with two case
studies based on the Common Component Modeling Example (CoCoME), resem-
bling a software system for a supermarket chain, and the extended Pick and Place
Unit (xPPU), illustrating an industrial plant automation system. CoCoME, which is
introduced in Sect. 4.2, includes a fast set of evolution scenarios for the enterprise
domain, like adding a webshop or including credit card payments. Similarly, the
PPU case study, introduced in Sect. 4.3, provides evolution scenarios originating
from industrial production plants. Our aim to incorporate knowledge in software and
processes tailored for software and system evolution faces a diverse set of challenges
from different perspectives. Firstly, the discovery and externalization of knowledge
about requirements, the recording and representation of design decisions, and the
learning from past experience in evolution form the human perspective, including
that of developers, operators, and users. Secondly, performance and security induce
the software quality perspective. Thirdly, round-trip engineering, testing, and
co-evolution define the technical perspective. And fourthly, formal methods for
evolutionary changes provide the foundation and define the formal perspective. This
chapter introduces the challenges we discuss and address in this book, which were
researched during the priority programme for managed software evolution:

Tacit Knowledge (Sect. 3.1) The key to evolution is an understanding of chang-
ing needs and derived requirements thereof. Unfortunately, stakeholders are often
unaware of all aspects and assumptions underlying their needs and requirements.
This tacit knowledge must be externalised in order to understand requirements
and successfully evolve software systems.

Design Decisions (Sect. 3.2) To accommodate changing requirements, software
engineers change the software architecture and apply different design patterns.

M. Lochau
Technische Universität Darmstadt, Fachbereich Elektrotechnik und Informationstechnik,
Fachgebiet Echtzeitsysteme, Darmstadt, Germany

T. Thüm
Institute for Software Engineering and Automotive Informatics, TU Braunschweig, Brunswick,
Germany

K. Schneider
Leibniz Universität Hannover, Fachgebiet Software Engineering, Hannover, Germany

M. Tichy
Institut für Softwaretechnik und Programmiersprachen, Universität Ulm, Ulm, Germany

M. Ulbrich
Institute of Theoretical Informatics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany



3 Addressed Challenges 23

Tacit Knowledge

Continuous Design Decisions Support

Maintaining Security

Software Porductline Round-Trip Engineering

Maintaining Correctness

Maintaining Performance

Learning from Evolution for Evolution

Evaluation

Planning

RealizationDeployment

Observation

Change Request

Fig. 3.1 Design for future—addressed challenges

These design decisions could conflict with decisions made in previous iterations
of the evolution process, eroding the architecture and harming evolvability.
Therefore, it is necessary to support the documentation of and access to design
decisions.

Software Product Line Round-Trip Engineering (Sect. 3.3) As depicted in
Fig. 3.1, software evolution is a circular process where introducing changes
occurs often. Today, software systems are not only subject to reoccurring
changes; they also exist in different variants. This is especially the case in
embedded systems. Providing a consistent view on versions and variants of
product lines introduces new challenges to software evolution.

Maintaining Performance (Sect. 3.4) Being able to predict and forecast per-
formance is necessary for software systems to ensure a timely execution and
control over resources. Feature sets from software product lines can result in
large numbers of variants, which cannot be evaluated for performance in a timely
manner. Furthermore, runtime measurements address only one version of one
variant. Both aspects are central challenges in maintaining performance.

Maintaining Security (Sect. 3.5) Keeping a software system secure is a great
challenge by its own. It is affected not only by changing requirements within
the software system but also by its changing environment. These changes are
covered in non-formal documents. Supporting security experts and developers in
deriving formal information from non-formal documents and supporting security
evaluation throughout evolution are the challenges we motivate in this section.

Learning from Evolution for Evolution (Sect. 3.6) The previous challenges
address certain challenges within the evolution cycle. However, we also need to
learn and transfer knowledge from one evolution step to another and from one
project to another to grow our knowledge on software evolution and improve
our processes and software quality. Therefore, we face the challenges of how to
process semantically rich changes in past evolution steps and develop methods
to understand and exploit this knowledge.



24 R. Jung et al.

Maintaining Correctness (Sect. 3.7) Software evolution may erode functional-
ity and cause unwanted behaviour alterations in software. While non-formal
processes and methods help to mitigate unwanted changes, they cannot detect
and correct them. Therefore, we need formal approaches using models to verify
software systems, be able to test them for changes and to know how to distinguish
wanted from unwanted changes.

3.1 Tacit Knowledge

Long-living software systems face challenges during requirements identification
and update due to various reasons. First of all, software systems and the require-
ments that describe their functional behaviour and non-functional performance
change over time. The technical development and the availability of new software
and hardware components affect and change existing requirements or even make
them obsolete. On top of this, a substantial part of the relevant requirements for
software systems remains tacit. This means that important knowledge carried by
requirement analysts, software users, or other stakeholders remains in their minds.
In general, tacit knowledge can be described as knowledge that is internalised by a
person while its active verbalisation, that is the externalisation of this knowledge, is
difficult [PS09].

In contrast to the goal of a complete representation of a software system [Dav93],
this results in an incomplete set of requirements. As a consequence, the associated
software system remains incomplete as well, which is expressed in different facets.
First, software systems are exposed to any type of intrusion. They are in particular
vulnerable to attacks in case of a lack of security-related requirements. Second,
users of a software system are presented with an unsatisfying set of functionalities
that does not match their needs.

Stakeholders of a software system, such as the requirements analyst or the
software user, might not be aware of an urgent demand for action or of the
associated knowledge that would help to understand a situation in question. Thus,
they are unable to verbalise those tacit requirements. This is the reason why
an automatic identification and extraction of this tacit knowledge represents an
important source of knowledge for the development of long-living and continuously
evolving systems.

We envision that tacit knowledge is particularly exposed to being automatically
captured, processed, and externalised during the design time and runtime of a
software system: On the one hand, during the design time of a software system,
requirements are elicited and described using natural language. In doing so, the use
of certain words might indicate implications for the functionality that they describe.
For instance, the way a functional requirement is described can pose requirements
towards non-functional aspects. On the other hand, during the runtime of a software
system, users unconsciously provide insights into the way they interact with the
system. Ignoring certain functionalities of a software system or repetitively applying



3 Addressed Challenges 25

the same usage patterns might hint towards a particular functional requirement that
the developers or requirement analysts were previously not aware of.

We want to focus on tacit knowledge as an instance of knowledge that is
preserved in a software system or its underlying design. Describing tacit knowledge
and its building blocks requires defined models. This demand is manifested in one
of the SPP1593 themes by calling out for customised meta-models that enable the
ongoing development of software systems. We strive for a basic representation of
tacit knowledge in the form of ontologies and taxonomies, which can be utilised
to detect and describe tacit knowledge. Furthermore, tacit knowledge naturally
emerges in an unstructured format produced by heterogeneous instances and actors.
Its building blocks remain incomplete and potentially irrelevant, only until they
are mapped with existing requirements that relate to the same entity. Addressing
the extraction of tacit knowledge requires a platform that can be deployed in a
continuously changing environment to visualise building blocks of tacit knowledge.
This is one of the SPP1593 themes, that is establishing platforms and environments
that enable access to design- and runtime information when it is needed.

By extracting tacit knowledge from both design- and runtime observations, we
aim for the following goals. First, we want to enable the creation of software releases
that match the requirements of both customers and users and their expectations.
Second, we intend to improve and maintain the quality of development for long-
living systems through the co-evolution of adequate non-functional mitigation
activities. Third, we aim for increasing the software system’s usability and an
adaption towards the needs of users.

Understanding tacit knowledge poses challenges in their identification due to
multiple reasons. First, we expect different kinds of tacit knowledge that can
potentially arise during software evolution. Second, the availability of various
sources of tacit knowledge plays an important role. Eventually, when it comes to the
extraction of tacit knowledge, we see challenges in reducing the mismatch between
developers’ and security experts’ mental model, as well as reducing the mismatch
between developers’ and users’ mental model. Aside from the identification and
extraction of tacit knowledge, we face challenges in working with tacit knowledge
and its explicit counterpart. In particular, the detection of deviations between
specified and derived security knowledge or deviations between expected and
observed user behaviour demand attention in their analysis. We summarise this
collection of challenges under the following two main challenges and address them
in Chap. 5.

Challenge 1 How to identify and extract tacit knowledge to reduce the mismatch
between stakeholders’ mental models during software evolution?

Challenge 2 How to detect deviations between explicitly elicited requirements and
implicitly derived requirements?



26 R. Jung et al.

3.2 Design Decisions

Continuous Software Engineering (CSE) is a software engineering process in which
developers continuously change the software while keeping it in a releasable
state [KB17]. CSE means to develop, release, and learn from software in very
short rapid cycles [Bos14]. It incorporates agile practices and involves activities
such as continuous integration, delivery, and deployment [SAZ17, Joh+18b]. The
emergence of CSE is driven by a growing need for flexibility and rapid adaption
in the current software environment [FS17]. Thus, CSE provides many techniques
for a continuous change. This can also be exploited for continuous design decision
support.

Software developers and architects continuously make design decisions while
they develop software. When they evolve software, it is important for them to
reflect and build on former decisions. Otherwise, they might make inconsistent
decisions and are likely to contribute to the erosion of the software architecture
or introduce other quality problems. Reflecting on former decisions is particularly
important for long-living software systems where many decisions build on one
another. Documenting design decisions is important since many different developers
are involved at different times and cannot communicate directly.

Design decisions can be made in either a rational or a naturalistic way. Rational
decision-making means that developers weigh alternatives and arguments, whereas
naturalistic decision-making means that they reuse past experiences to solve a
decision problem [ZCM07]. It is often assumed that decision-making in software
design is a deterministic and rational process [Fal+11] since software development
is an engineering activity. However, this is not so in practice as, for example, Hesse
et al. empirically show that naturalistic decision-making is dominant over ratio-
nal decision-making in the Firefox open-source project [Hes+16]. In naturalistic
decision-making, developers do not consider all alternatives and arguments. This
is risky as humans tend to overlook what is missing and are subject to cognitive
biases [Raz+16]. Thus, developers might anchor on those solutions that first come to
mind, omitting more relevant alternative solutions. If the arguments for the decision
are not documented, other developers might not understand the decision or might
not be convinced. Thus, support for rational decision-making is important. Rational
decision-making requires the management of decision knowledge.

Design decision knowledge is the knowledge about design decisions, the prob-
lems they address, solution approaches and their alternatives, their context, and
their justifications (also called rationale). Decision knowledge vaporizes quickly;
that is, if developers do not document decisions immediately, the design decisions
are never documented and thus not available later [JB05]. Decisions are often
discussed informally and captured partly and distributed: for example, in code,
issue comments [Hes+16], commit messages, pull requests [Bru+14], chat messages
[Alk+17a, Alk+17b], wikis, and emails; this knowledge is difficult to access later.
Thus, developers need support to capture decision knowledge or evolve it from
naturalistic decisions and to access it efficiently.



3 Addressed Challenges 27

Our long-term vision is an on-demand decision documentation as part of the
on-demand developer documentation suggested by Robillard et al. [Rob+17]. We
envision that developers continuously capture and reflect decision knowledge during
CSE. Benefits of a continuous capture and reflection on decision knowledge are
an improved decision-making process through explicit criteria, the prevention of
knowledge vaporization, and consistent future changes.

Our goal is to support developers in this continuous capture and reflection, in par-
ticular by performing rational decision-making. The following three developer tasks
should be lightweight, that is they should require as little effort as possible: rational
decision-making, documentation of decision knowledge, and its exploitation.

There are two major challenges for this support: intrusiveness and inconsistency.
It is a challenge to minimize the intrusiveness of a continuous design decision
support and to document and maintain decision knowledge consistent with the other
artefacts and with former decision knowledge. We summarise and express these
challenges under the following two paragraphs and provide solutions in Chap. 6.

Challenge 3 How to integrate rational design decision-making, documentation,
and exploitation in software engineering practices? Tool support to manage decision
knowledge can be characterized by its intrusiveness in the software development
process [Dut+06]. Tools that fit into the development context are less intrusive and
will more likely be used [KCD09]. Such tools do not require additional effort (e.g.
for installing or starting a separate tool) and are thus also lightweight. Rational
decision-making, documentation of decision knowledge, and its exploitation should
be non-intrusive in the context of the CSE process.

Challenge 4 How to ensure consistency between decision knowledge and arte-
facts? Consistency means that design decisions are documented and linked to and
realized in the artefacts they relate to. To exploit decision knowledge, it is important
that the design decisions are consistent with former design decisions and with the
artefacts, for example with the requirements, architectural software design, and
code.

3.3 Software Product Line Round-Trip Engineering

Modern software systems tend to become more and more long living and, therefore,
have undergone continuous evolution to ever new versions in order to meet
constantly changing requirements. For instance, the initial version of the PPU case
study only comprises a stack with multiple slides for sorting different work pieces
according to their types, as well as a crane and a stamp. Later on, the PPU undergoes
several evolution scenarios in order to adapt to changing requirements and platforms
(e.g. the ramp is later replaced by a standard ramp to support application scenarios
without sorting). As a consequence, all PPU (software) artefacts (potentially)
affected by those changes have to be adapted to support the new versions.



28 R. Jung et al.

In addition, modern software systems are highly configurable, thus comprising
many different variants being custom-tailored to specific needs. For instance, the
modular architecture of the PPU supports many different variants in order to
adapt to different environments, platforms, and customers’ requirements. Such
a collection of similar yet well-distinguished variants of the same core product
is frequently called a product family. Software product line engineering (SPLE)
is an established methodology for handling the additional complexity caused by
the increasing variability of modern (software) systems by means of variability-
aware engineering and quality-assurance techniques. To this end, SPLE aims at
systematically exploiting knowledge about commonality and variability among all
kinds of engineering artefacts (e.g. design and test models, implementation code,
and test cases) in a family of similar products.

Finally, modern software systems are, in most cases, an integral part of larger
socio-technical systems, thus requiring accurate quality assurance to reduce the risk
of fatal errors. Model-based testing is a widely used black-box testing technique for
automated quality assurance, where a test model serves as a behavioural specifica-
tion of the expected behaviour of the (potentially inaccessible) implementation code
to be tested. For instance, the PPU behaviour is specified using statechart models,
which can be used to automatically derive test cases covering a predefined set of test
goals for systematically investigating the different runs of the PPU.

Although very promising concepts and tools exist in recent research for tack-
ling all those three kinds of engineering challenges separately, a comprehensive
approach integrating the different solutions into one conceptual framework is still
an open issue. In particular, a corresponding round-trip engineering methodology
has ensured an effective and efficient quality assurance of evolving, variant-rich
software systems in a systematic and consistency-preserving way. To this end, a
structured process for artefact co-evolution is required for all possible kinds of
evolution scenarios of engineering- and quality-assurance artefacts involved.

Our vision is to define a comprehensive methodology for round-trip engineering
and model-based testing of evolving, variant-rich software systems. To realize this
vision, we first have to extract and integrate variant/version information in an
automated way from evolving model-based product-line engineering and quality-
assurance artefacts. Based on this additional information, we pursue to define
criteria for detecting and avoiding inconsistencies between those different design-,
implementation- and quality-analysis artefacts.

To achieve our goals, we have to address several challenges with respect to the
three guiding themes of the SPP, namely Knowledge Carrying Software, Methods
and Processes, and Platforms and Environments for Evolution. In particular, we
address two essential challenges.



3 Addressed Challenges 29

Challenge 5 How to automatically extract and integrate variant/version informa-
tion in model-based SPL engineering and quality assurance?

Challenge 6 How to avoid inconsistencies in different design-, implementation-
and quality-analysis artefacts?

By addressing these research questions, we contribute to the different guiding
themes of the SPP in various ways.

3.4 Maintaining Performance

Performance is a key quality characteristic of software systems, describing its
properties with respect to timeliness and resource usage. Typical performance
measures include response times and throughput of a software system. Insufficient
performance has a negative impact on the service quality of software systems,
which in turn affect key business indicators such as revenue. Performance issues
in enterprise applications and web services can limit employee productivity and
cause customers to switch to other services. In production systems, insufficient
performance can limit production output and may reduce the quality of products,
harm employees, and damage facilities and products. Therefore, performance needs
to be addressed throughout the entire software life cycle from development to
operations via suitable performance analysis methods, techniques, and tools.

Researchers have developed a wide range of performance analysis methods in
the past, which allow to assess single versions and variants of a software product.
However, today’s software is often highly configurable and evolves frequently.
Different versions replace each other over time, while multiple variants co-exist
at the same time. Especially in the context of product lines, which play an important
role in production systems and handheld devices, variants can be numerous as all
potential feature combinations must be evaluated separately. For example, different
variants of the Pick-and-Place Unit (PPU) can be configured by choosing from
the defined relationship of mandatory, optional, and alternative features, such as
alternative cranes and stamps, as well as a set of supportedworkpieces. Furthermore,
modern software is often developed with agile development methods and processes
that create new versions for every feature, resulting in a high frequency of changes.
For example, Common Component Modeling Example (CoCoME) includes a
definition of design and runtime evolution scenarios such as the addition of new
features or platform migrations based on changing requirements and runtime
reconfigurations. Therefore, the number of versions and variants, as well as the
different and evolving types of artefacts (models, code, measurements, etc.) pose
challenges on performance analysis strategies.



30 R. Jung et al.

Our vision is to address the performance of variants and versions in an efficient
way throughout the software life cycle. This supports software engineers and
administrators as they can predict software performance at design time and evaluate
it at runtime.

Performance is influenced by design, configuration, implementation and deploy-
ment. Therefore, performance analysis must be part of the design process. At
runtime, the effects of these influence factors become apparent and allow to further
understand their performance impact. We envision to use knowledge derived from
runtime observations to enrich and improve performance assessments.

Performance evaluation of potential variants is excessively time consuming, for
example the PPU feature tree allows for X variants, which limits the ability to apply
performance prediction approaches. However, performance is a key element also in
software product lines. Our vision is to reduce the necessary effort through a smart
selection of variants, modularization, reuse and knowledge gained during runtime
of previous versions of the variants.

Our goal is to provide continuous support for addressing performance concerns
for versions and variants via respective performance analysis strategies. They must
be able to provide answers to performance questions by engineers in a timely
manner.

Variants can comprise minor deviation from each other or result in very
different software systems. Each difference in the architecture can influence the
performance of a component, as the communication changes between components.
Unfortunately, to test and evaluate every potential variant is time consuming and
impede development due to long evaluation cycles. In Chap. 8, we want to address
this challenge.

Challenge 7 How to efficiently analyse the performance of all variants of a
software system?

While variants are different software assemblies that exist in parallel, versions
reflect differences over time as the software evolves. During the evolution, engineers
need to address performance either due to current performance issues that they have
to solve or in order to fulfil performance requirements in the future. This leads us to
the challenge.

Challenge 8 How to exploit evolving artefacts for the performance analyses of
software throughout its life cycle?

3.5 Maintaining Security

The security of software systems is a highly important quality aspect. This is
motivated by the fact that today an increasing amount of personal data are handled
by software. A vast amount of people not affiliated with security or inner workings
of information technology (IT) is trusting that the data are processed securely.



3 Addressed Challenges 31

In detail, in many cases this means compliance with the most common security
requirements like integrity, authenticity, availability, and privacy.

Moreover, an increasing amount of systems exist that tend to collect data of a
whole human life span and/or collect data throughout the day. For example, cloud
storage services like Dropbox can store not only a theoretically unlimited amount
of data but also an unlimited amount of revisions. Social networks like Facebook
are able to record a whole life. Smartphones or smartwatches are with us the whole
day and continuously mine data through quite a few sensors and also pre-analyse
data like determine a person’s position by combining GPS data, names of available
Wi-Fi spots, and assigned IP addresses.

On top of that, a growing number of information processing, mostly Internet-
connected systems, is pervading our daily lives, like most smart or IoT devices,
such as smart light bulbs, smart light switches, or simply smart speakers/assistants
like Google Home or Amazon Echo. There are hardly any instances where these
systems do not rely on servers or services that are Internet based. In a world of
interconnected systems, your system is also connected to an unpredictable number
of attackers.

There actually is a big number of systems that were developed or deployed a long
time ago, and there will be even more in the future. As a result, data that pervades
all of our lives is in the hands of an opaque mesh of systems connected through
the Internet. And even if one person wants to avoid her data being stored in such
services, it is a desperate situation when her friends store, for example, photos or
other personal data in their cloud services.

Today we must experience that current systems fail to keep their promise. Hacks,
vulnerabilities, and data breaches had already happened in a magnitude that has
never been seen before. Examples are Heartbleed (OpenSSL), Krack (WPA2), 68
million password hack (Dropbox), PlayStation network hack (77 million customer
data), and the CPU bugs leading to the Spectre/Meltdown attacks that affect nearly
every processor in end-user systems rolled out since 1995.

The vision is to incorporate security relevant knowledge accompanying the
ordinary system design. Ordinary system development runs through different
levels of abstractions, and so there are possibilities for wrong decisions at early
development stages. Especially caused by the fact that most systems tend to be
interconnected and new attacks come up rapidly, not only system development
should be accompanied in early stages like design decisions but also the system’s
context needs to be touched, like current security knowledge and knowledge about
attacks and mitigations.

To achieve this goal, knowledge needs to be gathered (semi-)automatically.
The knowledge must include new attacks (or new attack vectors), mitigations,
precautions, and best practices relevant for a given system and domain. Even when
a secure system design has been obtained, the runtime behaviour of the system is
also important. On the one hand, there is a number of security requirements that
cannot be checked fully at design time, at least when they rely on runtime data, for
example consider a deployment context or access-control-related user data. On the
other hand, as argued before, there might be a high risk that a system with an initially



32 R. Jung et al.

secure design is attacked during runtime using an unforeseen attack. In this case, one
might want to detect this via anomaly detection techniques. At least, one might want
to react at runtime by adapting a system. To reach this goal, continuous monitoring
of the system seems inevitable. The result shall be detection of unwanted behaviour
regarding the security design and also adapting the system to mitigate threats.

Challenge 9 How can security knowledge, available via diverse non-formal
sources, be incorporated and utilized for a long-living system design?

Challenge 10 How can developers and security experts be supported to react
to context evolution, which may compromise the system’s security design or
compromise the system at runtime?

3.6 Learning from Evolution for Evolution

Learning is the process of changing one’s behaviour through knowledge acquisition.
New knowledge is generated during both the design and construction phase and the
operation phase of a long-living software system.Making this knowledge accessible
in Knowledge Carrying Software is one of the guiding themes of the priority
programme. Knowledge can be learned and applied through the whole evolution
cycle. But much knowledge is either implicit and never documented or missing
completely.

There are multiple reasons for this; for example, tight time and cost restrictions
can prevent software engineers from creating documentation in the first place. Bad
requirements engineering practices can also lead to this outcome. Furthermore,
creating formal documentation, for example in the form of models, is a complex task
that might be perceived as tedious and cumbersome. Creating this kind of formal
documentation also requires a high level of expertise. Documentation might also be
wrong or become out of date. Oftentimes tests are also used to ensure correctness
of software and to document it, but for practical reasons tests cannot cover the
entire behaviour of a system. Thus, knowledge is often not documented and scarcely
available.

Missing knowledge about the system and its environment greatly hampers
the evolution of long-living software systems. Reasons for this are that detailed
knowledge of a software system is an essential prerequisite for an effective software
evolution and for ensuring the correctness of a software system.

Our vision is to semi-automate the learning of knowledge and its application for
the evolution of model-based long-living software systems. We can then use this
knowledge to support software engineers who would not otherwise have access
to this knowledge. This support comes in the form of ensuring correctness and
recommendations about future evolutions, as well as assessing the effort required for
changes. For this we need to identify evolutions in the past and present, assess their
impact on the systems, and use the gained knowledge to derive future evolutions,
for the same system or different systems. Our automatically extracted knowledge



3 Addressed Challenges 33

will enable the development off Knowledge Carrying Software. This extracted
knowledge can be about past evolutions or about the current behaviour of the
system, for example in the form of automatically learned behavioural models. Our
results will be implemented in software tools that can be used as Platforms and
Environments for evolution. One example is the SiLift tool (cf. Sect. 10.1.1) for
identifying historical evolution steps, which is the foundation for other software
tools in this chapter.

Our goal is to automatically create knowledge about a system or its past
evolutions. This knowledge shall then be used to support future evolutions of that
system or similar systems. Knowledge about past evolutions is contained in artefacts
stored in software repositories. These past evolutions need to be extracted and then
processed so that the engineer can readily use this knowledge. Similarly, knowledge
about the current system might be derived from the actual running system, for
example to create models about a system’s functional or non-functional behaviour.
The derived knowledge shall then be utilized by recommending, selecting, or
deriving evolutions of the system or similar systems such that those systems
correctly realize changed functional requirements or improve their non-functional
behaviour due to the evolution.

Realizing those goals poses several challenges. We group these challenges into
those concerning the analysis of past and future evolutions.

Challenge 11 How to identify and process semantically rich changes from past
software evolutions?

Past changes in model-based systems come in the form of models under version
control (e.g. git). These models and their versions can be numerous and describe
the system under different viewpoints. However, simple graph differences on
the abstract syntax level are too fine-grained and lack the semantics of changes
on higher level representations. Consequently, the first challenge is to identify
past software evolutions by computing and grouping the corresponding model
differences and give those evolutions semantics on the modelling language level.

Those semantically rich software evolutions can then be used to drive future
software evolutions—leading us to the second challenge.

Challenge 12 How to exploit past software evolutions to improve future software
evolutions?

This second challenge has multiple variants. One variant is related to the co-
evolution of different viewpoint models of the system. Here, a system can exploit
past evolutions to recommend co-evolutions of viewpoints if a user changes a single
viewpoint.

Another variant is to use knowledge about past evolutions to establish a
knowledge-carrying network. This network could exchange experiences of past
evolutions between similar systems characterized by their behaviour and context
and use this knowledge to support the engineer in evolving systems. A final
variant addresses maintainability of long-living systems. Here, knowledge about



34 R. Jung et al.

past evolutions could be used to estimate the maintainability of information systems
and automated production systems.

3.7 Maintaining Correctness

Evolution is usually driven by the need to change a particular part of the system,
for example in order to repair a malfunction or to add or improve features. The
challenge is to ensure that other aspects of the system that are not targeted by
the change are not modified. Unfortunately, system evolution might invalidate
properties a system had achieved before and is a threat to the system’s safety,
security, performance, maintainability, and other system properties. In particular,
evolution may threaten the trust that an earlier version of the system has gained in
earlier testing phases or by formal verification. Also, if a system has run flawlessly
for a decade, this generates some amount of (informal) trust in the correctness of
the system.

The goal of formal verification within the context of software evolution is to
prove that system properties are not lost due to introduced changes. The properties
to be maintained can either be formulated explicitly as formal specification (or
modelling) artefacts, or they can be present implicitly in form of the code that drives
the existing system.

Knowledge about the system is present both in specification artefacts and in
the code of the program run on the system. If formal verification is able to prove
that a new revision also has these explicit or implicit properties in the code,
then verification serves as a preservation means for the trust into systems - and
management of knowledge. The task for the formal analysis of a system evolution
step can be partitioned into two disjoint sub tasks:

1. Analysis of system aspects that are intended to be retained.
This analysis is used to establish that defined parts of the system behave as before
the change in defined cases. It transfers all properties of the retained part of the
system behaviour onto the new revisionwithout requiring to explicitly state them.

2. Analysis of system aspects that are intended to be changed.
Almost every evolution step (if it is not a pure software refactoring) contains
an intentional change for some part of the observable behaviour. The above
analysis does not help in this case; we cannot (solely) rely on the old revision
as specification for the intended behaviour after the evolution step, but we need
to specify the intended properties of the system explicitly.



3 Addressed Challenges 35

Both aspects of formal verification for evolving systems are challenging in
themselves, and it is interesting to observe how they can accompany an evolutionary
process spanning over evolutionary steps.

It is important to observe that for the analysis of automated production systems,
these cannot be reduced to their software alone—instead, it is imperative that models
of the contextual hardware are taken into consideration as well: Interdisciplinary
modelling is important to make the context and environment part of the verified
system. In Chap. 11, we focus on the preservation of safety properties throughout
the evolution of automated production systems. Similar techniques for proving the
preservation of properties are in principle also thinkable for security, performance,
or other properties—but have not been investigated within this programme. The
aspects of embedding formal evolution analyses into a user-friendly development
process is outlined in Sect. 10.2.

We envision a software evolution process that is naturally and fully accompanied
by (automatic) formal verification steps, thus guaranteeing that desired system
properties are always maintained during evolution. The engineers responsible for
designing and implementing an evolution step will be provided with expressive
and usable specification languages with which they can specify which parts of
the systems should remain untouched and which parts should expose a different
behaviour. These specification techniques allow the engineer to specify desired
behaviour both incrementally (as differences to behaviour of the earlier version)
and interdisciplinary (concerning not only the software but also the context and the
hardware). While a formal verification is the more far-reaching goal, the obtained
specification artefacts can also serve as oracles for testing as a more conventional
technique of verification.

To realise this vision, appropriate specification languages and techniques and
according verification techniques are required that enable the application of formal
verification within the evolutionary process. The first goal is therefore to provide the
right specification and verification techniques for a formal verification for evolution.
The specification techniques must allow for a multi-disciplinary approach going
beyond the software and comprising also the hardware and must take special needs
of the applications into account. They must also operate incrementally. The corre-
sponding automatic verification techniques must be powerful enough to discharge
typical verification conditions within reasonable time and fully automatically.

The two research questions for this research field arise naturally from the
partitioning of the analysis tasks described earlier in this section. They correspond
to the duality of the nature of an evolution step requiring that some chosen system
properties are retained while others may change (in a chosen fashion).



36 R. Jung et al.

Challenge 13 How to model, specify, and verify that a system retains desired
behaviour during evolution?

Challenge 14 How to model, specify, and verify intentionally changed behaviour
during system evolution?

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	3 Addressed Challenges
	3.1 Tacit Knowledge
	3.2 Design Decisions
	3.3 Software Product Line Round-Trip Engineering
	3.4 Maintaining Performance
	3.5 Maintaining Security
	3.6 Learning from Evolution for Evolution
	3.7 Maintaining Correctness


