Skip to main content

The QCD Phase Diagram from the Lattice

Higher Order Fluctuations and Correlations of Conserved Charges from Lattice QCD Status Report: POSR 44090

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ' 18

Abstract

We calculate several diagonal and non-diagonal fluctuations of conserved charges in a system of \(2+1+1\) quark flavors with physical masses, on a lattice with size \(48^3\times 12\). Higher order fluctuations at \(\mu _B=0\) are obtained as derivatives of the lower order ones, simulated at imaginary chemical potential. From these correlations and fluctuations we construct ratios of net-baryon number cumulants as functions of temperature and chemical potential, which satisfy the experimental conditions of strangeness neutrality and proton/baryon ratio. Our results qualitatively explain the behavior of the measured cumulant ratios by the STAR collaboration. We explain the obtained simulation results with a simple model, and find consistent behaviour with a scenario with no nearby critical end point in the QCD phase diagram.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Aoki, G. Endrodi, Z. Fodor, S. Katz, K. Szabo, Nature 443, 675 (2006). https://doi.org/10.1038/nature05120

    Article  Google Scholar 

  2. Y. Aoki, Z. Fodor, S. Katz, K. Szabo, Phys. Lett. B 643, 46 (2006). https://doi.org/10.1016/j.physletb.2006.10.021

    Article  Google Scholar 

  3. Y. Aoki, S. Borsanyi, S. Durr, Z. Fodor, S.D. Katz et al., JHEP 0906, 088 (2009). https://doi.org/10.1088/1126-6708/2009/06/088

    Article  Google Scholar 

  4. S. Borsanyi et al., JHEP 1009, 073 (2010). https://doi.org/10.1007/JHEP09(2010)073

    Article  Google Scholar 

  5. T. Bhattacharya, M.I. Buchoff, N.H. Christ, H.T. Ding, R. Gupta et al., “QCD Phase Transition with Chiral Quarks and Physical Quark Masses,” Phys. Rev. Lett. 113(8), 082001 (2014). https://doi.org/10.1103/PhysRevLett.113.082001

  6. A. Bazavov, T. Bhattacharya, M. Cheng, C. DeTar, H. Ding et al., Phys. Rev. D 85, 054503 (2012). https://doi.org/10.1103/PhysRevD.85.054503

    Article  Google Scholar 

  7. C. Allton, S. Ejiri, S. Hands, O. Kaczmarek, F. Karsch et al., Phys. Rev. D 66, 074507 (2002). https://doi.org/10.1103/PhysRevD.66.074507

    Article  Google Scholar 

  8. C. Allton, M. Doring, S. Ejiri, S. Hands, O. Kaczmarek et al., Phys. Rev. D 71, 054508 (2005). https://doi.org/10.1103/PhysRevD.71.054508

    Article  Google Scholar 

  9. R.V. Gavai, S. Gupta, Phys. Rev. D 78, 114503 (2008). https://doi.org/10.1103/PhysRevD.78.114503

    Article  Google Scholar 

  10. S. Basak et al., PoS LATTICE2008, 171 (2008)

    Google Scholar 

  11. O. Kaczmarek, F. Karsch, E. Laermann, C. Miao, S. Mukherjee et al., Phys. Rev. D 83, 014504 (2011). https://doi.org/10.1103/PhysRevD.83.014504

    Article  Google Scholar 

  12. Z. Fodor, S. Katz, Phys. Lett. B 534, 87 (2002). https://doi.org/10.1016/S0370-2693(02)01583-6

    Article  Google Scholar 

  13. P. de Forcrand, O. Philipsen, Nucl. Phys. B 642, 290 (2002). https://doi.org/10.1016/S0550-3213(02)00626-0

    Article  Google Scholar 

  14. M. D’Elia, M.P. Lombardo, Phys. Rev. D 67, 014505 (2003). https://doi.org/10.1103/PhysRevD.67.014505

    Article  Google Scholar 

  15. Z. Fodor, S. Katz, JHEP 0203, 014 (2002). https://doi.org/10.1088/1126-6708/2002/03/014

    Article  Google Scholar 

  16. Z. Fodor, S. Katz, JHEP 0404, 050 (2004). https://doi.org/10.1088/1126-6708/2004/04/050

    Article  Google Scholar 

  17. C. Bonati, M. D’Elia, F. Negro, F. Sanfilippo, K. Zambello, Phys. Rev. D 98(5), 054510 (2018). https://doi.org/10.1103/PhysRevD.98.054510

    Article  Google Scholar 

  18. F. Karsch, Central Eur. J. Phys. 10, 1234 (2012). https://doi.org/10.2478/s11534-012-0074-3

  19. A. Bazavov, H. Ding, P. Hegde, O. Kaczmarek, F. Karsch et al., Phys. Rev. Lett. 109, 192302 (2012). https://doi.org/10.1103/PhysRevLett.109.192302

    Article  Google Scholar 

  20. S. Borsanyi, Z. Fodor, S. Katz, S. Krieg, C. Ratti et al., Phys. Rev. Lett. 111, 062005 (2013). https://doi.org/10.1103/PhysRevLett.111.062005

    Article  Google Scholar 

  21. S. Borsanyi, Z. Fodor, S. Katz, S. Krieg, C. Ratti et al., Phys. Rev. Lett. 113, 052301 (2014). https://doi.org/10.1103/PhysRevLett.113.052301

    Article  Google Scholar 

  22. C. Ratti, “Lattice QCD and heavy ion collisions: a review of recent progress,” Rept. Prog. Phys. 81(8), 084301 (2018). https://doi.org/10.1088/1361-6633/aabb97

    Article  MathSciNet  Google Scholar 

  23. A. Bazavov, et al., “Skewness and kurtosis of net baryon-number distributions at small values of the baryon chemical potential,” Phys. Rev. D. 96(7), 074510 (2017). https://doi.org/10.1103/PhysRevD.96.074510

  24. M.A. Stephanov, K. Rajagopal, E.V. Shuryak, Phys. Rev. D 60, 114028 (1999). https://doi.org/10.1103/PhysRevD.60.114028

    Article  Google Scholar 

  25. M. Cheng, N. Christ, S. Datta, J. van der Heide, C. Jung et al., Phys. Rev. D 77, 014511 (2008). https://doi.org/10.1103/PhysRevD.77.014511

    Article  Google Scholar 

  26. J. Gunther, R. Bellwied, S. Borsanyi, Z. Fodor, S.D. Katz, A. Pasztor, C. Ratti, EPJ Web Conf. 137, 07008 (2017). https://doi.org/10.1051/epjconf/201713707008

    Article  Google Scholar 

  27. M. D’Elia, G. Gagliardi, F. Sanfilippo, Phys. Rev. D 95(9), 094503 (2017). https://doi.org/10.1103/PhysRevD.95.094503

    Article  Google Scholar 

  28. R. Bellwied, S. Borsanyi, Z. Fodor, S.D. Katz, A. Pasztor, C. Ratti, K.K. Szabo, Phys. Rev. D 92(11), 114505 (2015). https://doi.org/10.1103/PhysRevD.92.114505

    Article  Google Scholar 

  29. A. Roberge, N. Weiss, Nucl. Phys. B 275, 734 (1986). https://doi.org/10.1016/0550-3213(86)90582-1

    Article  Google Scholar 

  30. V. Vovchenko, A. Pasztor, Z. Fodor, S.D. Katz, H. Stoecker, Phys. Lett. B 775, 71 (2017). https://doi.org/10.1016/j.physletb.2017.10.042

    Article  MathSciNet  Google Scholar 

  31. J.I. Kapusta, C. Gale, Finite-Temperature Field Theory, 2nd edn. (Cambridge University Press, Cambridge, 2006). https://doi.org/10.1017/CBO9780511535130. Cambridge Books Online

  32. A. Vuorinen, Phys. Rev. D 67, 074032 (2003). https://doi.org/10.1103/PhysRevD.67.074032

    Article  Google Scholar 

  33. C. McNeile, C. Davies, E. Follana, K. Hornbostel, G. Lepage, Phys. Rev. D 82, 034512 (2010). https://doi.org/10.1103/PhysRevD.82.034512

    Article  Google Scholar 

  34. H. Akaike, IEEE Trans. Autom. Control 19, 716 (1974)

    Article  Google Scholar 

  35. B. Friman, F. Karsch, K. Redlich, V. Skokov, Eur. Phys. J. C71, 1694 (2011). https://doi.org/10.1140/epjc/s10052-011-1694-2

    Article  Google Scholar 

  36. P. Cea, L. Cosmai, A. Papa, Phys. Rev. D 93(1), 014507 (2016). https://doi.org/10.1103/PhysRevD.93.014507

    Article  Google Scholar 

  37. X. Luo, PoS CPOD2014, 019 (2014)

    Google Scholar 

  38. J. Thäder, “Higher Moments of Net-Particle Multiplicity Distributions,” Nucl. Phys. A. 956, 320 (2016). https://doi.org/10.1016/j.nuclphysa.2016.02.047

    Article  Google Scholar 

  39. A. Andronic, P. Braun-Munzinger, J. Stachel, Nucl. Phys. A 772, 167 (2006). https://doi.org/10.1016/j.nuclphysa.2006.03.012

    Article  Google Scholar 

  40. S. Borsanyi, Z. Fodor, J.N. Guenther, S.K. Katz, K.K. Szabo, A. Pasztor, I. Portillo, C. Ratti, JHEP 10, 205 (2018). https://doi.org/10.1007/JHEP10(2018)205

    Article  Google Scholar 

  41. JUQUEEN: IBM Blue Gene/Q Supercomputer System at the Jülich Supercomputing Centre. Technical Report 1 A1, Jülich Supercomputing Centre (2015). https://doi.org/10.17815/jlsrf-1-18

Download references

Acknowledgements

This project was funded by the DFG grant SFB/TR55. This work was supported by the Hungarian National Research, Development and Innovation Office, NKFIH grants KKP126769 and K113034. An award of computer time was provided by the INCITE program. This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357. The authors gratefully acknowledge the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) for funding this project by providing computing time on the GCS Supercomputer JUQUEEN [41] at Jülich Supercomputing Centre (JSC) as well as on HAZELHEN at HLRS Stuttgart, Germany. This material is based upon work supported by the National Science Foundation under grants no. PHY-1654219 and OAC-1531814 and by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, within the framework of the Beam Energy Scan Theory (BEST) Topical Collaboration. C.R. also acknowledges the support from the Center of Advanced Computing and Data Systems at the University of Houston. Financial Support by the German Ministry of Research and Education (Grant 05P18PXFCA) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Szabolcs Borsanyi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Borsanyi, S. et al. (2019). The QCD Phase Diagram from the Lattice. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ' 18. Springer, Cham. https://doi.org/10.1007/978-3-030-13325-2_5

Download citation

Publish with us

Policies and ethics