Skip to main content

Production of Specific Flavonoids and Verbascoside in Shoot Cultures of Scutellaria baicalensis

  • Living reference work entry
  • First Online:
Book cover Plant Cell and Tissue Differentiation and Secondary Metabolites

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

Scutellaria baicalensis (Baikal skullcap) has been used for centuries in traditional Chinese medicine (TCM). The root of the Baikal skullcap (Scutellariae baicalensis radix) is also a recognized raw material in European therapeutic practice. It is mentioned in European Pharmacopoeia since 2010 and also in the WHO monograph. This raw material is a rich source of specyfic flavonoids, especially from the group of flavones, such as baicalein, baicalin, wogonin, and wogonoside. These compounds show a number of valuable biological activities.

The aim of the presented research was to propose in vitro cultures of Scutellaria baicalensis as an alternative to the raw material obtained from cultivated plants for providing apart from flavonoids also phenylpropanoid glycosides and phenolic acids. Standard biotechnological treatments, such as a selection of the composition of the basal medium, selection of the concentration and mutual proportions of plant growth regulators, and different types of culture cultivation (solid, agitated and bioreactor’s cultures), were used. In addition, elicitation and feeding with biosynthetic precursors were tested.

The optimization of culturing conditions led to increased accumulation of species-specific flavonoids. Additionally in vitro cultures proved to be a particularly rich source of the phenylpropanoid glycoside - verbascoside.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

BAP:

6-Benzylaminopurine

DW:

Dry weight

HPLC:

High-Performance Liquid Chromatography

LS:

Linsmaier and Skoog

MS:

Murashige and Skoog

NAA:

α-Naphthaleneacetic acid

PGRs:

Plant Growth Regulators

TCM:

Traditional Chinese Medicine

WHO:

World Health Organization

References

  1. Radix Scutellariae (2007) WHO monographs on selected medicinal plants, vol 3. WHO, Geneva

    Google Scholar 

  2. Bauhin J, Cherlerem JH (1613) Historia plantarum universalis. Chabraeus, Yverdon

    Google Scholar 

  3. Wang ZL, Wang S, Kuang Y et al (2018) A comprehensive review on phytochemistry, pharmacology, and flavonoid biosynthesis of Scutellaria baicalensis. Pharm Biol 56(1):465–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shang X, He X, He X, Li M et al (2010) The genus Scutellaria an ethnopharmacological and phytochemical review. J Ethnopharmacol 128(2):279–313

    Article  CAS  PubMed  Google Scholar 

  5. Baikal Skullcap Root (2017) European Pharmacopoeia, 9th edition. Council of Europe, Strasbourg

    Google Scholar 

  6. Zhao Q, Chen XY, Martin C (2016) Scutellaria baicalensis, the golden herb from the garden of Chinese medicinal plants. Sci Bull 61(18):1391–1398

    Article  CAS  Google Scholar 

  7. Li S (2012) Compendium of materia medica (Bencao Gangmu). Huaxia Press, Beijing

    Google Scholar 

  8. Pharmacopoeia of the People’s Republic of China (2015) Ministry of Health of the People’s Republic of China, vol 1. Chinese Pharmacopoeia Commission, Beijing

    Google Scholar 

  9. The Japanese Pharmacopoeia (1996) Ministry of Health and Welfare of Japan, 13th edn, Tokyo

    Google Scholar 

  10. Pharmacopoeia of the Republic of Korea (1998) Ministry of Health and Welfare of Korea, 7th edn. Seoul

    Google Scholar 

  11. Baikal Skullcap Root (2010) European Pharmacopoeia, 7th edn,. Supplement 7.1. Council of Europe, Strasbourg

    Google Scholar 

  12. Yuan QJ, Zhang ZY, Hu J et al (2010) Impacts of recent cultivation on genetic diversity pattern of a medicinal plant, Scutellaria baicalensis (Lamiaceae). BMC Genet 11:29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Zheljazkov VD, Cantrell CL, Ebelhar MW, Coker C (2007) Assessment and yield of Baikal skullcap (Scutellaria baicalensis) grown at multiple locations. Hort Sci 42(5):1183–1187

    Article  CAS  Google Scholar 

  14. Bochořáková H, Paulová H, Slanina J et al (2003) Main flavonoids in the root of Scutellaria baicalensis cultivated in Europe and their comparative antiradical properties. Phytother Res 17(6):640–644

    Article  PubMed  CAS  Google Scholar 

  15. Ollennikov DN, Chirikova NK, Tankhaeva LM (2010) Phenolic compounds of Scutellaria baicalensis Georgi. Russ J Bioorg Chem 36(7):816–824

    Article  CAS  Google Scholar 

  16. Liu G, Rajesh N, Wang X et al (2011) Identification of flavonoids in the stems and leaves of Scutellaria baicalensis Georgi. J Chromatogr B Anal Technol Biomed Life Sci 879(13–14):1023–1028

    Article  CAS  Google Scholar 

  17. Sujuan W, Ailing S, Renmin L (2005) Separation and purification of baicalin and wogonoside from the Chinese medicinal plant Scutellaria baicalensis Georgi by high-speed counter-current chromatography. J Chromatogr A 1066(1–2):243–247

    Google Scholar 

  18. Makino T, Hishida A, Goda Y, Mizukami H (2008) Comparison of the major flavonoid content of S. baicalensis, S. lateriflora, and their commercial products. J Nat Med 62:294–299

    Article  CAS  PubMed  Google Scholar 

  19. Joshee N, Patrick TS, Mentreddy RS, Yadav AK (2002) Skullcap: Potential medicinal crop. In: Janick J, Whipkey A (eds) Trends in new crops and new uses. ASHS Press, Alexandria

    Google Scholar 

  20. Shinha SS, Pokhrel BN, Vaida BN, Joshee N (1999) In vitro micropropagation and callus induction in Scutellaria discolor Colebr. A medicinally important plant of Nepal. Ind J Plant Genet Resour 12:219–223

    Google Scholar 

  21. Cole IB, Cao JQ, Alan AR et al (2008) Comparisons of Scutellaria baicalensis, Scutellaria lateriflora and Scutellaria racemosa: genome size, antioxidant potential and phytochemistry. Planta Med 74(4):474–481

    Article  CAS  PubMed  Google Scholar 

  22. Dinda B, Dinda S, DasSharma S, Banik R, Chakraborty A, Dinda M (2017) Therapeutic potentials of baicalin and its aglycone baicalein against inflammatory disorders. Eur J Med Chem 131:68–80

    Article  CAS  PubMed  Google Scholar 

  23. Zhang SQ, Obregon D, Ehrhart J et al (2013) Baicalein reduces β-amyloid and promotes nonamyloidogenic amyloid precursor protein processing in an Alzheimer’s disease transgenic mouse model. J Neurosci Res 91(9):1239–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mu X, He G, Cheng Y, Li X, Xu B, Du G (2009) Baicalein exerts neuroprotective effects in 6-hydroxydopamine-induced experimental parkinsonism in vivo and in vitro. Pharmacol Biochem Behav 92(4):642–648

    Article  CAS  PubMed  Google Scholar 

  25. Chen SR, Chen XP, Lu JJ, Wang Y, Wang YT (2015) Potent natural products and herbal medicines for treating liver fibrosis. Chin Med 10:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Blach-Olszewska Z, Lamer-Zarawska E (2008) Come back to root – therapeutic activities of Scutellaria baicalensis root in aspect of innate immunity regulation – part I. Adv Clin Exp Med 17(3):337–345

    Google Scholar 

  27. Li-Weber M (2009) New therapeutic aspects of flavones: the anticancer properties of Scutellaria and its main active constituents Wogonin, Baicalein and Baicalin. Cancer Treat Rev 35(1):57–68

    Article  CAS  PubMed  Google Scholar 

  28. Himeji M, Ohtsuki T, Fukazawa H et al (2007) Difference of growth-inhibitory effect of Scutellaria baicalensis-producing flavonoid wogonin among human cancer cells and normal diploid cell. Cancer Lett 245(1–2):269–274

    Article  CAS  PubMed  Google Scholar 

  29. Islam N, Downey F, Ng CYK (2011) Comparative analysis of bioactive phytochemicals from Scutellaria baicalensis, Scutellaria lateriflora, Scutellaria racemosa, Scutellaria tomentosa and Scutellaria wrightii by LC-DAD-MS. Metabolomics 7(3):446–453

    Article  CAS  Google Scholar 

  30. Hui KM, Huen MSY, Wang HY et al (2002) Anxiolytic effect of wogonin, a benzodiazepine receptor ligand isolated from Scutellaria baicalensis Georgi. Biochem Pharmacol 64(9):1415–1424

    Article  CAS  PubMed  Google Scholar 

  31. Eghbali-Feriz S, Taleghani A, Tayarani-Najaran Z (2018) Central nervous system diseases and Scutellaria: a review of current mechanism studies. Biomed Pharmacoter 102:185–195

    Google Scholar 

  32. Winkel BSJ (2006) The biosynthesis of flavonoids. In: Grotewold E (ed) The science of flavonoids. Springer, New York

    Google Scholar 

  33. Falcone-Ferreyra ML, Rius SP, Casati P (2012) Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front Plant Sci 28(3):222

    Google Scholar 

  34. Zhao Q, Zhang Y, Wang G et al (2016) A specialized flavone biosynthetic pathway has evolved in the medicinal plant, Scutellaria baicalensis. Sci Adv 2(4):e1501780

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Krak P (2019) Biological activities of flavonoids: an overview. IJPSR 10(4):1567–1574

    Google Scholar 

  36. Wang HK (2000) The therapeutic potential of flavonoids. Expert Opin Investig Drugs 9(9):2103–2119

    Article  CAS  PubMed  Google Scholar 

  37. Goleniowski M, Bonfill M, Cusido R, Palazon J (2013) Phenolic acids. In: Ramawat KG, Mérillon JM (eds) Natural products: Phytochemistry, botany and metabolism of alkaloids, phenolics and terpenes. Springer, Berlin/Heidelbergen

    Chapter  Google Scholar 

  38. Herrman KM (1995) The shikimate pathway: early step in the biosynthesis of aromatic compounds. Plant Cell 7:907–919

    Article  Google Scholar 

  39. Heleno AS, Martins A, Queiroz P, Ferreira RF (2015) Bioactivity of phenolic acids: metabolites versus parent compounds: a review. Food Chem 173:501–513

    Article  CAS  PubMed  Google Scholar 

  40. Alipieva K, Korkina L, Orhan IE, Georgiev MI (2014) Verbascoside – a review of its occurrence, (bio)synthesis and pharmacological significance. Biotechnol Adv 32(6):1065–1076

    Article  CAS  PubMed  Google Scholar 

  41. Wilczańska-Barska A, Chmura B, Krauze-Baranowska M (2010) Acteoside –phenylpropanoid with valuable pharmacological activities. Postępy Fitoter 3:157–161. in Polish

    Google Scholar 

  42. Cole I, Farooq FT, Murch SJ (2009) Protocols for establishment of an in vitro collection of medicinal plants in the genus Scutellaria. Methods Mol Biol 547:155–165

    Article  CAS  PubMed  Google Scholar 

  43. Stojakowska A, Malarz J, Kohlmunzer S (1999) Micropropagation of Scutellaria baicalensis Georgi. Acta Soc Bot Pol 68(2):103–107

    Article  Google Scholar 

  44. Li H, Murch SJ, Saxena PK (2000) Thidiazuron-induced de novo shoot organogenesis on seedlings, etiolated hypocotyls and stem segments of Huang-qin. Plant Cell Tiss Org 62(3):169–173

    Article  CAS  Google Scholar 

  45. Stojakowska A, Malarz J (2000) Flavonoid production in transformed root cultures of Scutellaria baicalensis. J Plant Physiol 156(1):121–125

    Article  CAS  Google Scholar 

  46. Kim JK, Kim YS, Kim Y et al (2014) Comparative analysis of flavonoids and polar metabolites from hairy roots of Scutellaria baicalensis and Scutellaria lateriflora. World J Microbiol Biotechnol 30(3):887–892

    Article  CAS  PubMed  Google Scholar 

  47. Park CH, Kim YS, Li X et al (2016) Influence of different carbohydrates on flavonoid accumulation in hairy root cultures of Scutellaria baicalensis. Nat Prod Commun 11(6):799–802

    PubMed  Google Scholar 

  48. Hwang SJ (2006) Baicalin production in transformed hairy root clones of Scutellaria baicalensis. Biotechnol Bioprocess Eng 11(2):105–109

    Article  CAS  Google Scholar 

  49. Tiwari RK, Trivedi M, Guang ZC, Guo GQ, Zheng GC (2008) Agrobacterium rhizogenes mediated transformation of Scutellaria baicalensis and production of flavonoids in hairy roots. Biol Plant 52(1):26–35

    Article  CAS  Google Scholar 

  50. Kim YS, Li X, Park WT et al (2012) Influence of media and auxins on growth and flavone production in hairy root cultures of baikal skullcap, Scutellaria baicalensis. Plant Omics 5(1):24–27

    Google Scholar 

  51. Kovács G, Kuzovkina IN, Szoke É, Kursinszki L (2004) HPLC Determination of Flavonoids in Hairy-Root Cultures of Scutellaria baicalensis Georgi. Chromatographia 60(S1):S81–S85

    Google Scholar 

  52. Kuzovkina IN, Guseva AV, Alterman IE, Karnachuk RA (2001) Flavonoid production in transformed Scutellaria baicalensis roots and ways of its regulation. Russ J Plant Physiol 48(4):448–452

    Article  CAS  Google Scholar 

  53. Kawka B, Kwiecień I, Szopa A, Ekiert H (2016) In vitro cultures of Scutellaria baicalensis (baikal skullcap) as rich potential source of bioactive flavonoids and verbascoside for phytotherapy. In: 6th International Congress of Aromatic and Medicinal Plants, Coimbra, Portugal, Abstracts p. 133

    Google Scholar 

  54. Szopa A, Dziurka M, Kubica P, Kawka B, Kwiecień I, Biesaga-Kościelniak J, Ekiert H (2017) Kultury in vitro roślin leczniczych jako bogate potencjalne źródło antyoksydantów. (In vitro cultures of medicinal plants as a rich potential source of antioxidants) 1st Biotechnological Scientific Conference „Plant biotechnology – prospects and challenges”, Warszawa, Poland – in Polish, Abstracts p. 11

    Google Scholar 

  55. Kawka B, Kwiecień I, Ekiert H (2017) Akumulacja związków o znaczeniu farmaceutycznym w kulturach in vitro Scutellaria baicalensis Georgi (Acumulation of compounds possess pharmaceutical value in in vitro cultures of Scutellaria baicalensis Georgi) XXIII Scientific Congress of Polish Pharmaceutical Society „Pharmacy in Poland – prospects of science and profession“, Kraków, Poland – in Polish, Abstracts p. 35

    Google Scholar 

  56. Kawka B, Kwiecień I, Ekiert H (2017) Akumulacja bioaktywnych metabolitów wtórnych w wytrząsanych kulturach in vitro Scutellaria baicalensis (Acumulation of bioactive compounds in agitated in vitro cultures of Scutellaria baicalensis). In: International Conference of Natural and Medical Sciences: young scientists, PhD students and students, Lublin, Poland, Abstracts p. 59

    Google Scholar 

  57. Kawka B, Kwiecień I, Ekiert H (2019) Elicitation of agitated in vitro cultures of Scutellaria baicalensis Georgi by methyl jasmonate. In: 7th European congress of life sciences Eurobiotech, Kraków, Poland, Abstracts p. 55

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inga Kwiecień .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kawka, B., Kwiecień, I., Ekiert, H. (2019). Production of Specific Flavonoids and Verbascoside in Shoot Cultures of Scutellaria baicalensis. In: Ramawat, K., Ekiert, H., Goyal, S. (eds) Plant Cell and Tissue Differentiation and Secondary Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-11253-0_7-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11253-0_7-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11253-0

  • Online ISBN: 978-3-030-11253-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics