Skip to main content

The Structural Peculiarities of the Leaf Glandular Trichomes: A Review

  • Living reference work entry
  • First Online:
Book cover Plant Cell and Tissue Differentiation and Secondary Metabolites

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

Leaf glandular trichomes are multicellular secretory structures that arise from protodermal cells. They are characterized by a diverse form, localization, density, and composition of secreted substances. Formation of the glandular trichomes is caused by the need to protect plants from various biotic and abiotic factors, including herbivorous insects, fungi, pathogens, extensive light, UVB radiation, or high temperature. The main feature of the glandular trichomes is an ability to synthesize and accumulate the various compounds of primary and secondary metabolism. Morphology, development, ultrastructural characteristics of the cells producing the secondary compounds, content of the secretory products, as well as mechanisms of secretion are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AAR:

Aldehyde D11(13) reductase

ADS:

Amorpha-4,11-diene synthase

CHS:

Chalcone synthase

CS:

Cadinene synthase

CYP71AV1:

Cytochrome P450 monooxygenase

ER:

Endoplasmic reticulum

GAO:

Germacrene A oxydase

GAS:

Germacrene A synthases

GPPS:

Geranyl diphosphate synthase

IPD:

Isopiperitenol dehydrogenase

L6OH:

Limonene-6-hydroxylase

LS:

Limonene synthase

PAL:

Phenylalanine ammonia-lyase

PR:

Pulegone reductase

RER:

Rough endoplasmic reticulum

SER:

Smooth endoplasmic reticulum

STL:

Sesquiterpene lactones

THC:

Tetrahydrocannabinol

References

  1. Werker E (2000) Trichome diversity and development. Adv Bot Res 31:1–35

    Google Scholar 

  2. Thomson WW, Berry WL, Liu LL (1969) Localization and secretion of salt by the salt glands of Tamarix aphylla. Proc Natl Acad Sci 63:310–317

    CAS  PubMed  Google Scholar 

  3. Fahn A (1979) Secretory tissues in plants. Academic, London

    Google Scholar 

  4. Schnepf E, Deichgraber G (1972) Tubular inclusions in the endoplasmic reticulum of the gland hairs of Ononis repens. J Microsc 14:361–364

    Google Scholar 

  5. Vassilyev AE (1977) Functional morphology of plant secretory cells. Nauka Publishing House, Leningrad

    Google Scholar 

  6. Werker E, Putievsky E, Ravid U (1985) The essential oils and glandular hairs in different chemotypes of Origanum vulgare L. Ann Bot 55:793–801

    CAS  Google Scholar 

  7. Theobald WL, Krahulik JL, Rollins RC (1979) Trichome description and classification. In: Metcalfe CR, Chalk L (eds) Anatomy of the Dicotyledons. Clarendon, Oxford

    Google Scholar 

  8. Kim E-S, Mahlberg PG (1991) Secretory cavity development in glandular trichomes of Cannabis sativa L (Cannabaceae). Am J Bot 78:220–229

    Google Scholar 

  9. Wagner GJ (1991) Secreting glandular trichomes: more than just hairs. Plant Physiol 96:675–679

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Elias TS (1983) Extrafloral nectaries: their structure and distribution. In: Elias TS (ed) The biology of nectaries. Columbia University Press, New York

    Google Scholar 

  11. Green ML, Horner JD (2007) The relationship between prey capture and characteristics of the carnivorous pitcher plant, Sarracenia alata Wood. Am Midl Nat 158:424–431

    Google Scholar 

  12. Vassilyev AE, Muravnik LE (2007) The nectaries of the lid in closed pitchers of Nepenthes khasiana (Nepenthaceae) secrete a digestive fluid. Russ Bot Zh 92:1141–1144

    Google Scholar 

  13. Fahn A (1988) Secretory tissue in vascular plants. New Phytol 108:229–257

    Google Scholar 

  14. Metcalfe CR, Chalk L (1950) Anatomy of dicotyledons. Oxford University Press, London

    Google Scholar 

  15. Bosabalidis AM, Tsekos I (1982) Glandular scale development and essential oil secretion in Origanum dictamnus L. Planta 156:496–504

    CAS  PubMed  Google Scholar 

  16. Bruni A, Modenesi P (1983) Development, oil storage and dehiscence of peltate trichomes in Thymus vulgaris (Lamiaceae). Nord J Bot 3:245–251

    Google Scholar 

  17. Werker E, Putievsky E, Ravid U et al (1993) Glandular hairs and essential oil in developing leaves of Ocimum basilicum L (Lamiaceae). Ann Bot 71:43–50

    CAS  Google Scholar 

  18. Ascensão LN, Marques N, Pais MS (1997) Peltate glandular trichomes of Leonotis leonurus leaves: ultrastructure and histochemical characterization of secretions. Int J Plant Sci 158:249–258

    Google Scholar 

  19. Turner GW, Gershenzon J, Croteau RB (2000) Development of peltate glandular trichomes of peppermint. Plant Physiol 124:665–679

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Gersbach PV (2002) The essential oil secretory structures of Prostanthera ovalifolia (Lamiaceae). Ann Bot 89:255–260

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Vermeer J, Peterson RL (1979) Glandular trichomes on the inforescence of Chrysanthemum morifolium cv. Dramatic (Compositae). II. Ultrastructure and histochemistry. Can J Bot 57:714–729

    Google Scholar 

  22. Duke SO, Paul RN (1993) Development and fine structure of the glandular trichomes of Artemisia annua L. Int J Plant Sci 154:107–118

    Google Scholar 

  23. Heinrich G, Pfeifhofer HW, Stabentheiner E et al (2002) Glandular hairs of Sigesbeckia jorullensis Kunth (Asteraceae): morphology, histochemistry and composition of essential oil. Ann Bot 89:459–469

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ciccarelli D, Garbari F, Pagni AM (2007) Glandular hairs of the ovary: a helpful character for Asteroideae (Asteraceae) taxonomy? Ann Bot Fenn 44:1–7

    Google Scholar 

  25. Appezzato-da-Glória B, Da Costa FB, da Silva VC et al (2012) Glandular trichomes on aerial and underground organs in Chrysolaena species (Vernonieae – Asteraceae): structure, ultrastructure and chemical composition. Flora – Morphology, Distribution, Functional Ecology of Plants 207:878–887

    Google Scholar 

  26. Al-Shammary KIA, Gornall RJ (1994) Trichome anatomy of the Saxifragaceae Sl from the southern hemisphere. Bot J Linn Soc 114:99–131

    Google Scholar 

  27. Spring O (2000) Chemotaxonomy based on metabolites from glandular trichomes. In: Advances in botanical research. Academic, London

    Google Scholar 

  28. Castro MDM, Demarco D (2008) Phenolic compounds produced by secretory structures in plants: a brief review. Nat Prod Commun 3:1934578X0800300809

    Google Scholar 

  29. Pedro LG, Barroso JG, Marques NT et al (1991) Composition of the essential oil from sepals of Leonotis leonurus RBr. J Essent Oil Res 3:451–453

    CAS  Google Scholar 

  30. Spring O, Rodon U, Macias FA (1992) Sesquiterpenes from noncapitate glandular trichomes of Helianthus annuus. Phytochemistry 31:1541–1544

    CAS  Google Scholar 

  31. Kelsey RG, Shafizadeh F (1980) Glandular trichomes and sesquiterpene lactones of Artemisia nova (Asteraceae). Biochem Syst Ecol 8:371–377

    CAS  Google Scholar 

  32. Gregory P, Ave DA, Bouthyette PY et al (1986) Insect-defensive chemistry of potato glandular trichomes. In: Juniper BE, Southwood TRE (eds) Insect and the plant surface. Edward Arnold, London

    Google Scholar 

  33. Durand R, Zenk MH (1974) The homogentisate ring-cleavage pathway in the biosynthesis of acetate-derived naphthoquinones of the Droseraceae. Phytochemistry 13:1483–1492

    CAS  Google Scholar 

  34. Muravnik LE, Shavarda AL (2012) Leaf glandular trichomes in Empetrum nigrum: morphology, histochemistry, ultrastructure and secondary metabolites. Nord J Bot 30:470–481

    Google Scholar 

  35. Thurston R, Smith WT, Cooper BE (1966) Alkaloid secretion by trichomes of Nicotiana species and resistance to aphids. Entomol Exp Appl 9:428

    CAS  Google Scholar 

  36. Kolb D, Muller M (2004) Light, conventional and environmental scanning electron microscopy of the trichomes of Cucurbita pepo subsp. pepo var. styriaca and histochemistry of glandular secretory products. Ann Bot 94:515–526

    PubMed  PubMed Central  Google Scholar 

  37. Bisio A, Corallo A, Gastaldo P et al (1999) Glandular hairs and secreted material in Salvia blepharophylla Brandegee ex Epling grown in Italy. Ann Bot 83:441–452

    CAS  Google Scholar 

  38. Serrato-Valenti G, Bisio A, Cornara L et al (1997) Structural and histochemical investigation of the glandular trichomes of Salvia aurea L leaves, and chemical analysis of the essential oil. Ann Bot 79:329–336

    CAS  Google Scholar 

  39. Sacchetti G, Romagnoli C, Nicoletti M et al (1999) Glandular trichomes of Calceolaria adscendens Lidl (Scrophulariaceae): histochemistry, development and ultrastructure. Ann Bot 83:87–92

    Google Scholar 

  40. Geissmann TA, Griffin TS (1971) Sesquiterpene lactones: acid-catalysed color reactions as an aid in structure determination. Phytochemistry 10:2475–2485

    Google Scholar 

  41. Muravnik LE, Kostina OV, Mosina AA (2019) Glandular trichomes of the leaves in three Doronicum species (Senecioneae, Asteraceae): morphology, histochemistry and ultrastructure. Protoplasma 256:789–803

    CAS  PubMed  Google Scholar 

  42. Tattini M, Gravano E, Pinelli P et al (2000) Flavonoids accumulate in leaves and glandular trichomes of Phillyrea latifolia exposed to excess solar radiation. New Phytol 148:69–77

    CAS  Google Scholar 

  43. Combrinck S, Du Plooy GW, McCrindle RI et al (2007) Morphology and histochemistry of the glandular trichomes of Lippia scaberrima (Verbenaceae). Ann Bot 99:1111–1119

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Corsi G, Bottega S (1999) Glandular hairs of Salvia officinalis: new data on morphology, localization and histochemistry in relation to function. Ann Bot 84:657–664

    Google Scholar 

  45. Schopker H, Kneisel M, Beerhues L et al (1995) Phenylalanine ammonia-lyase and chalcone synthase in glands of Primula kewensis (W Wats): immunofluorescence and immunogold localization. Planta 196:712–719

    Google Scholar 

  46. Kim E, Mahlberg P (1997) Immunochemical localization of tetrahydrocannabinol (THC) in cryofixed glandular trichomes of Cannabis (Cannabaceae). Am J Bot 84:336–342

    CAS  PubMed  Google Scholar 

  47. Turner GW, Croteau R (2004) Organization of monoterpene biosynthesis in Mentha. Immunocytochemical localizations of geranyl diphosphate synthase, limonene-6-hydroxylase, isopiperitenol dehydrogenase, and pulegone reductase. Plant Physiol 136:4215–4227

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Amrehn E, Aschenbrenner A-K, Heller A et al (2016) Localization of sesquiterpene lactone biosynthesis in cells of capitate glandular trichomes of Helianthus annuus (Asteraceae). Protoplasma 253:447–455

    CAS  PubMed  Google Scholar 

  49. Clark LJ, Hamilton JGC, Chapman JV et al (1997) Analysis of monoterpenoids in glandular trichomes of the catmint Nepeta racemosa. Plant J 11:1387–1393

    CAS  Google Scholar 

  50. Ascensão L, Figueiredo AC, Barroso JG et al (1998) Plectranthus madagascariensis: morphology of the glandular trichomes, essential oil composition, and its biological activity. Int J Plant Sci 159:31–38

    Google Scholar 

  51. Göpfert JC, Heil N, Conrad J et al (2005) Cytological development and sesquiterpene lactone secretion in capitate glandular trichomes of sunflower. Plant Biol 7:148–155

    PubMed  Google Scholar 

  52. Aschenbrenner A-K, Amrehn E, Bechtel L et al (2015) Trichome differentiation on leaf primordia of Helianthus annuus (Asteraceae): morphology, gene expression and metabolite profile. Planta 241:837–846

    CAS  PubMed  Google Scholar 

  53. Krak K, Mráz P (2008) Trichomes in the tribe Lactuceae (Asteraceae) – taxonomic implications. Biologia 63:616–630

    Google Scholar 

  54. Langer R, Pein I, Kopp B (1995) Glandular hairs in the genus Drosera (Droseraceae). Pl Syst Evol 194:163–172

    Google Scholar 

  55. Napp-Zinn K, Eble M (1980) Beiträge zur Systematischen Anatomie der Asteraceae – Anthemideae: Die Trichome. Plant Syst Evol 136:169–207

    Google Scholar 

  56. Eiji S, Salmaki Y (2016) Evolution of trichomes and its systematic significance in Salvia (Mentheae; Nepetoideae; Lamiaceae). Bot J Linn Soc 180:241–257

    Google Scholar 

  57. Bosabalidis AM (1990) Glandular trichomes in Satureja thymbra leaves. Ann Bot 65:71–78

    Google Scholar 

  58. Marburger JE (1979) Glandular leaf structure of Triphyophyllum peltatum (Dioncophyllaceae): a fly-paper insect trapper. Amer J Bot 66:404–411

    Google Scholar 

  59. Thornhill AH, Harper IS, Hallamz ND (2008) The development of the digestive glands and enzymes in the pitchers of three Nepenthes species: N. alata, N. tobaica, and N. ventricosa (Nepenthaceae). Int J Plant Sci 169:615–624

    Google Scholar 

  60. Muravnik LE, Shavarda AL (2011) Pericarp peltate trichomes in Pterocarya rhoifolia: histochemistry, ultr.astructure, and chemical composition. Int J Plant Sci 172:159–172

    CAS  Google Scholar 

  61. Juniper BE, Robins RJ, Joel DM (1989) The carnivorous plants. Academic, London

    Google Scholar 

  62. Valkama E, Salminen J-P, Koricheva J et al (2003) Comparative analysis of leaf trichome structure and composition of epicuticular flavonoids in finnish birch species. Ann Bot 91:643–655

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Muravnik LE, Kostina OV, Shavarda AL (2016) Glandular trichomes of Tussilago farfara (Senecioneae, Asteraceae). Planta 244:737–752

    CAS  PubMed  Google Scholar 

  64. Plachno B, Swiatek P, Wistuba A (2007) The giant extra-floral nectaries of carnivorous Heliamphora folliculata; architecture and ultrastructure. Acta Biol Cracov Ser Bot 49:91–104

    Google Scholar 

  65. Munien P, Naidoo Y, Naidoo G (2015) Micromorphology, histochemistry and ultrastructure of the foliar trichomes of Withania somnifera (L) Dunal (Solanaceae). Planta 242:1107–1122

    CAS  PubMed  Google Scholar 

  66. Heslop-Harrison Y (1975) Enzyme release in carnivorous plants. In: Dingle JT, Dean RT (eds) Lysosomes in biology and pathology. North Holland Publishing, Amsterdam

    Google Scholar 

  67. Heslop-Harrison Y, Heslop-Harrison J (1981) The digestive glands of Pinguicula: structure and cytochemistry. Ann Bot 47:293–319

    Google Scholar 

  68. Ascensão L, Mota L, Castro DM (1999) Glandular trichomes on the leaves and flowers of Plectranthus ornatus: morphology, distribution and histochemistry. Ann Bot 84:437–447

    Google Scholar 

  69. Giuliani C, Maleci Bini L (2008) Insight into the structure and chemistry of glandular trichomes of Labiatae, with emphasis on subfamily Lamioideae. Plant Syst Evol 276:199–208

    Google Scholar 

  70. Sulborska A (2013) Structure and distribution of glandular and non-glandular trichomes on above-ground organs in Inula helenium L (Asteraceae). Acta Agrobot 66:25–34

    Google Scholar 

  71. Kostina OV, Muravnik LE (2014) Structure and chemical content of the trichomes in two Doronicum species (Asteraceae). In: Modern phytomorphology 3rd international conference on plant morphology, 13–15 May 2014, Lviv Ukraine, pp 167–171

    Google Scholar 

  72. Aschenbrenner A-K, Horakh S, Spring O (2013) Linear glandular trichomes of Helianthus (Asteraceae): morphology, localization, metabolite activity and occurrence. AoB PLANTS 5:plt028

    PubMed Central  Google Scholar 

  73. Werker E, Ravid U, Putievsky E (1985) Structure of glandular hairs and identification of the main components of their secreted material in some species of the Labiatae. Israel J Bot 34:31–45

    CAS  Google Scholar 

  74. Meyberg M, Krohn S, Brummer B et al (1991) Ultrastructure and secretion of glandular trichomes of tobacco leaves. Flora 185:357–363

    Google Scholar 

  75. Muravnik LE (2007) Morphology and ultrastructure of the pericarp trichomes in Juglans species (Juglandaceae) in relation to synthesis of secondary metabolites. Bot Zh 92:96–107

    Google Scholar 

  76. Kostina OV, Muravnik LE (2019) Comparative characteristics of the glandular trichomes in four species of Arnica (Asteraceae): localization, morphology, ultrastructure and histochemical analysis. In: Plant anatomy: traditions and perspectives. МАКС Пресс, Moscow

    Google Scholar 

  77. Ascensão L, Marques N, Pais MS (1995) Glandular trichomes on vegetative and reproductive organs of Leonotis leonurus (Lamiaceae). Ann Bot 75:619–626

    Google Scholar 

  78. Schnittger A, Hülskamp M (2002) Trichome morphogenesis: a cellcycle perspective. Philos T Roy Soc London B 357:823–826

    CAS  Google Scholar 

  79. Favi F, Cantrell CL, Mebrahtu T et al (2008) Leaf peltate glandular trichomes of Vernonia galamensis ssp. galamensis var. ethiopica Gilbert: development, ultrastructure, and chemical composition. Int J Plant Sci 169:605–614

    CAS  Google Scholar 

  80. Vassilyev AE, Muravnik LE (1988) The ultrastructure of the digestive glands in Pinguicula vulgaris L. (Lentibulariaceae) relative to their function. I. The changes during maturation. Ann Bot 62:329–341

    Google Scholar 

  81. Ascensão L, Pais MSS (1982) Secretory trichomes of Artemisia chritmifolia. Some ultrastructural aspects. Bull Soc Bot Fr 129:83–87. Act Bot(1)

    Google Scholar 

  82. Afolayan AJ, Meyer JJM (1995) Morphology and ultrastructure of secreting and nonsecreting foliar trichomes of Helichrysum aureonitens (Asteraceae). Int J Plant Sci 156:481–487

    Google Scholar 

  83. Carlquist S (1958) Structure and ontogeny of glandular trichomes of Madinae (Compositae). Am J Bot 45:675–682

    Google Scholar 

  84. Werker E, Fahn A (1981) Secretory hairs of Inula viscosa (L) Ait – development, ultrastructure and secretion. Bot Gaz 142:461–476

    Google Scholar 

  85. Monteiro WR, Castro MM, Mazzoni-Viveiros SC (2001) Development and some histochemical aspects of foliar glandular trichomes of Stevia rebaudiana (Bert) Bert – Asteraceae. Rev Bras Bot 24:349–357

    CAS  Google Scholar 

  86. Hammond CT, Mahlberg PG (1978) Ultrastructural development of capitate glandular hairs of Cannabis sativa L (Cannabaceae). Am J Bot 65:140–151

    Google Scholar 

  87. Ascensão L, Pais MS (1998) The leaf capitate trichomes of Leonotis leonurus: histochemistry, ultrastructure and secretion. Ann Bot 81:263–271

    Google Scholar 

  88. Ågren J, Schemske DW (1994) Evolution of trichome number in a naturalized population of Brassica rapa. Am Nat 143:1–13

    Google Scholar 

  89. Løe G, Toräng P, Gaudeul M et al (2007) Trichome production and spatiotemporal variation in herbivory in the perennial herb Arabidopsis lyrata. Oikos 116:134–142

    Google Scholar 

  90. Agrawal AA (1999) Induced responses to herbivory in wild radish: effects on several herbivores and plant fitness. Ecology 80:1713–1723

    Google Scholar 

  91. Dalin P, Ågren J, Björkman C et al (2008) Leaf trichome formation and plant resistance to herbivory. In: Schaller A (ed) Induced plant resistance to herbivory. Springer Science+Business Media BV, Dordrecht

    Google Scholar 

  92. Skaltsa H, Verykokidou E, Harvala C et al (1994) UV-B protective potential and flavonoid content of leaf hairs of Quercus ilex. Phytochemistry 37:987–990

    CAS  Google Scholar 

  93. Karabourniotis G, Kotsabassidis D, Manetas Y (1995) Trichome density and its protective potential against ultraviolet-B radiation damage during leaf development. Can J Bot 73:376–383

    Google Scholar 

  94. Liakoura V, Stefanou M, Manetas Y et al (1997) Trichome density and its UV-B protective potential are affected by shading and leaf position on the canopy. Environ Exp Bot 38:223–229

    Google Scholar 

  95. Bosabalidis AM (2013) Glandular hairs, non-glandular hairs, and essential oils in the winter and summer leaves of the seasonally dimorphic Thymus sibthorpii (Lamiaceae). J Plant Dev 20:3–11

    Google Scholar 

  96. Werker E (1993) Function of essential oil-secreting glandular hairs in aromatic plants of the Lamiaceae. A review. Flav Frag 8:249–255

    Google Scholar 

  97. Harborne JH, Williams CA (2000) Advances in flavonoid research since 1992. Phytochemistry 55:481–504

    CAS  PubMed  Google Scholar 

  98. Corsi G, Biasci D (1998) Secretory structures and localization of alkaloids in Conium maculatum L (Apiaceae). Ann Bot 81:157–162

    CAS  Google Scholar 

  99. Cetkovic GS, Djilas SM, Canadanovic-Brunet JM et al (2004) Antioxidant properties of marigold extracts. Food Res Int 37:643–650

    Google Scholar 

  100. Calderon-Montaño JM, Burgos-Moron E, Perez-Guerrero C et al (2011) A review on the dietary flavonoid kaempferol. Mini Rev Med Chem 11:298–344

    PubMed  Google Scholar 

  101. Duke SO (1994) Commentary. Glandular trichomes – a focal point of chemical and structural interactions. Int J Plant Sci 155:617–620

    Google Scholar 

  102. Hatano N, Hamada T (2008) Proteome analysis of pitcher fluid of the carnivorous plant Nepenthes alata. J Proteome Res 7:809–816

    CAS  PubMed  Google Scholar 

  103. Horner JD, Plachno BJ, Bauer U et al (2018) Attraction of prey. In: Ellison AM, Adamec L (eds) Carnivorous plants: physiology, ecology, and evolution. Oxford University Press, London

    Google Scholar 

  104. Egan PA, Fvd K (2012) Coproduction and ecological significance of naphthoquinones incarnivorous sundews (Drosera). Chem Biodivers 9:1033–1044

    CAS  PubMed  Google Scholar 

  105. Fleischmann AS (2016) Olfactory prey attraction in Drosera? Carnivorous Plant Newsletter 45:19–25

    Google Scholar 

  106. Keene CK, Wagner GJ (1985) Direct demonstration of duvatrienediol biosynthesis in glandular heads of tobacco trichomes. Plant Physiol 79:1026–1032

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Gershenzon J, McCaskill D, Rajaonarivony JIM et al (1992) Isolation of secretory cells from plant glandular trichomes and their use in biosynthetic studies of monoterpenes and other gland products. Anal Biochem 200:130–138

    CAS  PubMed  Google Scholar 

  108. Duke MV, Paul RN, Elsohly Hala N et al (1994) Localization of artemisinin and artemisitene in foliar tissues of glanded and glandless biotypes of Artemisia annua L. Int J Plant Sci 155:365–372

    Google Scholar 

  109. Gardner RO (1975) Vanillin-hydrochloric acid as a histochemical test for tannin. Stain Technol 50:315–317

    CAS  PubMed  Google Scholar 

  110. Gahan PB (1984) Plant histochemistry and cytochemistry. Academic, London

    Google Scholar 

  111. Gutmann M (1995) Improved staining procedures for photographic documentation of phenolic deposits in semithin sections of plant tissue. J Microsc 179:277–281

    CAS  Google Scholar 

  112. Gersbach PV, Wyllie SG, Sarafis V (2001) A new histochemical method for localization of the site of monoterpene phenol accumulation in plant secretory structures. Ann Bot 88:521–525

    CAS  Google Scholar 

  113. Charriere-Ladreix Y (1976) Repartition intracellulaire du secretat flavonique de Populus nigra L. Planta 129:167–174

    CAS  PubMed  Google Scholar 

  114. Guerin HP, Delaveau PG, Paris RR (1971) Localisations histochimiques. II Procedes simples de localisation de pigments flavoniques Application a quelques Phanerogames. Bull Soc Bot Fr 118:29–36

    Google Scholar 

  115. Hariri EB, Salle G, Andary C (1991) Involvement of flavonoids in the resistance of two poplar cultivars to mistletoe (Viscum album L). Protoplasma 162:20–26

    CAS  Google Scholar 

  116. Andreucci AC, Ciccarelli D, Desideri I et al (2008) Glandular hairs and secretory ducts of Matricaria chamomilla (Asteraceae): morphology and histochemistry. Ann Bot Fenn 45:11–18

    Google Scholar 

  117. Pagni AM, Orlando R, Masini A et al (2003) Secretory structures of Santolina ligustica Arrigoni (Asteraceae), an Italian endemic species. Israel J Plant Sci 51:185–192

    Google Scholar 

  118. David R, Carde J-P (1964) Coloration differentiele des inclusions lipidique et terpeniques des pseudophilles du pin maritime au moyen du reactif nadi. C R Acad Sci (Paris) 258:1338–1340

    CAS  Google Scholar 

  119. Tateo F, Cornara L, Bononi M et al (2001) Trichomes on vegetative and reproductive organs of Stevia rebaudiana (Asteraceae). Structure and secretory products. Plant Biosystems 135:25–37

    Google Scholar 

  120. Caissard J-C, Bergougnoux V, Martin M et al (2006) Chemical and histochemical analysis of ‘Quatre saisons blanc mousseux’, a moss rose of the Rosa x damascena Group. Ann Bot 97:231–238

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Chwil M, Kostryco M (2019) Histochemical assays of secretory trichomes and the structure and content of mineral nutrients in Rubus idaeus L leaves. Protoplasma. https://doi.org/10.1007/s00709-019-01426-7. Accessed 09 Aug 2019

  122. Cappelletti EM, Caniato R, Appendino G (1986) Localization of cytotoxic hydroperoxyeudesmanolides in Artemisia umbelliformis. Biochem Syst Ecol 14:183–190

    CAS  Google Scholar 

  123. Muravnik LE, Kostina OV, Mosina AA et al (2019) Structural and functional differences between the glandular trichomes of the vegetative and reproductive organs. In: Plant anatomy: traditions and perspectives. Materials of the international symposium dedicated to the 90th anniversary of Prof LI Lotova, 16–22 September 2019, Moscow, pp 182–184

    Google Scholar 

  124. Furr Y, Mahlberg PG (1981) Histochemical analysis of laticifers and glandular trichomes in Cannabis sativa. J Nat Prod 44:153–159

    Google Scholar 

  125. Machado SR, Gregorio EA, Guimaraes E (2006) Ovary peltate trichomes of Zeyheria montana (Bignoniaceae): developmental ultrastructure and secretion in relation to function. Ann Bot 97:357–369

    PubMed  PubMed Central  Google Scholar 

  126. Gobbo-Neto L, Gates PJ, Lopes NP (2008) Negative ion ‘chip-based’ nanospray tandem mass spectrometry for the analysis of flavonoids in glandular trichomes of Lychnophora ericoides Mart (Asteraceae). Rapid Commun Mass Spectrom 22:3802–3808

    CAS  PubMed  Google Scholar 

  127. Siebert DJ (2004) Localization of salvinorin a and related compounds in glandular trichomes of the psychoactive sage, Salvia divinorum. Ann Bot 93:763–771

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Spring O, Bienert U (1987) Capitate glandular hairs from sunflower leaves: development, distribution and sesquiterpene lactone content. J Plant Physiol 130:441–448

    CAS  Google Scholar 

  129. Seaman F (1982) Sesquiterpene lactones as taxonomic characters in the Asteraceae. Bot Rev 48:121–594

    CAS  Google Scholar 

  130. Fahn A, Shimony C (1998) Ultrastructure and secretion of the secretory cells of two species of Fagonia L (Zygophyllaceae). Ann Bot 81:557–565

    Google Scholar 

  131. Gang DR, Wang J, Dudareva N et al (2001) An investigation of the storage and biosynthesis of phenylpropenes in sweet basil. Plant Physiol 125:539–555

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Voirin B, Bayet C, Colson M (1993) Demonstration that flavone aglycones accumulate in the peltate glands of Mentha x piperita leaves. Phytochemistry 34:85–87

    CAS  Google Scholar 

  133. Spring O, Heil N, Vogler B (1997) Sesquiterpene lactones and flavonones in Scalesia species. Phytochemistry 46:1369–1373

    CAS  Google Scholar 

  134. McCaskill DM, Croteau R (1995) Monoterpene and sesquiterpene biosynthesis in glandular trichomes of peppermint (Mentha х piperita) rely exclusively on plastid-derived isopentenyl diphosphate. Planta 197:49–56

    CAS  Google Scholar 

  135. Dell B, McComb AJ (1975) Glandular hairs, resin production, and habitat of Newcastelia viscida E Pritzel (Dicrastylidaceae). Aust J Bot 23:373–390

    CAS  Google Scholar 

  136. Kim E-S, Mahlberg PG (1995) Glandular cuticle formation in Cannabis (Cannabaceae). Am J Bot 82:1207–1214

    Google Scholar 

  137. Bourett TM, Howard RJ, O’Keefe DP et al (1994) Gland development on leaf surfaces of Nepeta racemosa. Int J Plant Sci 155:623–632

    Google Scholar 

  138. Giuliani C, Ascrizzi R, Corrà S et al (2017) Salvia uliginosa Benth: glandular trichomes as bio-factories of volatiles and essential oil. Flora 233:12–21

    Google Scholar 

  139. Figueiredo AC, Pais MS (1994) Ultrastructural aspects of the glandular cells from the secretory trichomes and from the cell suspension cultures of Achillea millefolium L ssp millefolium. Ann Bot 74:179–190

    Google Scholar 

  140. Winkel-Shirley B (1999) Evidence for enzyme complexes in the phenylpropanoid and flavonoid pathways. Physiol Plant 107:142–149

    CAS  Google Scholar 

  141. Burbulis IE, Winkel-Shirley B (1999) Interactions among enzymes of the Arabidopsis flavonoid biosynthetic pathway. Proc Natl Acad Sci U S A 96:12929–12934

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Achnine L, Blancaflor EB, Rasmussen S et al (2004) Colocalization of L-phenylalanine ammonia-lyase and cinnamate 4-hydroxylase for metabolic channelling in phenylpropanoid biosynthesis. Plant Cell 16:3098–3109

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Cheniclet C, Carde J-P (1985) Presence of leucoplasts in secretory cells and of monoterpenes in the essential oil: a correlative study. Israel J Bot 34:219–238

    Google Scholar 

  144. Goodwin TW, Mercer EI (1983) Introduction to plant biochemistry, 2nd edn. Pergamon Press, Oxford

    Google Scholar 

  145. Zaprometov MN (1993) Phenolic compounds: distribution, metabolism and functions in plants. Nauka, Moskow

    Google Scholar 

  146. Wink M (1993) The plant vacuole: a multifunctional compartment. J Exp Bot 44(Supplement):231–246

    CAS  Google Scholar 

  147. Mol J, Grotewold E, Koes R (1998) How genes paint flowers and seeds [Reviews]. Trends Plant Sci 3:212–217

    Google Scholar 

  148. Markham KR, Ryan KG, Gould KS et al (2000) Cell wall sited flavonoids in lisianthus flower petals. Phytochemistry 54:681–687

    CAS  PubMed  Google Scholar 

  149. Muravnik LE, Ivanova AN (2002) The ultrastructural features of leaf gland secretory cells in Droseraceae plants relative to the synthesis of naphthoquinones. 1 Vacuoles and cell wall. Bot Zhurn 87:16–25

    Google Scholar 

  150. Robins RJ, Juniper BE (1980) The secretory cycle of Dionaea muscipula Ellis. I The fine structure and the effect of stimulation on the fine structure of the digestive gland cells. New Phytol 86:279–296

    Google Scholar 

  151. Alfenito MR, Souer E, Goodman CD et al (1998) Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases. Plant Cell 10:1135–1149

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Nikolakaki A, Christodoulakis NS (2004) Leaf structure and cytochemical investigation of secretory tissues in Inula viscosa. Bot J Linn Sci 144:437–448

    Google Scholar 

  153. Naidoo Y, Karim T, Heneidak S et al (2012) Glandular trichomes of Ceratotheca triloba (Pedaliaceae): morphology, histochemistry and ultrastructure. Planta 236:1215–1226

    CAS  PubMed  Google Scholar 

  154. Spencer CM, Cai Y, Martin R et al (1988) Polyphenol complexation – some thoughts and observations. Phytochemistry 27:2397–2409

    CAS  Google Scholar 

  155. Markham KR, Gould KS, Winefield CS et al (2000) Anthocyanic vacuolar inclusions – their nature and significance in flower colouration. Phytochemistry 55:327–336

    CAS  PubMed  Google Scholar 

  156. Kelsey RG, Reynolds CW, Rodrigues E (1984) The chemistry of biologically active constituents secreted and stored in plant glandular trichomes. In: Rodrigues E (ed) Biology and chemistry of plant trichomes. Plenum press, New York

    Google Scholar 

  157. Duke SO, Canel C, Rimando AM et al (2000) Current and potential exploitation of plant glandular trichome productivity. In: Advances in botanical research, vol 31. Academic Press,, London, pp 121–151

    Google Scholar 

  158. Kolalite MR (1998) Comparative analysis of ultrastructure of glandular trichomes in two Nepeta cataria chemotypes (N. cataria and N. cataria var. citriodora). Nord J Bot 18:589–598

    Google Scholar 

  159. Raatikainen OJ, Taipale HT, Pelttari A et al (1992) An electron microscope study of resin production and secretion by the glands of seedlings of Betula pendula Roth. New Phytol 122:537–543

    Google Scholar 

  160. Vassilyev AE (2000) Quantitative ultrastructural data of secretory duct epithelial cells in Rhus toxicodendron. Int J Plant Sci 161:615–630

    CAS  Google Scholar 

  161. Soler E, Feron G, Clastre M et al (1992) Evidence for a geranyl diphosphate synthase located within plastids of Vitis vinifera L cultivated in vitro. Planta 187:171–175

    CAS  PubMed  Google Scholar 

  162. Schönherr J (2006) Characterization of aqueous pores in plant cuticles and permeation of ionic solutes. J Exp Bot 57:2471–2491

    PubMed  Google Scholar 

  163. Beevers L (1996) Clathrin-coated vesicles in plants. Int Rev Cytol 167:1–37

    CAS  Google Scholar 

  164. Sanderfoot AA, Raikhel NV (1999) The specificity of vesicle trafficking: coat proteins and SNAREs. Plant Cell 11:629–642

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Gershenzon J, McConkey M, Croteau R (2000) Regulation of monoterpene accumulation in leaves of peppermint (Mentha x piperita L.). Plant Physiol 122:205–213

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Turner GW, Gershenzon J, Nielsen EE et al (1999) Limonene synthase, the enzyme responsible for monoterpene biosynthesis in peppermint, is localized to leucoplasts of oil gland secretory cells. Plant Physiol 120:879–886

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Heinrich G, Sawidis T, Ingolic E et al (2010) Ultrastructure of glandular hairs of Sigesbeckia jorullensis Kunth (Asteraceae). Israel Journal of Plant Sciences 58:297–308

    Google Scholar 

  168. Schnepf E (1969) Über den Feinbau von Öldrüsen. I. Die Drüsenhaare von Arctium lappa. Protoplasma 67:185–194

    Google Scholar 

  169. Mercke P, Bengtsson M, Bouwmeester HJ et al (2000) Molecular cloning, expression, and characterization of amorpha-4,11-diene synthase, a key enzyme of artemisinin biosynthesis in Artemisia annua L. Arch Biochem Biophys 381:173–180

    CAS  PubMed  Google Scholar 

  170. Teoh KH, Polichuk DR, Reed DW et al (2006) Artemisia annua L. (Asteraceae) trichome-specific cDNAs reveal CYP71AV1, a cytochrome P450 with a key role in the biosynthesis of the antimalarial sesquiterpene lactone artemisinin. FEBS Lett 580:1411–1416

    CAS  PubMed  Google Scholar 

  171. Zhang Y, Teoh KH, Reed DW et al (2008) The molecular cloning of artemisinic aldehyde Δ11(13) reductase and its role in glandular trichome-dependent biosynthesis of artemisinin in Artemisia annua. J Biol Chem 283:21501–21508

    CAS  PubMed  Google Scholar 

  172. Olsson ME, Olofsson LM, Lindahl AL et al (2009) Localization of enzymes of artemisinin biosynthesis to the apical cells of glandular secretory trichomes of Artemisia annua L. Phytochemistry 70:1123–1128

    CAS  PubMed  Google Scholar 

  173. Göpfert J, MacNevin G, Ro D-K et al (2009) Identification, functional characterization and developmental regulation of sesquiterpene synthases from sunflower capitate glandular trichomes. BMC Plant Biol 9:1–18

    Google Scholar 

  174. Bosabalidis AM, Gabrieli C, Niopas I (1998) Flavone aglycones in glandular hairs of Origanum x intercedens. Phytochemistry 49:1549–1553

    CAS  PubMed  Google Scholar 

  175. Robinson DG, Hinz G (1997) Vacuole biogenesis and protein transport to the plant vacuole – a comparison with yeast vacuole and the mammalian lysosome [Review]. Protoplasma 197:1–25

    CAS  Google Scholar 

  176. Sá-Haiad B, Silva CP, Paula RCV et al (2015) Androecia in two Clusia species: development, structure and resin secretion. Plant Biol 17:816–824

    PubMed  Google Scholar 

  177. Rodrigues TM, Machado SR (2012) Oil glands in Pterodon pubescens Benth (Leguminosae-Papilionoideae): distribution, structure, and secretion mechanisms. Int J Plant Sci 173:984–992

    Google Scholar 

  178. Holloway PJ (1982) Structure and histochemistry of plant cuticular membranes: an overview. In: Cutler DF, Alvin KL, Price CE (eds) The plant cuticle. Lynn Soc Sympos Ser, London

    Google Scholar 

  179. Koteyeva NK (2005) A novel structural type of plant cuticle. Dokl Biol Sci 403:272–274

    Google Scholar 

  180. Wist TJ, Davis AR (2006) Floral nectar production and nectary anatomy and ultrastructure of Echinacea purpurea (Asteraceae). Ann Bot 97:177–193

    PubMed  PubMed Central  Google Scholar 

  181. Schreiber L (2005) Polar paths of diffusion across plant cuticles: new evidence for an old hypothesis. Ann Bot 95:1069–1073

    PubMed  PubMed Central  Google Scholar 

  182. Paiva EAS (2016) How do secretory products cross the plant cell wall to be released? A new hypothesis involving cyclic mechanical actions of the protoplast. Ann Bot 117:533–540

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Muravnik LE (2005) Significance of the tentacle morphological and ultrastructural features in Drosera (Droseraceae) taxonomy. Bot Zhurn 90:14–24

    Google Scholar 

Download references

Acknowledgments

I appreciate the “Core Centre Cell and Molecular Technology in the Plant Science” at the Komarov Botanical Institute (St. Petersburg) for provision of equipment for light and electron microscopy. The present study was carried out within the framework of the research project (АААА-А18-118031690084-9) of the Komarov Botanical Institute of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. E. Muravnik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Muravnik, L.E. (2020). The Structural Peculiarities of the Leaf Glandular Trichomes: A Review. In: Ramawat, K., Ekiert, H., Goyal, S. (eds) Plant Cell and Tissue Differentiation and Secondary Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-11253-0_3-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11253-0_3-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11253-0

  • Online ISBN: 978-3-030-11253-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics