Skip to main content

High Production of Depsides and Other Phenolic Acids in Different Types of Shoot Cultures of Three Aronias: Aronia Melanocarpa, Aronia Arbutifolia, Aronia × Prunifolia

  • Living reference work entry
  • First Online:
Plant Cell and Tissue Differentiation and Secondary Metabolites

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

The search for sources of natural antioxidants has invariably been an attractive scientific and research problem for over a dozen years. One of the subgroups of plant antioxidants includes phenolic acids – derivatives of cinnamic acid and benzoic acid and depsides. These compounds have numerous other valuable directions of biological activity.

The aim of the presented research was broad optimization of the conditions of growing in vitro cultures of three aronias (three chokeberry species), Aronia melanocarpa, A. arbutifolia, and A. × prunifolia, aimed at proposing the conditions most conducive to the production of these compounds. The optimization included testing of basal media, concentrations of plant growth regulators, feeding with biosynthetic precursors of phenolic acids, light conditions (monochromatic and multispectral lights), and different types of shoot cultures – solid and agitated – and also cultures maintained in commercially available bioreactors (RITA and PlantForm).

The use of this strategy, well known in plant biotechnology, allowed us to obtain results potentially of an application nature. The cultures of the three aronias have proved to be a particularly rich source of depsides – chlorogenic acid, cryptochlorogenic acid, isochlorogenic acid, neochlorogenic acid, and rosmarinic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

BA:

6-Benzyladenine

DW:

Dry weight

HPLC-DAD:

High-performance liquid chromatography with diode-array detection

LS:

Linsmaier and Skoog

MS:

Murashige and Skoog

NAA:

1-Naphthaleneacetic acid

PGRs:

Plant growth regulators

References

  1. Augustyniak A, Bartosz G, Čipak A et al (2010) Natural and synthetic antioxidants: an updated overview. Free Radic Res 44:1216–1262. https://doi.org/10.3109/10715762.2010.508495

    Article  CAS  PubMed  Google Scholar 

  2. Krishnaiah D, Sarbatly R, Nithyanandam R (2011) A review of the antioxidant potential of medicinal plant species. Food Bioprod Process 89:217–233

    Article  CAS  Google Scholar 

  3. Kattappagari K, Ravi Teja C, Kommalapati R et al (2015) Role of antioxidants in facilitating the body functions: a review. J Orofac Sci 7:71. https://doi.org/10.4103/0975-8844.169745

    Article  CAS  Google Scholar 

  4. Brewer MS (2011) Natural antioxidants: sources, compounds, mechanisms of action, and potential applications. Compr Rev Food Sci Food Saf 10:221–247. https://doi.org/10.1111/j.1541-4337.2011.00156.x

    Article  CAS  Google Scholar 

  5. Robbins RJ (2003) Phenolic acids in foods: an overview of analytical methodology. https://doi.org/10.1021/JF026182T

    Article  CAS  Google Scholar 

  6. Heleno SA, Martins A, Queiroz MJRP, Ferreira ICFR (2015) Bioactivity of phenolic acids: metabolites versus parent compounds: a review. Food Chem 173:501–513. https://doi.org/10.1016/j.foodchem.2014.10.057

    Article  CAS  PubMed  Google Scholar 

  7. Matkowski A (2008) Plant in vitro culture for the production of antioxidants - a review. Biotechnol Adv 26:548–560. https://doi.org/10.1016/j.biotechadv.2008.07.001

    Article  CAS  PubMed  Google Scholar 

  8. Brand MH, Cullina WG (1992) Micropropagation of red and black chokeberry (Aronia spp.). Hortic Sci 27:81–81

    Google Scholar 

  9. Litwińczuk W (2002) Propagation of black chokeberry (Aronia melanocarpa Elliot) through in vitro culture. Electron J Polish Agric Univ 5. http://www.ejpau.media.pl/volume5/issue2/horticult

  10. Arnason JT, Mata R, Romeo JT (1995) Phytochemistry of medicinal plants. Springer US, Boston

    Book  Google Scholar 

  11. Sondheimer E (1964) Chlorogenic acids and related depsides. Bot Rev 30:667–712. https://doi.org/10.1007/BF02858654

    Article  CAS  Google Scholar 

  12. Kakkar S, Bais S (2014) A review on protocatechuic acid and its pharmacological potential. ISRN Pharmacol 2014:952943. https://doi.org/10.1155/2014/952943

    Article  PubMed  PubMed Central  Google Scholar 

  13. Krolicka A, Szpitter A, Gilgenast E et al (2013) Syringic acid, a novel natural phenolic acid, normalizes hyperglycemia with special reference to glycoprotein components in experimental diabetic rats. J Acute Dis 2014:952943. https://doi.org/10.1016/S2221-6189(13)60149-3

    Article  Google Scholar 

  14. Cai Y, Luo Q, Sun M, Corke H (2004) Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci 74:2157–2184. https://doi.org/10.1016/j.lfs.2003.09.047

    Article  CAS  PubMed  Google Scholar 

  15. Rosa L, Silva N, Soares N et al (2016) Anticancer properties of phenolic acids in colon cancer – a review. J Nutr Food Sci 06:1–7. https://doi.org/10.4172/2155-9600.1000468

  16. Gomes CA, Girão da Cruz T, Andrade JL et al (2003) Anticancer activity of phenolic acids of natural or synthetic origin: a structure−activity study. J Med Chem 46:5395–5401. https://doi.org/10.1021/jm030956v

    Article  CAS  PubMed  Google Scholar 

  17. Taheri R, Connolly BA, Brand MH, Bolling BW (2013) Underutilized chokeberry (Aronia melanocarpa, Aronia arbutifolia, Aronia × prunifolia) accessions are rich sources of anthocyanins, flavonoids, hydroxycinnamic acids, and proanthocyanidins. J Agric Food Chem 61:8581–8588. https://doi.org/10.1021/jf402449q

    Article  CAS  Google Scholar 

  18. Kulling SE, Rawel HM (2008) Chokeberry (Aronia melanocarpa) – a review on the characteristic components and potential health effects. Planta Med 74:1625–1634. https://doi.org/10.1055/s-0028-1088306

    Article  CAS  PubMed  Google Scholar 

  19. Malinowska J, Babicz K, Olas B et al (2012) Aronia melanocarpa extract suppresses the biotoxicity of homocysteine and its metabolite on the hemostatic activity of fibrinogen and plasma. Nutrition 28:793–798. https://doi.org/10.1016/j.nut.2011.10.012

    Article  CAS  Google Scholar 

  20. Kokotkiewicz A, Jaremicz Z, Luczkiewicz M (2010) Aronia plants: a review of traditional use, biological activities, and perspectives for modern medicine. J Med Food 13:255–269. https://doi.org/10.1089/jmf.2009.0062

    Article  PubMed  Google Scholar 

  21. Denev PN, Kratchanov CG, Ciz M et al (2012) Bioavailability and antioxidant activity of black chokeberry (Aronia melanocarpa) polyphenols: In vitro and in vivo evidences and possible mechanisms of action: a review. Compr Rev Food Sci Food Saf 11:471–489. https://doi.org/10.1111/j.1541-4337.2012.00198.x

    Article  CAS  Google Scholar 

  22. Szopa A, Kokotkiewicz A, Kubica P et al (2017) Comparative analysis of different groups of phenolic compounds in fruit and leaf extracts of Aronia sp.: A. melanocarpa, A. arbutifolia, and A. ×prunifolia and their antioxidant activities. Eur Food Res Technol 243:1645–1657. https://doi.org/10.1007/s00217-017-2872-8

    Article  CAS  Google Scholar 

  23. Jakesevic M, Aaby K, Borge G-IA et al (2011) Antioxidative protection of dietary bilberry, chokeberry and Lactobacillus plantarum HEAL19 in mice subjected to intestinal oxidative stress by ischemia-reperfusion. BMC Complement Altern Med 11:8. https://doi.org/10.1186/1472-6882-11-8

    Article  PubMed  PubMed Central  Google Scholar 

  24. Olas B, Kedzierska M, Wachowicz B et al (2010) Effects of polyphenol-rich extract from berries of Aronia melanocarpa on the markers of oxidative stress and blood platelet activation. Platelets 21:274–281. https://doi.org/10.3109/09537101003612821

    Article  CAS  PubMed  Google Scholar 

  25. Wangensteen H, Bräunlich M, Nikolic V et al (2014) Anthocyanins, proanthocyanidins and total phenolics in four cultivars of Aronia: antioxidant and enzyme inhibitory effects. J Funct Foods 7:746–752. https://doi.org/10.1016/j.jff.2014.02.006

    Article  CAS  Google Scholar 

  26. Govers C, Berkel Kasikci M, van der Sluis AA, Mes JJ (2018) Review of the health effects of berries and their phytochemicals on the digestive and immune systems. Nutr Rev 76:29–46. https://doi.org/10.1093/nutrit/nux039

    Article  PubMed  Google Scholar 

  27. Borowska S, Brzóska MM (2016) Chokeberries (Aronia melanocarpa) and their products as a possible means for the prevention and treatment of noncommunicable diseases and unfavorable health effects due to exposure to xenobiotics. Compr Rev Food Sci Food Saf 15:982–1017. https://doi.org/10.1111/1541-4337.12221

    Article  CAS  Google Scholar 

  28. Denev P, Kratchanova M, Petrova I et al (2018) Black chokeberry (Aronia melanocarpa (Michx.) Elliot) fruits and functional drinks differ significantly in their chemical composition and antioxidant activity. J Chem 2018:1–11. https://doi.org/10.1155/2018/9574587

    Article  CAS  Google Scholar 

  29. Jurikova T, Mlcek J, Skrovankova S et al (2017) Fruits of black chokeberry Aronia melanocarpa in the prevention of chronic diseases. Molecules 22(6):944. https://doi.org/10.3390/molecules22060944

    Article  Google Scholar 

  30. Petersen M, Simmonds MSJ (2003) Rosmarinic acid. Phytochemistry 62:121–125

    Article  CAS  Google Scholar 

  31. Döring AS, Petersen M (2014) Production of caffeic, chlorogenic and rosmarinic acids in plants and suspension cultures of Glechoma hederacea. Phytochem Lett 10:111–117. https://doi.org/10.1016/j.phytol.2014.05.012

    Article  Google Scholar 

  32. Ekiert H, Kwiecień I, Szopa A (2013) Rosmarinic acid production in plant in vitro cultures. Polish J Cosmetol 16:49–58

    Google Scholar 

  33. Park S, Uddin R, Xu H et al (2002) Biotechnological applications for rosmarinic acid production in plant. African J Biotechnol 7:4959–4965

    Google Scholar 

  34. Petersen M (1999) Biosynthesis and accumulation of rosmarinic acid in plant cell cultures. In: Plant cell and tissue culture for the production of food ingredients. Springer US, Boston, pp 61–73

    Chapter  Google Scholar 

  35. Bauer N, Vuković R, Likić S, Jelaska S (2015) Potential of different Coleus blumei tissues for rosmarinic acid production. Food Technol Biotechnol 53:3–10. https://doi.org/10.17113/ftb.53.01.15.3661

    Article  CAS  Google Scholar 

  36. Szopa A, Ekiert H, Szewczyk A, Fugas E (2012) Production of bioactive phenolic acids and furanocoumarins in in vitro cultures of Ruta graveolens L. and Ruta graveolens ssp. divaricata (Tenore) Gams. under different light conditions. Plant Cell Tissue Organ Cult 110:329–336. https://doi.org/10.1007/s11240-012-0154-5

    Article  CAS  Google Scholar 

  37. Ekiert H, Szewczyk A, Kuś A (2009) Free phenolic acids in Ruta graveolens L. in vitro culture. Pharmazie 64:100–102. https://doi.org/10.1691/ph.2009.9592

    Article  CAS  Google Scholar 

  38. Szopa A, Ekiert H (2015) Anethum graveolens L. in vitro cultures – a potential source of bioactive metabolites, phenolic acids and furanocoumarins. Acta Biol Cracov Ser Bot 57:29–37. https://doi.org/10.1515/abcsb-2015-0016

    Article  CAS  Google Scholar 

  39. Szopa A, Ekiert H (2016) The importance of applied light quality on the production of lignans and phenolic acids in Schisandra chinensis (Turcz.) Baill. cultures in vitro. Plant Cell Tissue Organ Cult 127:115–121. https://doi.org/10.1007/s11240-016-1034-1

    Article  CAS  Google Scholar 

  40. Szopa A, Klimek-Szczykutowicz M, Kokotkiewicz A et al (2018) Phytochemical and biotechnological studies on Schisandra chinensis cultivar Sadova no. 1—a high utility medicinal plant. Appl Microbiol Biotechnol 102:5105–5120. https://doi.org/10.1007/s00253-018-8981-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Szopa A, Ekiert H (2012) In vitro cultures of Schisandra chinensis (Turcz.) Baill. (Chinese magnolia vine) – a potential biotechnological rich source of therapeutically important phenolic acids. Appl Biochem Biotechnol 166:1941–1948. https://doi.org/10.1007/s12010-012-9622-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kwiecień I, Szydłowska A, Kawka B et al (2015) Accumulation of biologically active phenolic acids in agitated shoot cultures of three Hypericum perforatum cultivars: ‘Elixir’, ‘Helos’ and ‘Topas.’. Plant Cell Tissue Organ Cult 123:273–281. https://doi.org/10.1007/s11240-015-0830-3

    Article  CAS  Google Scholar 

  43. Kubica P, Szopa A, Ekiert H (2017) In vitro shoot cultures of pink rock-rose (Cistus ×incanus L.) as a potential source of phenolic compounds. Acta Soc Bot Pol 86:1–13. https://doi.org/10.5586/asbp.3563

    Article  CAS  Google Scholar 

  44. Kubica P, Szopa A, Ekiert H (2017) Production of verbascoside and phenolic acids in biomass of Verbena officinalis L. (vervain) cultured under different in vitro conditions. Nat Prod Res 31:1663–1668. https://doi.org/10.1080/14786419.2017.1286477

    Article  CAS  PubMed  Google Scholar 

  45. Kawka B, Kwiecień I, Ekiert H (2017) Influence of culture medium composition and light conditions on the accumulation of bioactive compounds in shoot cultures of Scutellaria lateriflora L. (American skullcap) grown in vitro. Appl Biochem Biotechnol 183:1414–1425. https://doi.org/10.1007/s12010-017-2508-2

    Article  CAS  Google Scholar 

  46. Cioć M, Szewczyk A, Żupnik M et al LED lighting affects plant growth, morphogenesis and phytochemical contents of Myrtus communis L. in vitro. Plant Cell Tissue Organ Cult 132:433–447. https://doi.org/10.1007/s11240-017-1340-2

    Article  Google Scholar 

  47. Kwiecień I, Poliwka G, Beerhues L, Ekiert H (2019) Agitated in vitro cultures of Hypericum perforatum cultivars – a source of phenolic acids and hypericin. In: 58th Congress of the Polish Botanical Society “Botany without borders”, Kraków, Poland, Abstract pp 158–159

    Google Scholar 

  48. Kwiecień I, Poliwka G, Beerhues L, Ekiert H (2018) In vitro cultures of Hypericum perforatum cultivars – a potential rich source of bioactive compounds for phytotherapeutical purposes. In: 2nd International Conference on Pharmaceutical and Medical Sciences “Biomedical security – a multidisciplinary approach for a multifaceted problem”, Poprad, Slovakia, Abstract pp 103–104

    Google Scholar 

  49. Ekiert H, Piekoszewska A, Muszyńska B, Baczyńska S (2014) Accumulation of p-coumaric acid and other bioactive phenolic acids in in vitro culture of Ruta graveolens ssp. divaricata (Tenore) Gams. Medicina Internacia Revuo 102:24–31

    Google Scholar 

  50. Szopa A, Kokotkiewicz A, Bednarz M et al (2017) Studies on the accumulation of phenolic acids and flavonoids in different in vitro culture systems of Schisandra chinensis (Turcz.) Baill. using a DAD-HPLC method. Phytochem Lett 20:462–469. https://doi.org/10.1016/j.phytol.2016.10.016

    Article  CAS  Google Scholar 

  51. Szopa A, Klimek-Szczykutowicz M, Kokotkiewicz A et al (2019) Phenolic acid and flavonoid production in agar, agitated and bioreactor-grown microshoot cultures of Schisandra chinensis cv. Sadova No. 1 – a valuable medicinal plant. J Biotech. 305 (10):61-70. https://doi.org/10.1016/j.jbiotec.2019.08.021

    Article  CAS  Google Scholar 

  52. Szopa A, Jafernik K, Barnaś M, et al (2019) Akumulacja lignanów i kwasów fenolowych w kulturach kalusowych Schisandra henryi C.B. Clarke. (Accumulation of lignans and phenolic acids in callus cultures of Schisandra henryi C.B. Clarke.) In: 58th Congress of the Polish Botanical Society “Botany without borders”, Kraków, Poland, Abstract p 163

    Google Scholar 

  53. Skrzypczak-Pietraszek E, Piska K, Pietraszek J (2018) Enhanced production of the pharmaceutically important polyphenolic compounds in Vitex agnus castus L. shoot cultures by precursor feeding strategy. Eng Life Sci 18:287–297. https://doi.org/10.1002/elsc.201800003

    Article  CAS  Google Scholar 

  54. Linsmaier EM, Skoog F (1965) Organic growth factor requirements of tobacco tissue cultures. Physiol Plant 18:100–127

    Article  CAS  Google Scholar 

  55. Ellnain-Wojtaszek M, Zgórka G (1999) High-performance liquid chromatography and thin-layer chromatography of phenolic acids from Ginkgo biloba L. leaves collected within vegetative period. J Liq Chrom Rel Tech 22:1457–1471

    Article  CAS  Google Scholar 

  56. Sułkowska-Ziaja K, Maślanka A, Szewczyk A, Muszyńska B (2017) Physiologically active compounds in four species of Phellinus. Nat Prod Commun 12(3):363–366. https://doi.org/10.1177/1934578X1701200313

    Article  Google Scholar 

  57. Szopa A, Ekiert H, Muszyńska B (2013) Accumulation of hydroxybenzoic acids and other biologically active phenolic acids in shoot and callus cultures of Aronia melanocarpa (Michx.) Elliott (black chokeberry). Plant Cell Tissue Organ Cult 113:323–329. https://doi.org/10.1007/s11240-012-0272-0

    Article  CAS  Google Scholar 

  58. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  59. Szopa A, Ekiert H (2014) Production of biologically active phenolic acids in Aronia melanocarpa (Michx.) Elliott in vitro cultures cultivated on different variants of the Murashige and Skoog medium. Plant Growth Regul 72:51–58. https://doi.org/10.1007/s10725-013-9835-2

    Article  CAS  Google Scholar 

  60. Szopa A, Kubica P, Snoch A, Ekiert H (2018) High production of bioactive depsides in shoot and callus cultures of Aronia arbutifolia and Aronia × prunifolia. Acta Physiol Plant 40:48. https://doi.org/10.1007/s11738-018-2623-x

    Article  CAS  Google Scholar 

  61. Szopa A, Starzec A, Ekiert H (2018) The importance of monochromatic lights in the production of phenolic acids and flavonoids in shoot cultures of Aronia melanocarpa, Aronia arbutifolia and Aronia × prunifolia. J Photochem Photobiol B Biol 179:91–97. https://doi.org/10.1016/j.jphotobiol.2018.01.005

    Article  CAS  Google Scholar 

  62. Szopa A, Kubica P, Ekiert H (2018) Agitated shoot cultures of Aronia arbutifolia and Aronia × prunifolia: biotechnological studies on the accumulation of phenolic compounds and biotransformation capability. Plant Cell Tissue Organ Cult 134:467–479. https://doi.org/10.1007/s11240-018-1436-3

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Halina Ekiert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ekiert, H., Szopa, A., Kubica, P. (2019). High Production of Depsides and Other Phenolic Acids in Different Types of Shoot Cultures of Three Aronias: Aronia Melanocarpa, Aronia Arbutifolia, Aronia × Prunifolia. In: Ramawat, K., Ekiert, H., Goyal, S. (eds) Plant Cell and Tissue Differentiation and Secondary Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-11253-0_11-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11253-0_11-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11253-0

  • Online ISBN: 978-3-030-11253-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics