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Abstract. Siamese networks have been successfully utilized to learn a
robust matching function between pairs of images. Visual object track-
ing methods based on siamese networks have been gaining popularity
recently due to their robustness and speed. However, existing siamese
approaches are still unable to perform on par with the most accurate
trackers. In this paper, we propose to extend the SiamFC tracker [1] to
extract features at multiple context and semantic levels from very deep
networks. We show that our approach effectively extracts complementary
features for siamese matching from different layers, which provides a sig-
nificant performance boost when fused. Experimental results on VOT
and OTB datasets show that our multi-context tracker is comparable to
the most accurate methods, while still being faster than most of them. In
particular, we outperform several other state-of-the-art siamese methods.
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1 Introduction

Visual object tracking consists of estimating the trajectory of an object along
a continuous video sequence. Usually, only the first frame is annotated with a
bounding box, which provides very limited information about the object to be
tracked. In real situations, the target often undergoes complex transformations
which cause its appearance to significantly change over time. Until recently, the
majority of trackers tackled this challenge by constantly updating a classifier
throughout the video [7,9,13]. In fact, when combined with deep network models,
this strategy still produces the most accurate results on standard benchmarks
[4,23,26]. However, updating the classifier online presents challenges of its own.
Firstly, constantly updating a large model causes a significant drop in speed.
Secondly, as the update depends on previous predictions, the classifier is prone
to drift and contamination [6,19,31].

Lately, however, siamese networks have shown that compelling results can be
achieved without updating the model [1,10,12]. Siamese trackers are trained on
a large set of image pairs to learn a robust matching function that is able to re-
identify the object even when its appearance changes significantly. Nonetheless,
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although they are usually fast, there is still a gap in accuracy when compared
to the top-performing trackers.

In this paper, we show that this gap can be significantly decreased by collect-
ing features containing different context and semantic levels from a deep network.
Unlike traditional multi-layer tracking approaches which only exploit the differ-
ent semantic levels [24,28,30], we extract features with multiple context levels by
applying a crop on the feature maps, which we refer to as multi-context features.
In the scope of this work, context refers to the amount of background that is
included with the object. Figure 1b shows an example of an object with differ-
ent context levels. Since the receptive field is different at each layer, cropping
the maps allows each feature to collect information from different context sizes.
We hypothesize, and show through experiments, that multi-context features are
particularly suitable for siamese networks.

In the siamese formulation proposed in SiamFC [1], two images, an exemplar
z and an instance x, are forwarded through two identical networks with shared
weights, yielding features ϕ(z) and ϕ(x) respectively. When matching the fea-
tures, ϕ(z) can be interpreted as a filter to be applied over ϕ(x) to produce a
prediction. If we use multi-layer features, it is possible to obtain multiple filters
ϕl(z) and ϕl(x). However, standard multi-layer features can only provide differ-
ent global representations for the same image. On the other hand, as explained
in Sect. 3.2, by considering multi-context features, filters from different layers can
be more diverse, focusing on different regions of the image. As discussed in pre-
vious works [1,10,29], the amount of context can play a significant role in the
tracking performance. And our proposed tracker, SiamMCF, allows to leverage
it at multiple levels in a single pass.

The contributions of this paper are two-fold: (i) a novel extension to the
siamese formulation which leverages multiple context and semantic levels in a
single forward pass, and (ii) we demonstrate that the multi-context features
provide a significant increase in performance when compared to standard multi-
layer ones.

2 Related Work

2.1 Siamese Tracking

SINT [27] is one of the earliest siamese trackers that presented some really
compelling results. It consists of a siamese network trained for matching patches
of images. For the tracking stage, a patch of the first frame is matched to patches
collected around the previous position. Although its results are still among the
best siamese trackers, it is much slower than other approaches. GOTURN [12],
on the other hand, is able to track at 100 fps. It works by extracting deep features
from two crops: one from the object and another from the area centered on the
previous position. These features are concatenated and used to solve a regression
problem to estimate the relative motion of the target relative to the previous
frame. The high speed does compromise the performance, as its results are not
as accurate as other siamese approaches.



118 H. Morimitsu

SiamFC [1] is one of the most balanced options, as it presents one of the
best compromises between accuracy and speed. The SiamFC tracker employs
a pair of AlexNets [18] with shared weights. A smaller exemplar image and
a larger instance are forwarded to generate high-level features. By correlating
the exemplar feature over every instance position, a spatial prediction map is
obtained.

Several improvements [8,10,14,29] were proposed over the initial SiamFC
tracker. CFNet [29] proposes to include a trainable correlation filter layer on
top of the siamese network. By introducing a differentiable solution to the deep
correlation filter in the Fourier domain, the tracker can be efficiently trained end-
to-end with gradient descent. DSiam [8] tackles the model updating problem in
siamese networks. Two transformation terms are independently applied to both
branches before the matching. The first term updates the model by encouraging
it to be similar to the previous observation. The second one is used to suppress
background activations in the current frame. EAST [14] proposes to speed-up
SiamFC by trying to avoid forwarding the images until the last layer. For this,
reinforcement learning is applied to train a classifier that decides at which layer
forwarding can be stopped while still retaining a discriminative representation
for the given image. SA-Siam [10] leverages appearance and semantic features for
tracking. This is done by using two networks, a SiamFC and an AlexNet trained
for classification. The authors show that the features obtained from each net are
complementary and better results are obtained by combining their predictions.

2.2 Tracking with Multi-layer Representations

Multi-layer features have been applied to object tracking in different ways.
Wang et al. [30] showed that different layers effectively produce complementary
features for tracking. By leveraging information collected from different layers,
tracking results were improved. Chi et al. [3] also exploited this property to
obtain predictions from multiple layers. Some other methods [22,28] have used
deeper layers to first roughly estimate the target position and then project it to
shallower layers. The rationale is that early layers provide less coarse features
which can improve the detection accuracy. HDT [24] applies an adaptive hedge
method to assign different confidence levels to each layer based on its previous
results. C-COT [7] employs an implicit interpolation model to cast the feature
maps into the continuous space. In this way, features from different layers with
different sizes can be merged to train a correlation filter.

All of the previous approaches still use the whole feature maps for the
predictions. Therefore, complementarity between layers is somewhat restricted,
as all layers are global representations of the image and do not fully exploit
information related to more localized patches. Some recent works [5,21] have
demonstrated that, by suppressing or masking the features maps, more robust
representations can be obtained. In this work, we propose to combine multi-
layer features with spatially constrained maps to obtain multi-context features.
SA-Siam [10] has exploited this property to some extent by concatenating
features from two layers and then cropping. However, that was applied to
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consecutive layers of an AlexNet [18], which are not very deep and too close
to each other. SINT [27] adopts a strategy to extract multi-layer features which
is similar to ours. However, there are some important differences to be pointed
out. Firstly, we apply cropping on the exemplar branch, in which the object is
known, whereas SINT uses ROI pooling on the instance branch, in which the real
object position is uncertain. Secondly, ROI pooling in SINT performs a rescaling
(into a 7 × 7 region) with a max-pooling directly in the lower-resolution feature
space, while we rescale the input image before forwarding and always crop a
region of the same size, which is less prone to suffer from the negative effects of
discretization. We show through experiments that our approach obtains signifi-
cantly better results than other previous siamese approaches, including SINT and
SiamFC-R [15], which also uses a very deep network as a backbone.

3 Our Approach

3.1 Siamese Tracker

In the standard SiamFC [1] formulation, two images are provided as inputs: the
exemplar from the first frame z and the current tracking frame, the instance x.
Let the prime symbol represent a crop operation over an image. The siamese
network receives the cropped regions z′ and x′ which are then forwarded to
produce the features ϕ(z′) and ϕ(x′) respectively. The feature ϕ(z′) is then used
as a correlation filter over ϕ(x′), thus yielding a prediction map

g(x′, z′) = ϕ(x′) � ϕ(z′). (1)

3.2 Siamese Tracker with Multi-context Features

For our SiamMCF tracker, we adapt the prediction map function to work at dif-
ferent layers and extract features with different contexts from each layer. Figure 1
illustrates our proposed approach. The context amount is controlled by cropping
the feature map. Since the receptive field at each layer is different, as long as the
crop sizes in different layers are not proportional to the receptive field changes,
we are able to extract features that consider different areas of the input image.
In particular, we can extract features with different contexts by cropping regions
of the same size from all the layers. Figure 1b shows the effective region corre-
sponding to crops at different layers.

Given a set of selected layers L = {l}, prediction maps are estimated as

gl(x′, z′) = 1γl � (ϕl(x′) � ϕ′
l(z

′)) + 1βl, (2)

where ϕl(·) represents the feature obtained by forwarding until layer l, and �
indicates element-wise multiplication. We also learn normalization parameters
γl and βl to stabilize the magnitude of the predictions. Notice that we use the
cropped filter ϕ′

l(z
′) to collect exemplars with different context sizes.

Since the backbone network in SiamFC is based on AlexNet [18], which is
relatively shallow, extracting multi-level features does not provide very different
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Fig. 1. Illustration of our tracking framework. (a) Proposed network with multi-context
features. (b) Receptive fields of different layers superposed over the image. Deeper layers
encode larger contexts. Best viewed in colors.

representations. Therefore, we replace the backbone with a deeper network. In
particular, we conduct experiments with a ResNet-50 [11]. The original ResNet,
however, has a large output stride of 32, which is not ideal for the siamese
formulation as both images are largely reduced. Therefore, we reduce the output
stride to 8 by setting the convolution stride to 1 in blocks 2 and 3 of the ResNet,
and by applying dilated convolutions [2].

It is important to mention that the original SiamFC is based on the fully-
convolutional formulation [1]. This formulation ensures that the output features
generated by the network commute with translation. Therefore, if the exemplar
image is a crop of a region of the instance, then the exemplar output features will
also correspond to a region of instance features. In other words, the exemplar
image can be found in the instance simply by looking for the region with the
maximum similarity. One important caveat is that this formulation can only
hold as long as the employed network does not use padding operations, which
severely restricts the choice of available architectures.

A ResNet, however, is very deep and requires padding. In fact, the receptive
field in the last layer is usually larger than the input image, thus generating an
asymmetry when processing images of different sizes (e.g. 127 and 255 for the
exemplar and instance branches) which, in turn, break the fully-convolutional
formulation. We hypothesize, and show by experiments, that the use of multi-
context features alleviates this issue, by using images of the same size, and by
extracting cropped intermediate features which: (i) are comparable due to same
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size inputs, and (ii) also include features whose receptive field are smaller than
the input (earlier layers).

We further modify the network by adding residual adaptation modules on
top of each of the |L| base layers from the backbone network. A residual adap-
tation module consists of an additional bottleneck residual unit [11] followed by
a convolution. The residual unit has the same properties (number of channels,
dilation rate, etc.) as the base ResNet layer it is connected to. The role of this
module is to provide more capacity for the extracted features to adapt to the
siamese matching at each layer and also to decrease the dimensionality for faster
cross-correlation. We show experimentally that the addition of residual units for
adaptation positively affects the results.

Final predictions are obtained by computing the average map:

g(x′, z′) =
1

|L|
∑

l∈L

gl(x′, z′). (3)

3.3 Training

We compute an individual loss to each layer prediction gl(x′, z′). Let i indicate
the index of the element (pixel) in a map. Then the loss of each prediction is the
average of the logistic losses �l:

Ll =
∑

i

w(yi)�l(gl(x′
i, z

′
i; θ), yi), (4)

where w(yi) is a weighting function applied on the labels yi that leverages the
imbalance between positive and negative samples. This weighting function is
defined as:

w(yi) =
0.5yi

npos
+

0.5(1 − yi)
nneg

, (5)

where npos and nneg are the number of positive and negative samples respectively.
The network is then trained with gradient descent to find the set of param-

eters θ that minimizes the global loss:

θ∗ = arg min
θ

∑

l∈L

Ll(gl(x′
i, z

′
i; θ), yi) + λ‖θ‖22. (6)

4 Experimental Results

4.1 Datasets and Evaluation Protocols

We evaluate our tracker on two widely-adopted public datasets: the visual object
tracking (VOT) and the online tracking benchmark (OTB).

VOT. Both VOT16 and VOT17 [15–17] are composed of 60 sequences annotated
with rotated bounding boxes. The standard evaluation criterion is focused on
short-term tracking, where trackers are reinitialized whenever their IoU is zero.
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Trackers are ranked mainly according to three measures: Expected Average
Overlap, Accuracy and Robustness. It also provides a normalized speed value
(EFO) which can be used to compare tracker speeds disregarding the influence
of the hardware, to some extent. (we refer to [16] for more details about the
metrics).

OTB. We use two versions of the OTB dataset: OTB13 [32] and OTB15 [33].
The former contains 51 objects to be tracked, while the latter is a superset of
OTB13 with 100 objects. The trackers are evaluated by two measures: precision
and success. Precision estimates the average distance between the center of the
predicted bounding box and the groundtruth. Success is used for obtaining the
average Intersection-over-Union (IoU) of the predicted boxes. We use OTB13 for
our ablation experiments, while OTB15 is kept for comparing with state-of-the-
art trackers.

4.2 Implementation Details

Network. Our backbone network is a ResNet [11] with 50 layers. We initialize
its weights from a model trained on ImageNet [25] classification. As mentioned
before, we decrease the network output stride from 32 to 8. In order to keep the
input size compatible with the stride, we resize the input images to 248 × 248
pixels. In our formulation, both the exemplar and the instance images are of the
same size and they include a large context, which is obtained by cropping an area
16 times larger than the object. The output features generated by the network
have dimensions 31×31×64. For the multi-context features, we crop the central
7 × 7 region from each of the feature maps ϕl(z′). Our set of chosen layers L is
composed of the outputs of each of the 4 residual blocks of the ResNet.

Training. During training, the weights from the ResNet are frozen, and only the
residual adaptation modules are trained. We briefly experimented with training
ResNet layers as well, but we did not observe any noticeable improvement. The
training follows the same protocol as in the SiamFC [1], by learning to match
pairs of images collected from the ImageNet VID challenge. This dataset con-
tains around 4000 sequences divided into 30 categories, which accounts for more
than one million frames. One important point to notice is that, since ResNets use
padded convolutions, the training targets must not always be centered, as it is
done in SiamFC. Otherwise, the network will learn a positional bias. Therefore,
we augment the training set with random cropping, as well as color distortion,
horizontal flipping, and small resizing perturbations. The weights are optimized
using gradient descent with a momentum term of 0.9. The learning rate is con-
tinually decayed exponentially from 10−3 to 10−6. The network is trained during
50000 iterations with a mini-batch size of 8 pairs of images.

Testing. Tracking is conducted in the same manner as in the SiamFC [1]. There-
fore, the matching is conducted independently at each frame and spatial consis-
tency between frames is enforced by applying a Hann window over the prediction
map. In order to obtain more precise predictions, we upsample the correlation
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output by a factor of 8 using bicubic interpolation. We handle scale changes by
forwarding three images at different scales. For a fair comparison, all hyperpa-
rameters are kept the same as in SiamFC.

We implement our tracker using Python and Tensorflow 1.4. The experi-
ments were conducted on a machine with an Intel Xeon E5 CPU and a GeForce
GTX 1080Ti GPU. The average tracking speed during the experiments is around
20 frames per second. The code will be made available on http://github.com/
hmorimitsu/siam-mcf.

4.3 Ablation Study

We verify the contribution of each of our design choices by evaluating the results
of different configurations on the OTB13 dataset. Our main interests were to
verify the impacts of (i) replacing the AlexNet in SiamFC by a ResNet, (ii)
using different layers from the ResNet for the matching, (iii) using large context
inputs with late feature cropping, and (iv) including residual adaptation mod-
ules. For the third test, when large-context and cropping are not used, we input
an exemplar image whose size is 120 × 120 pixels. This image also contains a
reduced context size, corresponding to an area four times larger than the object,
which is the same setting used in SiamFC. For the fourth test, if residual adap-
tation is not used, we add and train only a single convolutional layer on top of
the ResNet outputs. Table 1 summarizes our results.

Table 1. Ablation results on OTB13 dataset. L1–L4 indicates that features from those
levels are being used for matching.

ResNet L1 L2 L3 L4 Feat. crop Res adapt. IoU Prec.

� � � 0.517 0.671

� � � 0.549 0.704

� � � 0.584 0.782

� � � 0.506 0.718

� � � � � � 0.612 0.801

� � � � � 0.577 0.748

� � � � 0.592 0.775

� � � � 0.654 0.846

� � � � 0.654 0.871

� � � � 0.535 0.740

� � � � � � 0.676 0.876

� � � � � � � 0.692 0.894

� � � � � � 0.688 0.879

Baseline SiamFC 0.606 0.807

http://github.com/hmorimitsu/siam-mcf
http://github.com/hmorimitsu/siam-mcf
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The last row corresponds to the result obtained by the baseline SiamFC. The
results show that simply replacing the backbone with a ResNet actually generates
worse results. This can be explained by the violation of the fully-convolutional
formulation discussed in Sect. 3.2. Even by considering multi-layer features, the
performance is only on par with the baseline. However, as illustrated by the
results in the bottom part of the table, multi-context features obtained with
feature cropping from multiple layers produce noticeably better results. In fact,
even when applied to some layers individually, the results are already better than
the baseline. However, we see that by combining it with multiple layers we have
significantly better performance. It is interesting to remark that, although using
L4 by itself usually leads to worse results, removing it from the multi-features
set actually generates slightly worse results. One reason is that, in sequences
such as Ironman, MotorRolling, and Skating1, L4 is actually better than other
layers. We observe a similar behavior when comparing L123 with L1234, thus
showing that L4 predictions are beneficial to the model. Lastly, we observe that
dropping the residual adaptation does decrease the results, thus demonstrating
its contribution.

We select the model with multi-context features and residual adaptation
module, which generated the best results, as our SiamMCF to perform the exper-
iments against the state-of-the-art methods.

4.4 Comparison with the Start-of-the-Art

We validate the performance of our tracker by comparing its results with some
state-of-the-art trackers. We selected some of the currently best performing
trackers in general, as well as other recent siamese proposals. We evaluate our
results on three datasets: VOT16, VOT17, and OTB15.

VOT16. We compare our results using SiamMCF on VOT 2016 with the best
contenders in the competition (C-COT, TCNN, SSAT, MLDF). We also include
the results of other trackers, including SA-Siam [10] and SiamRPN [20], two
recent siamese trackers, and SiamFC-R [15], a SiamFC modified to use ResNet
as a backbone. The results are summarized in Table 2.

Table 2. Results on the VOT16 dataset. The arrows indicate whether higher or lower
values are better.

Tracker SiamMCF SiamRPN C-COT TCNN SSAT SA-Siam SiamFC-R SiamFC-A

EAO ↑ 0.361 0.344 0.331 0.325 0.321 0.291 0.277 0.235

Acc. ↑ 0.58 0.56 0.54 0.55 0.58 0.54 0.55 0.53

Rob. ↓ 1.05 1.08 0.89 0.83 1.05 1.08 1.36 1.91

EFO ↑ 5.5 23.3 0.5 1.0 0.5 <9 5.4 9.2

We can see that SiamMCF outperforms all compared trackers, including the
best tracker in the competition, C-COT, and recent siamese methods SiamRPN
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and SA-Siam. On the other hand, we still cannot obtain better robustness than
the methods using online updating, although we outperform all siamese entries.
By analyzing the ranking results in Fig. 2, we see that occlusion is the main
reason for the drop in performance. This result is understandable, as in such
situation, the tracker tends to present higher activations in the surrounding area
than in the occluded region, thus causing drifting. It is important to notice that
the contributions of SiamMCF are orthogonal to siamese updating strategies,
for example, as proposed by DSiam [8]. Therefore, it is possible that even better
performance could be obtained by applying those updating strategies to our
tracker.

Fig. 2. EAO ranking on VOT16 according to sequence attributes. Each row corre-
sponds to an attribute. The horizontal axis shows the EAO according to the corre-
sponding attribute. Our SiamMCF obtain the best results most of the time.

We also compare our tracker on the unsupervised setting of the VOT bench-
mark. Different from the standard settings, the trackers are not reinitialized
after they drift away from the target. This evaluation focuses on longer-term
tracking, as it penalizes more heavily trackers which are unable to recover from
a temporary target loss. Figure 3 shows the precision and success plots of the
One-Pass Evaluation (OPE) on the VOT16 dataset. We can see that SiamMCF
also achieves state-of-the-art results on this test, being very close to the best
method SSAT.

Fig. 3. OPE results on the VOT16 dataset.

VOT17. As in the previous benchmark, we also select the top trackers from the
competition (LSART, CFWCR, CFCF, ECO) and siamese trackers (SiamDCF,
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SA-Siam, SiamFC). From the results in Table 3 we see that our tracker also
performs very favorably on VOT17 as well, being seconded only by LSART,
while retaining the highest accuracy. Once again we outperform all other siamese
trackers.

Table 3. Results on the VOT17 dataset. The arrows indicate whether higher or lower
values are better.

Tracker SiamMCF LSART CFWCR CFCF ECO SiamDCF SA-Siam SiamFC

EAO ↑ 0.304 0.323 0.303 0.286 0.280 0.249 0.236 0.188

Acc. ↑ 0.53 0.49 0.48 0.51 0.48 0.50 0.50 0.50

Rob. ↓ 1.31 0.94 1.21 1.17 1.12 1.87 - 2.05

The unsupervised results shown in Fig. 4 are also encouraging. In this dataset,
SiamMCF actually outperforms all other trackers when considering the Inter-
section over Union metric (success plots), while being close to the best method
in terms of the center distance of the predictions (precision plots).

Fig. 4. OPE results on the VOT17 dataset.

OTB15. We further verify the results of SiamMCF on OTB15 (Fig. 5). We show
comparative results against state-of-the-art trackers that use multi-layer features
(ECO [4], C-COT [7], HDT [24]) and siamese networks (SINT+ [27], SiamFC [1],
CFNet [29]). Once again we outperform other siamese proposals while approach-
ing the other state-of-the-art methods, which rely on online updating. It is worth
noticing that ECO adopts different hyperparameters for OTB and VOT datasets,
whereas we keep them fixed for all evaluations. Particularly, we kept SiamFC
parameters for fair comparison, thus it is possible that a further improvement
could be obtained with a careful hyperparameter search.

We also show the results on some more specific attributes in Fig. 6. Similarly
to what was observed on VOT, videos containing occluded or out-of-view objects
are responsible for the largest differences in performance. On the other hand,
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Fig. 5. Results on the OTB15 dataset.

our tracker performs remarkably well on low-resolution videos. This seems to be
a feature of trackers based on SiamFC, as both SiamFC itself and CFNet also
perform relatively better in this type of sequence. Some qualitative results are
displayed in Fig. 7.

We can see that SiamMCF is quite robust to diverse challenging situations,
including change of lighting, rotation and scale changes. From the results of
the fourth sequence, we see that the use of deeper networks provide addi-
tional robustness to rotation, as both our method and HDT show good results.
Nonetheless, we observe that our proposal is still overall more robust than HDT,
correctly tracking the target in sequences 2 and 3. The qualitative results also
confirm that our approach is more robust than the SiamFC baseline, as it works
correctly in many sequences where SiamFC loses the target. We also verify that
we are able to better handle some sequences where the top performer ECO has
difficulties.

The last two sequences present some failure cases for our tracker. We can
see that sometimes when the target appearance changes significantly, or if fast
motion and blur happen, we are still unable to keep tracking the target. Occlusion
also presents difficulties, which may cause the tracker to drift away from the
target.

5 Summary

This paper proposed to extend SiamFC to exploit multi-context features in visual
object tracking, which is obtained by applying cropping on features maps of dif-
ferent layers. In this way, each layer contributes not only with different semantic
levels, but also focus on regions of different sizes of the input image. We showed
that by incorporating these features into a deep siamese network tracker we
are able to obtain outstanding results in short-term tracking, by outperforming
almost all other methods on the newest VOT benchmarks. We are also able to
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Fig. 6. OTB15 success plots for different attributes.

outperform the state-of-the-art siamese trackers on OTB while getting close to
the most accurate methods. Even with the use of multi-context features and deep
networks, our tracker remains faster than many of the top-performing methods,
running at almost real-time speeds.



Multi-context Features in Siamese Networks for Tracking 129

Fig. 7. Qualitative results on sequences from OTB15 using the selected trackers.
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