Skip to main content

Development of Thermoplastic Polymer Blended Epoxy Nanocomposites Reinforced with Halloysite Nanoclay

  • Living reference work entry
  • First Online:
  • 121 Accesses

Abstract

The chapter deals about development of epoxy-based polymer hybrid nanocomposites (matrices) for structural application. The first part includes toughening of epoxy resin by using poly-methyl-metacrylate (PMMA). The second part includes development of nanocomposites by adding modified halloysite nanoclay particles (MHNP) into epoxy. The last part includes development of polymer hybrid nanocomposites by reinforcing PMMA and MHNP in to epoxy resin.

The chapter includes an assessment of the various mechanical properties, thermal stability, and characterization of prepared epoxy polymer blends. And to propose the right amount of PMMA, which has good mechanical properties and thermal stability. Properties of halloysite nanoclay that is used as a filler material for fabrication of polymer nanocomposites and necessity of surface modification of halloysite nanoclay are discussed. The process of surface modification of halloysite nanoclay is highlighted with characterization. The surface modification revealed that the hydrophilic surface properties of halloysite nanoclay were altered by the hydrophobic long chain alkyl groups in 3-aminopropyltriethoxysilane molecules and as a result a substantial number of single continues tubes of halloysite appeared. In this manner agglomeration of halloysite nanoclay was strikingly diminished. Effects of MHNPs and PMMA on mechanical properties of hybrid nanocomposites were investigated. Four weight percent of MHNPs and 6 wt% of PMMA have highest value of fracture toughness which indicates a stable crack growth characteristic. Increases of approximately 95% were observed in fracture toughness by adding of 4 wt% of MHNPs and 6 wt% of PMMA.

This is a preview of subscription content, log in via an institution.

References

  • Aly M, Hashmi MSJ, Olabi AG, Messeiry M, Hussain AI (2011) Effect of nano clay particles on mechanical, thermal and physical behaviours of waste-glass cement mortars. Mater Sci Eng A 528:7991–7998

    Article  CAS  Google Scholar 

  • Aravand M, Lomov SV, Gorbatikh L (2015) Morphology and fracture behavior of POM modified epoxy matrices and their carbon fiber composites. Compos Sci Technol 110:8–16

    Article  CAS  Google Scholar 

  • Auad ML (2007) Synthesis and properties of epoxy–phenolic clay nanocomposites. Express Polym Lett 1:629–639

    Article  CAS  Google Scholar 

  • Azeez AA, Rhee KY, Park SJ, Hui D (2013) Epoxy clay nanocomposites – processing, properties and applications: a review. Compos Part B 45:308–320

    Article  CAS  Google Scholar 

  • Bakar M, Białkowska A, Molenda J, Piasek J (2012) Preparation and properties evaluation of thermoplastic modified epoxy nanocomposites. J Macromol Sci Part B: Phys 51:1159–1171

    Article  CAS  Google Scholar 

  • Bashar M, Sundararaj U, Mertiny P (2012) Microstructure and mechanical properties of epoxy hybrid nanocomposites modified with acrylic tri-block-copolymer and layered-silicate nanoclay. Compos Part A 43:945–954

    Article  CAS  Google Scholar 

  • Brooker RD, Kinloch AJ, Taylor AC (2010) The morphology and fracture properties of thermoplastic-toughened epoxy polymers. J Adhes 86:726–741

    Article  CAS  Google Scholar 

  • Das B, Chakraborty D, Hajra AK, Sinha S (1994) Epoxy/poly(methyl methacrylate) interpenetrating polymer networks – morphology, mechanical and thermal properties. J Appl Polym Sci 53:1491–1496

    Article  CAS  Google Scholar 

  • Deng S, Zhang J, Ye L, Wu J (2008) Toughening epoxies with halloysite nanotubes. Polymer 49:5119–5127

    Article  CAS  Google Scholar 

  • Guchhait PK, Pradhan S, Dinesh Kumar K, Maji PK, Bhowmick AK (2010) Influence of nanoclay on the morphology, adhesive and mechanical properties of polysulfide modified epoxy resin. Polym Polym Compos 18:38–54

    Google Scholar 

  • Ha SR, Ryu SH, Park SJ, Rhee KY (2007) Effect of clay surface modification and concentration on the tensile performance of clay/epoxy nanocomposites. Mater Sci Eng A 448:264–268

    Article  Google Scholar 

  • Heinzmann C, Weder C, de Espinosa LM (2016) Supramolecular polymer adhesives: advanced materials inspired by nature. Chem Soc Rev 45:342–358

    Article  CAS  Google Scholar 

  • Jin H, Yang B, Jin FL, Park SJ (2015) Fracture toughness and surface morphology of polysulfone-modified epoxy resin. J Ind Eng Chem 25:9–11

    Article  CAS  Google Scholar 

  • Kadiyala AK, Bijwe J (2016) Investigations on performance and failure mechanisms of high temperature thermoplastic polymers as adhesives. Int J Adhes Adhes 70:90–101

    Article  CAS  Google Scholar 

  • Khunova V, Kristóf J, Kelnar I, Dybal J (2013) The effect of halloysite modification combined with in situ matrix modifications on the structure and properties of polypropylene/halloysite nanocomposites. Express Polym Lett 7:471–479

    Article  CAS  Google Scholar 

  • Kinloch J, Taylor AC (2003) Mechanical and fracture properties of epoxy/inorganic micro and nano-composites. J Mater Sci Lett 22:1439–1441

    Article  CAS  Google Scholar 

  • Lam C-k, Lau K-t, Cheung H-y, Ling H-y (2005) Effect of ultrasound sonication in nanoclay clusters of nanoclay/epoxy composites. Mater Lett 59:1369–1372

    Article  CAS  Google Scholar 

  • Lee SE, Jeong E, Lee MY, Lee MK, Lee YS (2016) Improvement of the mechanical and thermal properties of polyethersulfone-modified epoxy composite. J Ind Eng Chem 33:73–79

    Article  CAS  Google Scholar 

  • Meng Y, Wang M, Tang M, Hong G, Gao J, Chen Y (2017) Preparation of robust superhydrophobic halloysite clay nanotubes via mussel-inspired surface modification. Appl Sci 7:1129–1134

    Article  Google Scholar 

  • Mohan TP, Kanny K, Velmurugan R (2002) Epoxy – clay nanocomposites – effect of curing temperature in mechanical properties. Int J Plast Technol 13:123–132

    Article  Google Scholar 

  • Olajide SO, Arhatari BD (2017) Recent progress on damage mechanisms in polymeric adhesively bonded high-performance composite joints under fatigue. Int J Fatigue 95:45–63

    Article  CAS  Google Scholar 

  • Padma Priya S, Rai SK (2006) Studies on the mechanical performance of PMMA toughened epoxy – silk and PC toughened epoxy – silk fabric composites. J Reinf Plast Compos 25:408–424

    Google Scholar 

  • Quan D, Carolan D, Rouge C, Murphy N, Ivankovic A (2018) Mechanical and fracture properties of epoxy adhesives modified with graphene nanoplatelets and rubber particles. Int J Adhes Adhes 81:21–29

    Article  CAS  Google Scholar 

  • Ram Prabhu T, Basavarajappa S, Santhosh RB, Ashwini SM (2017) Tribological and mechanical behaviour of dual-particle (nanoclay and CaSiO3)-reinforced E-glass-reinforced epoxy nanocomposites. Bull Mater Sci 40:107–116

    Article  Google Scholar 

  • Rico M, López J, Montero B, Bellas R (2012) Phase separation and morphology development in a thermoplastic-modified toughened epoxy. Eur Polym J 48:1660–1673

    Article  CAS  Google Scholar 

  • Rostamiyan Y, Fereidoon A, Rezaeiashtiyani M, Hamed Mashhadzadeh A, Salmankhani A (2015) Experimental and optimizing flexural strength of epoxy-based nanocomposite: effect of using nano silica and nano clay by using response surface design methodology. Mater Des 69:96–104

    Article  CAS  Google Scholar 

  • Savvilotidou M, Keller T, Vassilopoulos AP (2017) Fatigue performance of a cold-curing structural epoxy adhesive subjected to moist environments. Int J Fatigue 103:405–414

    Article  CAS  Google Scholar 

  • Sousa JM, Correia JR, Cabral-Fonseca S (2018) Durability of an epoxy adhesive used in civil structural applications. Constr Build Mater 161:618–633

    Article  CAS  Google Scholar 

  • Tang Y, Deng S, Ye L, Yang C, Yuan Q, Zhang J, Zhao C (2011) Effects of unfolded and intercalated halloysites on mechanical properties of halloysite–epoxy nanocomposites. Compos Part A 42:345–354

    Article  Google Scholar 

  • Tang Y, Ye L, Deng S, Yang C, Yuan W (2012) Influences of processing methods and chemical treatments on fracture toughness of halloysite–epoxy composites. Mater Des 42:471–477

    Article  CAS  Google Scholar 

  • Wang Y, Zhang B, Ye J (2007) Organoclay-reinforced polyethersulfone-modified epoxy-based hybrid nanocomposites. High Perform Polym 23:526–534

    Article  Google Scholar 

  • Ye Y, Chen H, Wu J, Ye L (2007) High impact strength epoxy nanocomposites with natural nanotubes. Polymer 48:6426–6433

    Article  CAS  Google Scholar 

  • Yu AZ, Rahimi AR, Webster DC (2018) High performance bio-based thermosets from dimethacrylated epoxidized sucrose soyate. Eur Polym J 99:202–211

    Article  CAS  Google Scholar 

  • Zhang Y, Ding L, Gu J, Tan H, Zhu L (2015) Preparation and properties of a starch-based wood adhesive with high bonding strength and water resistance. Carbohydr Polym 115:32–57

    Article  CAS  Google Scholar 

  • Zunjarrao SC, Sriraman R, Singh RP (2006) Effect of processing parameters and clay volume fraction on the mechanical properties of epoxy–clay nanocomposites. J Mater Sci 41:2219–2228

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rudresh, M., Nagaswarupa, H.P. (2020). Development of Thermoplastic Polymer Blended Epoxy Nanocomposites Reinforced with Halloysite Nanoclay. In: Hussain, C., Thomas, S. (eds) Handbook of Polymer and Ceramic Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-10614-0_61-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10614-0_61-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10614-0

  • Online ISBN: 978-3-030-10614-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics