Skip to main content

Achieving Circular Economy Through P&C-Nano: Sustainability and Supply Chain Perspectives

  • Living reference work entry
  • Latest version View entry history
  • First Online:
  • 205 Accesses

Abstract

Nanotechnology is a very popular field of research, and it encompasses almost all technical disciplines due the wide range of applications of the nanomaterials. It is possible to develop nanomaterials from several precursors including polymers, metals, waste plastics, agricultural waste, etc. Polymers are one of the widely used feed materials for developing nanomaterials. On the other hand, the nanoceramic is an area of research which has enormous application in various fields including biotechnology, materials science, and even genetics. Nanotechnology has been applied in the field of environmental engineering for quite some time. Sometimes, there have been requirements to enhance mechanical strengths, durability, stability, catalyst efficiency, etc. of the nanomaterials. Those engineering challenges can be addressed combining the advantages of both polymer nanotechnology and nanoceramics. A relatively new term known as polymer and ceramic nanotechnology (P&C-Nano) can be used to describe materials of such nature. The benefits of polymer, ceramics, as well as nanotechnology are fused within P&C-Nano. This opens a new horizon of opportunities to the researchers. However, an efficient supply chain network needs to be designed for resource circulation. This will help not only achieving SDGs but also circular economy (CE). In this chapter, selected application areas of P&C-Nano have been reviewed. A novel supply chain-based framework has been developed addressing the concepts of circular economy. The chapter is expected to be beneficial to the researchers, policymakers, businessmen, and other relevant stakeholders.

This is a preview of subscription content, log in via an institution.

References

  • Adolfsson KH, Hassanzadeh S, Hakkarainen M (2015) Valorization of cellulose and waste paper to graphene oxide quantum dots. RSC Adv 5(34):26550–26558

    Article  CAS  Google Scholar 

  • Ahilan V, Wilhelm M, Rezwan K (2018) Porous polymer derived ceramic (PDC)-montmorillonite-H3PMo12O40/SiO2 composite membranes for microbial fuel cell (MFC) application. Ceram Int 44(16):19191–19199

    Article  CAS  Google Scholar 

  • Arena U, Mastellone ML, Camino G, Boccaleri E (2006) An innovative process for mass production of multi-wall carbon nanotubes by means of low-cost pyrolysis of polyolefins. Polym Degrad Stab 91(4):763–768

    Article  CAS  Google Scholar 

  • Ashraf M, Maah M, Qureshi A et al (2013) Synthetic polymer composite membrane for the desalination of saline water. Desalin Water Treat 51:3650–3661. https://doi.org/10.1080/19443994.2012.751152

    Article  CAS  Google Scholar 

  • Badruddoza AZM, Shawon ZBZ, Tay WJD, Hidajat K, Uddin MS (2013) Fe3O4/cyclodextrin polymer nanocomposites for selective heavy metals removal from industrial wastewater. Carbohydr Polym 91(1):322–332

    Article  CAS  Google Scholar 

  • Bharath R, Chakraborthy T, Nhalil H et al (2019) Synthesis and evaluation of PVDF–MgTiO3 polymer–ceramic composites for low-k dielectric applications. J Mater Chem C 7:4484–4496. https://doi.org/10.1039/c8tc04663h

    Article  CAS  Google Scholar 

  • Bhattacharyya S (2019) Removal of ranitidine from pharmaceutical waste water using graphene oxide (GO). In: Waste management and resource efficiency. Springer, Singapore, pp 1253–1262

    Chapter  Google Scholar 

  • Bhattacharyya S, Banerjee P, Bhattacharya S, Rathour RKS, Majumder SK, Das P, Datta S (2018) Comparative assessment on the removal of ranitidine and prednisolone present in solution using graphene oxide (GO) nanoplatelets. Desalin Water Treat 132:287–296

    Article  CAS  Google Scholar 

  • Bhattacharyya S, Das P, Datta S (2019) Removal of ranitidine from pharmaceutical waste water using activated carbon (AC) prepared from waste lemon peel. In: Waste water recycling and management. Springer, Singapore, pp 123–141

    Chapter  Google Scholar 

  • Bocanegra-Bernal MH, Dominguez-Rios C, Echeberria J, Reyes-Rojas A, Garcia-Reyes A, Aguilar-Elguezabal A (2016) Spark plasma sintering of multi-, single/double-and single-walled carbon nanotube-reinforced alumina composites: is it justifiable the effort to reinforce them? Ceram Int 42(1):2054–2062

    Article  CAS  Google Scholar 

  • Bose S, Vahabzadeh S, Bandyopadhyay A (2013) Bone tissue engineering using 3D printing. Mater Today 16(12):496–504

    Article  CAS  Google Scholar 

  • Camargo PHC, Satyanarayana KG, Wypych F (2009) Nanocomposites: synthesis, structure, properties and new application opportunities. Mater Res 12(1):1–39

    Article  CAS  Google Scholar 

  • Ceramicindustry.com (2019) https://www.ceramicindustry.com/articles/97018-global-medical-composite-materials-market-offers-opportunities-for-ceramics. Accessed 20 Apr 2019

    Google Scholar 

  • Ceramic-matrix composites heat up (2019) In: Compositesworld.com. https://www.compositesworld.com/articles/ceramic-matrix-composites-heat-up. Accessed 20 Apr 2019

  • Chen T, Duan M, Fang S (2016) Fabrication of novel superhydrophilic and underwater superoleophobic hierarchically structured ceramic membrane and its separation performance of oily wastewater. Ceram Int 42(7):8604–8612

    Article  CAS  Google Scholar 

  • Croce F, Persi L, Scrosati B, Serraino-Fiory F, Plichta E, Hendrickson MA (2001) Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes. Electrochimica Acta 46(16):2457–2461.

    Article  CAS  Google Scholar 

  • Dalila AR, Suriani AB, Rosmi MS, Azmina MS, Rosazley R, Supian, FL, … & Rusop M (2014) The effect of synthesis temperature on the growth of carbon nanotubes from waste chicken fat precursor. In Advanced materials research, vol 832. Trans Tech Publications, pp. 798–803.

    Google Scholar 

  • Das A, Debnath B (2018) 3D printing-: what it has to offer to the society? In: Proceedings book of international symposium on 3D printing technology (IS3DPT-2018). Centre for Research and Innovation (CRI) Department of Mechanical Engineering Institute of Engineering & Management, Kolkata, pp 74–80

    Google Scholar 

  • De Hazan Y, Wozniak M, Heinecke J, Müller G, Graule T (2010) New microshaping concepts for ceramic/polymer nanocomposite and nanoceramic fibers. J Am Ceram Soc 93(9):2456–2459

    Article  CAS  Google Scholar 

  • Debnath B, Bhattacharyya S (2018) 3D printing-a potential solution to waste polymer recycling. In: Proceedings book of international symposium on 3D printing technology (IS3DPT-2018). Centre for Research and Innovation (CRI) Department of Mechanical Engineering Institute of Engineering & Management, KOLKATA, pp 22–27

    Google Scholar 

  • Debnath B, Chowdhury R, Ghosh SK (2018) Sustainability of metal recovery from E-waste. Front Environ Sci Eng 12. https://doi.org/10.1007/s11783-018-1044-9

  • Debnath B, Chowdhury R, Ghosh SK (2019). Urban Mining and the Metal Recovery from E-Waste (MREW) Supply Chain. In Waste Valorisation and Recycling (pp. 341–347). Springer, Singapore.

    Chapter  Google Scholar 

  • Descamps M, Boilet L, Moreau G, Tricoteaux A, Lu J, Leriche A et al (2013) Processing and properties of biphasic calcium phosphates bioceramics obtained by pressureless sintering and hot isostatic pressing. J Eur Ceram Soc 33(7):1263–1270

    Article  CAS  Google Scholar 

  • Di Palma L, Bavasso I, Sarasini F, Tirillò J, Puglia D, Dominici F, Torre L (2018) Synthesis, characterization and performance evaluation of Fe3O4/PES nano composite membranes for microbial fuel cell. Eur Polym J 99:222–229

    Article  CAS  Google Scholar 

  • Ðorđević L, Arcudi F, D’Urso A, Cacioppo M, Micali N, Bürgi T et al (2018) Design principles of chiral carbon nanodots help convey chirality from molecular to nanoscale level. Nat Commun 9(1):3442

    Article  CAS  Google Scholar 

  • Extending the Commercialization of Composites at GE Aviation (2019) In: Ilo.osu.edu. http://ilo.osu.edu/2011/06/16/extending-the-commercialization-of-composites-at-ge-aviation/. Accessed 20 Apr 2019

  • Gaikwad V, Ghose A, Cholake S, Rawal A, Iwato M, Sahajwalla V (2018) Transformation of E-waste plastics into sustainable filaments for 3D printing. ACS Sustain Chem Eng 6(11):14432–14440

    Article  CAS  Google Scholar 

  • Giannelis EP (1996) Polymer layered silicate nanocomposites. Adv Mater 8(1):29–35

    Article  CAS  Google Scholar 

  • Gong J, Yao K, Liu J, Wen X, Chen X, Jiang Z, … & Tang T (2013) Catalytic conversion of linear low density polyethylene into carbon nanomaterials under the combined catalysis of Ni2O3 and poly (vinyl chloride). Chem Eng J 215:339–347

    Google Scholar 

  • Hanemann T, Szabó DV (2010) Polymer-nanoparticle composites: from synthesis to modern applications. Materials, 3(6):3468–3517

    Article  CAS  Google Scholar 

  • Hao W, Liu Y, Zhou H, Chen H, Fang D (2018) Preparation and characterization of 3D printed continuous carbon fiber reinforced thermosetting composites. Polym Test 65:29–34

    Article  CAS  Google Scholar 

  • Haque MA (2019) Physiochemical characteristics of solid electrolyte membranes for high-temperature PEM fuel cell. Int J Electrochem Sci:371–386. https://doi.org/10.20964/2019.01.26

  • Hongbin Y, Guangya Z, Siong CF et al (2009) Novel polydimethylsiloxane (PDMS) based microchannel fabrication method for lab-on-a-chip application. Sensors Actuators B Chem 137:754–761. https://doi.org/10.1016/j.snb.2008.11.035

    Article  CAS  Google Scholar 

  • Huang DL, Wang RZ, Liu YG, Zeng GM, Lai C, Xu P et al (2015) Application of molecularly imprinted polymers in wastewater treatment: a review. Environ Sci Pollut Res 22(2):963–977

    Article  CAS  Google Scholar 

  • Hwang K, Kim J-H, Kim S-Y, Byun H (2014) Preparation of Polybenzimidazole-based membranes and their potential applications in the fuel cell system. Energies 7:1721–1732. https://doi.org/10.3390/en7031721

    Article  CAS  Google Scholar 

  • Jamaly S, Giwa A, Hasan S (2015) Recent improvements in oily wastewater treatment: Progress, challenges, and future opportunities. J Environ Sci 37:15–30. https://doi.org/10.1016/j.jes.2015.04.011

    Article  CAS  Google Scholar 

  • Jin LM, Yu SL, Shi WX, Yi XS, Sun N, Ge YL, Ma C (2012) Synthesis of a novel composite nanofiltration membrane incorporated SiO2 nanoparticles for oily wastewater desalination. Polymer 53(23):5295–5303

    Article  CAS  Google Scholar 

  • Kaur, S., Gallei, M., & Ionescu, E. (2014). Polymer–ceramic nanohybrid materials. In Organic-Inorganic Hybrid Nanomaterials (pp. 143–185). Springer, Cham.

    Google Scholar 

  • Kim J, Van der Bruggen B (2010) The use of nanoparticles in polymeric and ceramic membrane structures: review of manufacturing procedures and performance improvement for water treatment. Environ Pollut 158(7):2335–2349

    Article  CAS  Google Scholar 

  • Kokubo T (ed) (2008) Bioceramics and their clinical applications. Woodhead Publishing Ltd, Cambridge England.

    Google Scholar 

  • Kukovitsky EF, L’vov SG, Sainov NA, Shustov VA, Chernozatonskii LA (2002) Correlation between metal catalyst particle size and carbon nanotube growth. Chem Phys Lett 355(5–6):497–503

    Article  CAS  Google Scholar 

  • Kumar V, Talreja N, Deva D, Sankararamakrishnan N, Sharma A, Verma N (2011) Development of bi-metal doped micro-and nano multi-functional polymeric adsorbents for the removal of fluoride and arsenic (V) from wastewater. Desalination 282:27–38

    Article  CAS  Google Scholar 

  • Laroche D, Bouman D, van Woerkom DJ, Proutski A, Murthy C, Pikulin DI, Nayak C, van Gulik RJ, Nygård J, Krogstrup P, Kouwenhoven LP (2019) Observation of the 4π-periodic Josephson effect in indium arsenide nanowires. Nat Commun 10(1):245

    Article  CAS  Google Scholar 

  • Li JH, Xu YY, Zhu LP, Wang JH, Du CH (2009) Fabricationandcharacterization of a novel TiO2 nanoparticle self-assembly membrane with improved fouling resistance. J Membr Sci 326:659e666

    Google Scholar 

  • Li M, Wondergem HJ, Spijkman MJ, Asadi K, Katsouras I, Blom PW, De Leeuw DM (2013) Revisiting the δ-phase of poly (vinylidene fluoride) for solution-processed ferroelectric thin films. Nature materials 12(5):433–438. https://doi.org/10.1038/nmat3577

    Article  CAS  Google Scholar 

  • Lin Y-M, Dimitrakopoulos C, Jenkins KA et al (2010) 100-GHz transistors from wafer-scale epitaxial graphene. Science 327:662–662. https://doi.org/10.1126/science.1184289

    Article  CAS  Google Scholar 

  • Linic S, Aslam U, Boerigter C, Morabito M (2015) Photochemical transformations on plasmonic metal nanoparticles. Nat Mater 14(6):567

    Article  CAS  Google Scholar 

  • Liu W, Liu N, Sun J, Hsu PC, Li Y, Lee HW, Cui Y (2015) Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett 15(4):2740–2745

    Article  CAS  Google Scholar 

  • Liu W, Lee SW, Lin D, Shi F, Wang S, Sendek AD, Cui Y (2017) Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires. Nat Energy 2(5):17035

    Article  CAS  Google Scholar 

  • Lofrano G, Carotenuto M, Libralato G, Domingos RF, Markus A, Dini L et al (2016) Polymer functionalized nanocomposites for metals removal from water and wastewater: an overview. Water Res 92:22–37

    Article  CAS  Google Scholar 

  • Lv Y, Liu H, Wang Z, Liu S, Hao L, Sang Y et al (2009) Silver nanoparticle-decorated porous ceramic composite for water treatment. J Membr Sci 331(1–2):50–56

    Article  CAS  Google Scholar 

  • Maiti J, Kakati N, Lee SH, Jee SH, Yoon YS (2011) PVA nano composite membrane for DMFC application. Solid State Ionics 201(1):21–26

    Article  CAS  Google Scholar 

  • Manoharan M (2008) Research on the frontiers of materials science: the impact of nanotechnology on new material development. Technol Soc 30(3–4):401–404

    Article  Google Scholar 

  • Martins P, Lopes AC, Lanceros-Mendez S (2014) Electroactive phases of poly (vinylidene fluoride): Determination, processing and applications. Progress in polymer science 39(4):683–706

    Article  CAS  Google Scholar 

  • Maye MM, Lou Y, Zhong CJ (2000) Core—shell gold nanoparticle assembly as novel electrocatalyst of CO oxidation. Langmuir 16(19):7520–7523

    Article  CAS  Google Scholar 

  • Mignani S, Rodrigues J, Tomas H, Zablocka M, Shi X, Caminade AM, Majoral JP (2018) Dendrimers in combination with natural products and analogues as anti-cancer agents. Chem Soc Rev 47(2):514–532

    Article  CAS  Google Scholar 

  • Mis-Fernández R, Rios-Soberanis CR, Arenas-Alatorre J, Azamar-Barrios JA (2012) Synthesis of carbon nanostructures from residual solids waste tires. J Appl Polym Sci 123(4):1960–1967

    Article  CAS  Google Scholar 

  • Mukherjee A, Debnath B, Ghosh SK (2019) Carbon Nanotubes as a Resourceful Product Derived from Waste Plastic—A Review. In Waste Management and Resource Efficiency (pp. 915–934). Springer, Singapore

    Google Scholar 

  • Nakamura T, Yamamuro T, Higashi S, Kokubo T, Itoo S (1985) A new glass-ceramic for bone replacement: evaluation of its bonding to bone tissue. J Biomed Mater Res 19(6):685–698

    Article  CAS  Google Scholar 

  • Nasrabadi HT, Abbasi E, Davaran S, Kouhi M, Akbarzadeh A (2016) Bimetallic nanoparticles: preparation, properties, and biomedical applications. Artif Cells Nanomed Biotechnol 44(1):376–380

    Article  CAS  Google Scholar 

  • Nguyen TP, Lee CW, Hassen S, Le HC (2009) Hybrid nanocomposites for optical applications. Solid State Sci 11(10):1810–1814

    Article  CAS  Google Scholar 

  • O’connell MJ (2018) Carbon nanotubes: properties and applications. CRC press. Florida, USA

    Google Scholar 

  • Pedraza E, Brady A, Fraker C, Stabler C (2012) Synthesis of macroporous poly(dimethylsiloxane) scaffolds for tissue engineering applications. J Biomater Sci Polym Ed 24:1041–1056. https://doi.org/10.1080/09205063.2012.735097

    Article  CAS  Google Scholar 

  • Polymer Nanocomposites Market Size|Industry Analysis – 2022 (2019) In: Alliedmarketresearch.com. https://www.alliedmarketresearch.com/polymer-nanocomposites-market. Accessed 20 Apr 2019

  • Poologasundarampillai G, Nommeots-Nomm A (2017) Materials for 3D printing in medicine: metals, polymers, ceramics, hydrogels. In: 3D printing in medicine. Woodhead Publishing, pp 43–71, United Kingdom

    Google Scholar 

  • Poyato R, Vasiliev AL, Padture NP, Tanaka H, Nishimura T (2006) Aqueous colloidal processing of single-wall carbon nanotubes and their composites with ceramics. Nanotechnology 17(6):1770

    Article  CAS  Google Scholar 

  • Primo A, Atienzar P, Sanchez E, Delgado JM, García H (2012) From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chem Commun 48(74):9254–9256

    Article  CAS  Google Scholar 

  • Qu L, Peng X (2002) Control of photoluminescence properties of CdSe nanocrystals in growth. J Am Chem Soc 124(9):2049–2055

    Article  CAS  Google Scholar 

  • Qu X, Alvarez PJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47(12):3931–3946

    Article  CAS  Google Scholar 

  • Quan C, Li A, Gao N (2010) Synthesis of carbon nanotubes and porous carbons from printed circuit board waste pyrolysis oil. J Hazard Mater 179(1–3):911–917

    Article  CAS  Google Scholar 

  • Rahman IA, Padavettan V (2012) Synthesis of silica nanoparticles by sol-gel: size-dependent properties, surface modification, and applications in silica-polymer nanocomposites—a review. Journal of Nanomaterials, 2012, 8.

    Google Scholar 

  • Rathod VT, Kumar JS, Jain A (2017) Polymer and ceramic nanocomposites for aerospace applications. Appl Nanosci 7(8):519–548

    Article  CAS  Google Scholar 

  • Rezakazemi M, Maghami M, Mohammadi T (2018) High loaded synthetic hazardous wastewater treatment using lab-scale submerged ceramic membrane bioreactor. Period Polytech Chem Eng 62(3):299–304

    Article  CAS  Google Scholar 

  • Ruan G, Sun Z, Peng Z, Tour JM (2011) Growth of graphene from food, insects, and waste. ACS Nano 5(9):7601–7607

    Article  CAS  Google Scholar 

  • Saha S, Kargupta K, Ganguly S (2012) A Review on Synthesis, Characterization and Application of Graphene Nanosheet in Green Energy Generation and Storage. In proceedings of CHEMCON 2012, 27–30th December 2012, NIT Jalandhar, India, Pg. 473.

    Google Scholar 

  • Saha S, Basak V, Dasgupta A et al (2014) Graphene supported bimetallic G–co–Pt nanohybrid catalyst for enhanced and cost effective hydrogen generation. Int J Hydrog Energy 39:11566–11577. https://doi.org/10.1016/j.ijhydene.2014.05.131

    Article  CAS  Google Scholar 

  • Saha S, Ganguly S, Banerjee D, Kargupta K (2015) Novel bimetallic graphene–cobalt–nickel (G–co–Ni) nano-ensemble electrocatalyst for enhanced borohydride oxidation. Int J Hydrog Energy 40:1760–1773. https://doi.org/10.1016/j.ijhydene.2014.11.143

    Article  CAS  Google Scholar 

  • Saha S, Basu A, Das D et al (2016) Novel graphene supported co rich connected core(Pt)-shell(co) nano-alloy catalyst for improved hydrogen generation and electro-oxidation. Int J Hydrog Energy 41:18451–18464. https://doi.org/10.1016/j.ijhydene.2016.07.148

    Article  CAS  Google Scholar 

  • Saha S, Mitra M, Sarkar A et al (2018) Lithium assisted enhanced hydrogenation of reduced graphene oxide-PANI nanocomposite at room temperature. Diam Relat Mater 84:103–111. https://doi.org/10.1016/j.diamond.2018.03.012

    Article  CAS  Google Scholar 

  • Saheb N, Mohammad K (2016) Microstructure and mechanical properties of spark plasma sintered Al2O3-SiC-CNTs hybrid nanocomposites. Ceram Int 42(10):12330–12340

    Article  CAS  Google Scholar 

  • Sahoo SK, Parveen S, Panda JJ (2007) The present and future of nanotechnology in human health care. Nanomedicine 3(1):20–31

    Article  CAS  Google Scholar 

  • Salazar H, Lima A, Lopes A et al (2015) Poly(vinylidene fluoride-trifluoroethylene)/NAY zeolite hybrid membranes as a drug release platform applied to ibuprofen release. Colloids Surf A Physicochem Eng Asp 469:93–99. https://doi.org/10.1016/j.colsurfa.2014.12.064

    Article  CAS  Google Scholar 

  • Santos DV, Casadei APM, Pereira RV, Aragones A, Salmoria GV, Fredel MF (2012) Development of polymer/nanoceramic composite material with potential application in biomedical engineering. In: Materials science forum, vol 727. Trans Tech Publications, pp 1142–1146

    Google Scholar 

  • Scipioni R, Gazzoli D, Teocoli F, Palumbo O, Paolone A, Ibris N et al (2014) Preparation and characterization of nanocomposite polymer membranes containing functionalized SnO2 additives. Membranes 4(1):123–142

    Article  CAS  Google Scholar 

  • Sebastian MT, Jantunen H (2010) Polymer–ceramic composites of 0–3 connectivity for circuits in electronics: a review. Int J Appl Ceram Technol 7(4):415–434

    CAS  Google Scholar 

  • Sedlák R, Kovalčíková A, Múdra E, Rutkowski P, Dubiel A, Girman V et al (2017) Boron carbide/graphene platelet ceramics with improved fracture toughness and electrical conductivity. J Eur Ceram Soc 37(12):3773–3780

    Article  CAS  Google Scholar 

  • Sharma S, Kalita G, Hirano R, Shinde SM, Papon R, Ohtani H, Tanemura M (2014) Synthesis of graphene crystals from solid waste plastic by chemical vapor deposition. Carbon 72:66–73

    Article  CAS  Google Scholar 

  • Shen J, Xi J, Zhu W, Chen L, Qiu X (2006) A nanocomposite proton exchange membrane based on PVDF, poly (2-acrylamido-2-methyl propylene sulfonic acid), and nano-Al2O3 for direct methanol fuel cells. J Power Sources 159(2):894–899

    Article  CAS  Google Scholar 

  • Shishkovsky I, Scherbakov V, Volchkov V, Volova L (2018) Laser-assisted nanoceramics reinforced polymer scaffolds for tissue engineering: additional heating and stem cells behavior. In: Dynamics and fluctuations in biomedical photonics XV, vol 10493. International Society for Optics and Photonics, 104931T

    Google Scholar 

  • Sun L, Tian C, Li M, Meng X, Wang L, Wang R et al (2013) From coconut shell to porous graphene-like nanosheets for high-power supercapacitors. J Mater Chem A 1(21):6462–6470

    Article  CAS  Google Scholar 

  • Suriani AB, Dalila AR, Mohamed A, Mamat MH, Salina M, Rosmi MS et al (2013) Vertically aligned carbon nanotubes synthesized from waste chicken fat. Mater Lett 101:61–64

    Article  CAS  Google Scholar 

  • Suriani AB, Alfarisa S, Mohamed A, Isa IM, Kamari A, Hashim N et al (2015) Quasi-aligned carbon nanotubes synthesised from waste engine oil. Mater Lett 139:220–223

    Article  CAS  Google Scholar 

  • Suryawanshi A, Biswal M, Mhamane D, Gokhale R, Patil S, Guin D, Ogale S (2014) Large scale synthesis of graphene quantum dots (GQDs) from waste biomass and their use as an efficient and selective photoluminescence on–off–on probe for Ag+ ions. Nanoscale 6(20):11664–11670

    Article  CAS  Google Scholar 

  • Tani E, Yoshimura M, Sōmiya S (1983) Formation of ultrafine tetragonal ZrO2 powder under hydrothermal conditions. J Am Ceram Soc 66(1):11–14

    Article  CAS  Google Scholar 

  • Tian X, Liu T, Yang C, Wang Q, Li D (2016) Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites. Compos A: Appl Sci Manuf 88:198–205

    Article  CAS  Google Scholar 

  • Vallés C, Jiménez P, Muñoz E et al (2011) Simultaneous reduction of graphene oxide and polyaniline: doping-assisted formation of a solid-state charge-transfer complex. J Phys Chem C 115:10468–10474. https://doi.org/10.1021/jp201791h

    Article  CAS  Google Scholar 

  • Varadan VK, Varadan VV, Motojima S (1996) Three-dimensional polymeric and ceramic MEMS and their applications. In: Smart structures and materials 1996: smart electronics and MEMS, vol 2722. International Society for Optics and Photonics, pp 156–165

    Google Scholar 

  • Wang J, Huang L, Zheng Q, Qiao Y, Wang Q (2016) Layered double hydroxides/oxidized carbon nanotube nanocomposites for CO2 capture. J Ind Eng Chem 36:255–262

    Article  CAS  Google Scholar 

  • Williams DF (2008) On the mechanisms of biocompatibility. Biomaterials 29(20):2941–2953

    Article  CAS  Google Scholar 

  • WOHLERS ASSOCIATES. (2015) 3D printing and additive manufacturing state of the industry. Available: https://wohlersassociates.com/2015-ExSum.pdf (Accessed January 2019)

    Google Scholar 

  • Wolf EL (2014) Applications of graphene: an overview. Springer Science & Business Media

    Google Scholar 

  • Xu C, Wang X, Zhu J (2008) Graphene—metal particle nanocomposites. The Journal of Physical Chemistry C, 112(50):19841–19845.

    Article  CAS  Google Scholar 

  • Yang CC, Lee YJ (2009) Preparation of the acidic PVA/MMT nanocomposite polymer membrane for the direct methanol fuel cell (DMFC). Thin Solid Films 517(17):4735–4740

    Article  CAS  Google Scholar 

  • Yang Y, Zhang C, Lai C, Zeng G, Huang D, Cheng M, Wang J, Chen F, Zhou C, Xiong W (2018) BiOX (X= Cl, Br, I) photocatalytic nanomaterials: applications for fuels and environmental management. Adv Colloid Interf Sci 254:76–93

    Article  CAS  Google Scholar 

  • Yatsui T, Itsumi K, Kourogi M, Ohtsu M (2002) Metallized pyramidal silicon probe with extremely high throughput and resolution capability for optical near-field technology. Appl Phys Lett 80(13):2257–2259

    Article  CAS  Google Scholar 

  • Yousefi V, Mohebbi-Kalhori D, Samimi A (2018) Application of layer-by-layer assembled chitosan/montmorillonite nanocomposite as oxygen barrier film over the ceramic separator of the microbial fuel cell. Electrochim Acta 283:234–247

    Article  CAS  Google Scholar 

  • Yuan S, Shen F, Chua C, Zhou K (2019) Polymeric composites for powder-based additive manufacturing: materials and applications. Prog Polym Sci 91:141–168. https://doi.org/10.1016/j.progpolymsci.2018.11.001

    Article  CAS  Google Scholar 

  • Zarrin H, Higgins D, Jun Y, Chen Z, Fowler M (2011) Functionalized graphene oxide nanocomposite membrane for low humidity and high temperature proton exchange membrane fuel cells. J Phys Chem C 115(42):20774–20781

    Article  CAS  Google Scholar 

  • Zhang Z, Bian J, Sun J et al (2012) ZnO-based graphite-insulator-semiconductor diode for transferable and low thermal resistance high-power devices. Appl Phys Lett 101:052108. https://doi.org/10.1063/1.4742150

    Article  CAS  Google Scholar 

  • Zheng Z, Du Y, Feng Q et al (2012) Facile method to prepare Pd/graphene–polyaniline nanocomposite and used as new electrode material for electrochemical sensing. J Mol Catal A Chem 353-354:80–86. https://doi.org/10.1016/j.molcata.2011.10.027

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswajit Debnath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Debnath, B., Saha, S., Bhattacharyya, S., Raychaudhuri, A., Das, A., Mukhopadhyay, P. (2020). Achieving Circular Economy Through P&C-Nano: Sustainability and Supply Chain Perspectives. In: Hussain, C., Thomas, S. (eds) Handbook of Polymer and Ceramic Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-10614-0_49-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10614-0_49-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10614-0

  • Online ISBN: 978-3-030-10614-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    C-Nano: Sustainability and Supply Chain Perspectives
    Published:
    18 January 2020

    DOI: https://doi.org/10.1007/978-3-030-10614-0_49-2

  2. Original

    C-Nano: Sustainability and Supply Chain Perspectives
    Published:
    12 December 2019

    DOI: https://doi.org/10.1007/978-3-030-10614-0_49-1