Skip to main content

Polymer Nanocomposite Matrices

  • Living reference work entry
  • First Online:

Abstract

In this chapter, a review of several researches was done on the development and characterization of nanocomposites based on starch, cellulose, and wood. Thediscussion will be focused on structural, mechanical, and barrel properties as well as on degradation and the role of polymer nanocomposite (PNC) in a treatment in the different fields, such as utilization of polymers in various industrial applications to obtain a product with essentially a new set of properties. Micro- and nanomaterials increase the surface area-to-volume ratio. It affects the properties of the nanomaterials when they react with other nanomaterials. Due tothe higher specific surface area of nanomaterials, interaction with other nanomaterials within the mixture becomes more intense. This consequently results in positive properties, such as high-temperature capability, resistance against corrosion, noise damping, low in cost, high specific stiffness and strength, high thermal conductivity, and low coefficient of thermal expansion. Nanocomposites obtained by using eco-friendly materials and techniques, as well as incorporating nanofillers to biopolymers, are extremely promising products because they provide better properties with conservation of the material biodegradability, environmental friendliness, easy processing, and impressive physicomechanical properties, avoiding ecotoxicity. This assists in evolution of simpler chemical processes or innovative designed product for future generations by the chemical industries that should create least environmental impact. An interest in naturally available renewable materials has been developed due to the global environmental concern.

This is a preview of subscription content, log in via an institution.

References

  • Arora A, Padua GW (2010) Review: nanocomposites in food packaging. J Food Sci 75:43–49

    Article  CAS  Google Scholar 

  • Ashori A (2008) Wood–plastic composites as promising green-composites for automotive industries. Bioresour Technol 99:4661–4667

    Article  CAS  Google Scholar 

  • Avérous L, Pollet E (2012) Environmental silicate nano-biocomposites. Green Energy Tech 50:1–11

    Google Scholar 

  • Bastioli C (2011) Handbook of biodegradable polymers. Shawbury, Shrewsbury, Shropshire, SY4 4NR, United Kingdom

    Google Scholar 

  • Bertan LC, Tanada-Palmu PS, Siani AC, Grosso CRF (2005) Effect of fatty acids and ‘Brazilian elemi’ on composite films based on gelatin. Food Hydrocoll 19:73–82

    Article  CAS  Google Scholar 

  • Cao X, Wang Y, Zhang L (2005) Effects of ethyl and benzyl groups on the miscibility and properties of castor oil-based polyurethane/starch derivative semi-interpenetrating polymer networks. Macromol Biosci 5:863–871

    Article  CAS  Google Scholar 

  • Cao XD, Chen Y, Chang PR, Muir AD, Falk G (2008a) Starch-based nanocomposites reinforced with flax cellulose nanocrystals. Polym Lett 2:502–510

    Article  CAS  Google Scholar 

  • Cao XD, Chen Y, Chang PR, Stumborg M, Huneault MA (2008b) Green composites reinforced with hemp nanocrystals in plasticized starch. J Appl Polym Sci 109:3804–3810

    Article  CAS  Google Scholar 

  • Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, Aitken R, Watkins R (2008) Applications and implications of nanotechnologies for the food sector. Food Addit Contam A25:241–258

    Article  CAS  Google Scholar 

  • Chen B, Evans JRG (2005) Thermoplastic starch-clay nanocomposites and their characteristics. Carbohydr Polym 61:455–463

    Article  CAS  Google Scholar 

  • De Azedero HMC (2009) Nanocomposites for food packaging applications. Food Res Int 42:1240–1253

    Article  CAS  Google Scholar 

  • Deka BK, Maji TK (2011) Effect of TiO2 and nanoclay on the properties of wood polymer nanocomposite. Compos Part A 42:2117–2125

    Article  CAS  Google Scholar 

  • Devi RR, Maji TK (2011) Preparation and characterization of wood/styrene-acrylonitrile copolymer/ mmt nanocomposite. J Appl Polym Sci 122:2099–2109

    Article  CAS  Google Scholar 

  • Dubois P, Alexandre M (2006) Performant clay/carbon nanotube polymer nanocomposites. Adv Eng Mater 8(3):147–154

    Article  CAS  Google Scholar 

  • Elsabee MZ, Abdou ES (2013) Chitosan based edible films and coatings: a review. Mater Sci Eng C 33:1819–1841

    Article  CAS  Google Scholar 

  • González Seligra P, Nuevo F, Lamanna M, Famá L (2013) Covalent grafting of carbon nanotubes to PLA in order to improve compatibility. Compos Part B Eng 46:61–68

    Article  CAS  Google Scholar 

  • Gross RA, Kalra B (2002) Biodegradable polymers for the environment. Science 297(5582):803–807

    Article  CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500

    Article  CAS  Google Scholar 

  • Haygreen JG, Bowyer JL (1982) Forest products and wood science: an introduction, 1st edn. Iowa State University Press, Ames

    Google Scholar 

  • Hetzer M, Kee D (2008) Wood/polymer/nanoclay composites, environmentally friendly sustainable technology: a review. Chem Eng Res Des 86:1083–1093

    Article  CAS  Google Scholar 

  • Hill CAS, Abdul KHPS, Hale MD (1998) A study of the potential of acetylation to improve the properties of plant fibres. Ind Crop Prod 8:53–63

    Article  CAS  Google Scholar 

  • Jiménez A, Fabra MJ, Talens P, Chiralt A (2013) Phase transitions in starch based films containing fatty acids. Effect on water sorption and mechanical behavior. Food Hydrocoll 30:408–418

    Article  CAS  Google Scholar 

  • Julkapli N, Samira B, Sharifah B (2014) Recent advances in heterogeneous decolorization of synthetic dyes. Sci World J 2014:1–25

    Article  CAS  Google Scholar 

  • Lamanna M, Morales NJ, García NL, Goyanes S (2013) Development and characterization of starch nanoparticles by gamma radiation: potential application as starch matrix filler. Carbohydr Polym 97:90–97

    Article  CAS  Google Scholar 

  • Li Y, Liu Z, Dong X, Fu Y, Liu Y (2013) Comparison of decay resistance of wood and wood-polymer composite prepared by in-situ polymerization of monomers. Int Biodeterior Biodegradation 84:401–406

    Article  CAS  Google Scholar 

  • Ludueña LN, Alvarez VA, Vazquez A (2007) Processing and microstructure of PCL/clay nanocomposites. Mater Sci Eng A 460–461:121–129

    Article  CAS  Google Scholar 

  • Ma X, Yu JG, Wang N (2008) Glycerol plasticized-starch/multiwall carbon nanotube composites for electroactive polymers. Compos Sci Technol 68:268–273

    Article  CAS  Google Scholar 

  • Mathew AP, Dufresne A (2002) Plasticized waxy maize starch: effect of polyols and relative humidity on material properties. Biomacromolecules 3(5):1101–1108

    Article  CAS  Google Scholar 

  • Md. Islama S, Hamdana S, Talibb ZA, Ahmeda AS, Md. Rahmana R (2012) Tropical wood polymer nanocomposite (WPNC): The impact of nanoclay on dynamic mechanical thermal properties. Compos Sci Technol 72:1995–2001

    Google Scholar 

  • Misra M, Mohanty AK, Drzal LT (2004) Injection molded ‘green’ nanocomposite materials from renewable resources. In: Global plastics environmental conference. Detroit, MI, USA, 18–19

    Google Scholar 

  • Murillo-Martínez MM, Pedroza-Islas R, Lobato-Calleros C, Martinez-Ferez A, Vernon-Carter EJ (2011) Designing W-1/O/W-2 double emulsions stabilized by protein-polysaccharide complexes for producing edible films: rheological, mechanical and water vapour properties. Food Hydrocoll 25:577–585

    Article  CAS  Google Scholar 

  • Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32(8–9):762–798

    Article  CAS  Google Scholar 

  • Pastor C, Sánchez-González L, Chiralt A, Cháfer M, González-Martínez C (2013) Physical and antioxidant properties of chitosan and methylcellulose based films containing resveratrol. Food Hydrocoll 30:272–280

    Article  CAS  Google Scholar 

  • Perez S, Bertoft E (2010) The molecular structures of starch components and their contribution to the architecture of starch granules: a comprehensive review. Starch 62:389–420

    Article  CAS  Google Scholar 

  • Raj RG, Kokta BV, Maldas D, Daneault C (1989) Use of wood fibers in thermoplastics. VII the effect of coupling agents in polyethylene-wood fiber composites. J Appl Polym Sci 37:1089–1103

    Article  CAS  Google Scholar 

  • Rhim J-W, Park H-M, Ha C-S (2013) Bio-nanocomposites for food packaging applications. Prog Polym Sci 38(10–11):1629–1652

    Article  CAS  Google Scholar 

  • Rowell RM, Young RA, Rowell JK (1997) Paper and composites from agro-based resources. CRC Lewis Publishers, Boca Raton

    Google Scholar 

  • Rubilar JF, Cruz RMS, Silva HD, Vicente AA, Khmelinskii I, Vieira MC (2013) Physico-mechanical properties of chitosan films with carvacrol and grape seed extract. J Food Eng 115:466–474

    Article  CAS  Google Scholar 

  • Shen L, Haufe J, Patel MK, Excellence EB, European Polysaccharide Network of Excellence (2009) Product overview and market projection of emerging bio-based plastics. Group Science, Technology and Society (STS); Copernicus Institute for Sustainable Development and innovation, Utrecht University, Utrecht

    Google Scholar 

  • Souza AC, Goto GEO, Mainardi JA, Coelho ACV, Tadini CC (2013) Cassava starch composite films incorporated with cinnamon essential oil: antimicrobial activity, microstructure, mechanical and barrier properties. LWT Food Sci Technol 54:346–352

    Article  CAS  Google Scholar 

  • Suda K, Kanlaya M, Manit S (2002) Synthesis and property characterization of cassava starch grafted poly[acrylamide-co-(maleic acid)] superabsorbent via-γ irradiation. Polymer 43:3915–3924

    Article  Google Scholar 

  • Tábi T, Kovács JG (2007) Examination of injection molded thermoplastic maize starch. Express Polym Lett 1:804–809

    Article  CAS  Google Scholar 

  • Tester RF, Karkalas J, Qi X (2004) Starch – composition, fine structure and architecture. J Cereal Sci 39(2):151–165

    Article  CAS  Google Scholar 

  • Thakur VK, Thakur MK (2014a) Recent trends in hydrogels based on psyllium polysaccharide: a review. J Clean Prod 82:1–15

    Article  CAS  Google Scholar 

  • Thakur VK, Thakur MK (2014b) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr Polym 109:102–117

    Article  CAS  Google Scholar 

  • Thakur VK, Yan J, Lin M-F (2012) Novel polymer nanocomposites from bioinspired green aqueous functionalization of BNNTs. Polym Chem 3:962–969

    Article  CAS  Google Scholar 

  • Thakur VK, Thunga M, Madbouly SA, Kessler MR (2014) PMMA-g-SOY as a sustainable novel dielectric material. RSC Adv 4:18240–18249

    Article  CAS  Google Scholar 

  • Tunc S, Duman O (2011) Preparation of active antimicrobial methyl cellulose/carvacrol/montmorillonite nanocomposite films and investigation of carvacrol release. LWT Food Sci Technol 44(2):465–472

    Article  CAS  Google Scholar 

  • Vieira MGA, da Silva MA, dos Santos LO, Beppu MM (2011) Natural-based plasticizers and biopolymer films: a review. Eur Polym J 47:254–263

    Article  CAS  Google Scholar 

  • Wegner T, Skog KE, Ince PJ, Michler CJ (2010) Uses and desirable properties of wood in the 21st century. J For 108:165–173

    Google Scholar 

  • Xiaofeng L, Wanjin Z, Ce W, Ten-Chin W, Yen W (2011) One-dimensional conducting polymer nanocomposites: synthesis, properties and applications. Prog Polym Sci 36(5):671–712

    Article  CAS  Google Scholar 

  • Xie Y, Hill CAS, Xiao Z, Mai C, Militz H (2011) Dynamic water vapor sorption properties of wood treated with glutaraldehyde. Wood Sci Technol 45:49–61

    Article  CAS  Google Scholar 

  • Yuan-Qing L, Shao-Yun F, Yang Y, Yiu-Wing M (2008) Facile synthesis of highly transparent polymer nanocomposites by introduction of core-shell structured nanoparticles. Chem Mater 20(8):2637–2632

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ihsan Flayyih Hasan AI-Jawhari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

AI-Jawhari, I.F.H. (2019). Polymer Nanocomposite Matrices. In: Hussain, C., Thomas, S. (eds) Handbook of Polymer and Ceramic Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-10614-0_16-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10614-0_16-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10614-0

  • Online ISBN: 978-3-030-10614-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics