Skip to main content

Exercise and the Mitochondria

  • Chapter
  • First Online:
Cardiorespiratory Fitness in Cardiometabolic Diseases
  • 838 Accesses

Abstract

Mitochondrial function have over the years been recognized as an important factor involved in health, disease, longevity and age-related disease progression. In this chapter, we discuss the relationship between exercise and the mitochondria and their role in the prevention, treatment, and risk assessment for cardiovascular diseases. Physical activity and mitochondrial function influence the whole body and have been proven to be important in cardiovascular health. The exact molecular mechanism(s) by which exercise and physical activity impact mitochondria function are an ongoing and increasing field of research. In this chapter, we will also discuss the basic functions and morphology of the mitochondria, with special reference to the heart and skeletal muscle tissue, and how it is affected by physical activity. Mitochondrial aspects such as disorders, dysfunction, replication, transcription, biogenesis, epigenetics, and mitochondrial therapeutics are also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMPK:

AMP-dependent protein kinase

ATP:

Adenosine triphosphate

CaMK:

Ca2+-calmodulin-dependent protein kinase

CFCM:

Cross-fiber connection mitochondria

CVDs:

Cardiovascular diseases

D-loop:

Displacement loop

ERR:

Estrogen-related receptors

ETC:

Electron transport chain

FPM:

Fiber parallel mitochondria

HIF-1:

Hypoxia inducible factor

HIIT:

High-intensity interval training

HS1/HS2:

Heavy strand 1/heavy strand 2

IBM:

I-band mitochondria

IFM:

Intrafibrillar mitochondria

IMJs:

Intermitochondrial junctions

IMS:

Intermembrane space

LKB1:

Liver kinase B1

MDP’s:

Mitochondria-derived peptides

MOTS-c:

Mitochondrial open reading frame of the 12S rRNA-c

mtDNA:

Mitochondrial DNA

MTERFs:

Mitochondrial transcription termination factors

mtSSB:

Mitochondrial single-stranded DNA-binding protein

NRF-1:

Nuclear respiratory factor 1

NUMTs:

Nuclear genome insertions of mitochondrial origin

OH:

Origin of heavy-strand replication, a.k.a OriH

OL:

Origin of light-strand replication site

OXPHOS:

Oxidative phosphorylation system

p53:

Tumor protein p53

PGC-1α:

Peroxisome proliferator-activated receptor γ coactivator-1α

Pim-1:

The regulation protein serine/threonine protein kinases Pim-a

PNM:

Paranuclear mitochondria

POLG:

Polymerase γ

POLRMT:

Mitochondrial RNA polymerase

PPAR:

Peroxisome proliferator-activated receptor

PVM:

Paravascular mitochondria

ROS:

Reactive oxygen species

SIRT:

Sirtuins

T2D:

Type II diabetes

TCA:

Citrate acid cycle or tricarboxylic acid cycle

TFAM:

Mitochondrial transcription factor A

TFB1M/TFB2M:

Mitochondrial transcription factor B1/mitochondrial transcription factor B2

TIM:

Translocase of the inner membrane

TOM:

Translocase of the outer membrane

VO2 peak:

Peak maximal oxygen consumption

References

  1. Stewart JB, Chinnery PF. The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nat Rev Genet. 2015;16(9):530–42.

    Article  CAS  PubMed  Google Scholar 

  2. Martin W, Kowallik K. Annotated English translation of Mereschkowsky’s 1905 paper ‘Über Natur und Ursprung der Chromatophoren imPflanzenreiche’. Eur J Phycol. 1999;34(3):287–95.

    Google Scholar 

  3. Gray MW, Burger G, Lang BF. Mitochondrial evolution. Science. 1999;283(5407):1476–81.

    Article  CAS  PubMed  Google Scholar 

  4. Farquhar J, Bao H, Thiemens M. Atmospheric influence of earth’s earliest sulfur cycle. Science. Proc Am Assoc Adv Sci. 2000;289(5480):756–8.

    CAS  Google Scholar 

  5. Karlberg EOL, Andersson SGE. Mitochondrial gene history and mRNA localization: is there a correlation? Nat Rev Genet. 2003;4(5):391–7.

    Article  CAS  PubMed  Google Scholar 

  6. Sato M, Sato K. Maternal inheritance of mitochondrial DNA by diverse mechanisms to eliminate paternal mitochondrial DNA. Biochim Biophys Acta. 2013;1833(8):1979–84.

    Article  CAS  PubMed  Google Scholar 

  7. Gray MW. Mosaic nature of the mitochondrial proteome: Implications for the origin and evolution of mitochondria. Proc Natl Acad Sci U S A. 2015;112(33):10133–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Martin W, Hoffmeister M, Rotte C, Henze K. An overview of endosymbiotic models for the origins of eukaryotes, their ATP-producing organelles (mitochondria and hydrogenosomes), and their heterotrophic lifestyle. Biol Chem. 2001;382(11):1521–39.

    Article  CAS  PubMed  Google Scholar 

  9. Cann RL, Stoneking M, Wilson AC. Mitochondrial DNA and human evolution. Nature. 1987;325(6099):31–6.

    Article  CAS  PubMed  Google Scholar 

  10. Ankel-Simons F, Cummins JM. Misconceptions about mitochondria and mammalian fertilization: implications for theories on human evolution. Proc Natl Acad Sci U S A. 1996;93(24):13859–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Endicott P, Ho SYW, Metspalu M, Stringer C. Evaluating the mitochondrial timescale of human evolution. Trends Ecol Evol. 2009;24(9):515–21.

    Article  PubMed  Google Scholar 

  12. Kofler B, Mueller EE, Eder W, Stanger O, Maier R, Weger M, et al. Mitochondrial DNA haplogroup T is associated with coronary artery disease and diabetic retinopathy: a case control study. BMC Med Genet. 2009;10:35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Fernández-Caggiano M, Barallobre-Barreiro J, Rego-Pérez I, Crespo-Leiro MG, Paniagua MJ, Grillé Z, et al. Mitochondrial haplogroups H and J: risk and protective factors for ischemic cardiomyopathy. PLoS One. 2012;7(8):e44128.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Kenney MC, Chwa M, Atilano SR, Falatoonzadeh P, Ramirez C, Malik D, et al. Molecular and bioenergetic differences between cells with African versus European inherited mitochondrial DNA haplogroups: implications for population susceptibility to diseases. Biochim Biophys Acta. 2014;1842(2):208–19.

    Article  CAS  PubMed  Google Scholar 

  15. Falkenberg M, Larsson N-G, Gustafsson CM. DNA replication and transcription in mammalian mitochondria. Annu Rev Biochem. 2007;76:679–99.

    Article  CAS  PubMed  Google Scholar 

  16. Kisch B. Are there mitochondria in red blood cells? Exp Med Surg. 1961;19:278–80.

    CAS  PubMed  Google Scholar 

  17. Veltri KL, Espiritu M, Singh G. Distinct genomic copy number in mitochondria of different mammalian organs. J Cell Physiol. Wiley Subscription Services, Inc., A Wiley Company; 1990;143(1):160–4.

    Google Scholar 

  18. Kirkwood SP, Munn EA, Brooks GA. Mitochondrial reticulum in limb skeletal muscle. Am J Phys. 1986;251(3 Pt 1):C395–402.

    Article  CAS  Google Scholar 

  19. Sukhorukov VM, Dikov D, Reichert AS, Meyer-Hermann M. Emergence of the mitochondrial reticulum from fission and fusion dynamics. PLoS Comput Biol. Public Library of Science; 2012;8(10):e1002745.

    Google Scholar 

  20. Taanman JW. The mitochondrial genome: structure, transcription, translation and replication. Biochim Biophys Acta. 1999;1410(2):103–23.

    Article  CAS  PubMed  Google Scholar 

  21. Karlberg O, Canbäck B, Kurland CG, Andersson SG. The dual origin of the yeast mitochondrial proteome. Yeast. 2000;17(3):170–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Calvo SE, Mootha VK. The mitochondrial proteome and human disease. Annu Rev Genomics Hum Genet. 2010;11(1):25–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hashimoto Y, Ito Y, Niikura T, Shao Z, Hata M, Oyama F, et al. Mechanisms of neuroprotection by a novel rescue factor humanin from Swedish mutant amyloid precursor protein. Biochem Biophys Res Commun. 2001;283(2):460–8.

    Article  CAS  PubMed  Google Scholar 

  24. Mercer TR, Neph S, Dinger ME, Crawford J, Smith MA, Shearwood A-MJ, et al. The human mitochondrial transcriptome. Cell. 2011;146(4):645–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rimbaud S, Garnier A, Ventura-Clapier R. Mitochondrial biogenesis in cardiac pathophysiology. Pharmacol Rep. 2009;61(1):131–8.

    Article  CAS  PubMed  Google Scholar 

  26. Bensasson D, Zhang D-X, Hartl DL, Hewitt GM. Mitochondrial pseudogenes: evolution’s misplaced witnesses. Trends Ecol Evol. Elsevier. 2001;16(6):314–21.

    Article  CAS  Google Scholar 

  27. Ramos A, Barbena E, Mateiu L, del Mar GM, Mairal Q, Lima M, et al. Nuclear insertions of mitochondrial origin: database updating and usefulness in cancer studies. Mitochondrion. 2011;11(6):946–53.

    Article  CAS  PubMed  Google Scholar 

  28. du HG B, Riley FL. Hybridization between the nuclear and kinetoplast DNA’s of Leishmania enriettii and between nuclear and mitochondrial DNA’s of mouse liver. Proc Natl Acad Sci. 1967;57(3):790–7.

    Article  Google Scholar 

  29. Bensasson D. Mitochondrial pseudogenes: evolution’s misplaced witnesses. Trends Ecol Evol. 2001;16(6):314–21.

    Article  CAS  PubMed  Google Scholar 

  30. Mishmar D, Ruiz-Pesini E, Brandon M, Wallace DC. Mitochondrial DNA-like sequences in the nucleus (NUMTs): insights into our African origins and the mechanism of foreign DNA integration. Hum Mutat. 2004;23(2):125–33.

    Article  CAS  PubMed  Google Scholar 

  31. Richly E, Leister D. NUMTs in sequenced eukaryotic genomes. Mol Biol Evol. 2004;21(6):1081–4.

    Article  CAS  PubMed  Google Scholar 

  32. Bodzioch M, Lapicka-Bodzioch K, Zapala B, Kamysz W, Kiec-Wilk B, Dembinska-Kiec A. Evidence for potential functionality of nuclearly-encoded humanin isoforms. Genomics. 2009;94(4):247–56.

    Article  CAS  PubMed  Google Scholar 

  33. da Cunha FM, Torelli NQ, Kowaltowski AJ. Mitochondrial retrograde signaling: triggers, pathways, and outcomes. Oxidative Med Cell Longev. 2015;2015:482582.

    Article  CAS  Google Scholar 

  34. Lee C, Yen K, Cohen P. Humanin: a harbinger of mitochondrial-derived peptides? Trends Endocrinol Metab. 2013;24(5):222–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Verdin E, Hirschey MD, Finley LWS, Haigis MC. Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling. Trends Biochem Sci. 2010;35(12):669–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ganta VC, Alexander JS. Focus on carbon monoxide: a modulator of neutrophil oxidants and elastase spatial localization? Am J Physiol Heart Circ Physiol. 2009;297(3):H902–4.

    Article  CAS  PubMed  Google Scholar 

  37. Ichikawa Y, Bayeva M, Ghanefar M, Potini V, Sun L, Mutharasan RK, et al. Disruption of ATP-binding cassette B8 in mice leads to cardiomyopathy through a decrease in mitochondrial iron export. Proc Natl Acad Sci USA. National Acad Sciences. 2012;109(11):4152–7.

    Article  CAS  Google Scholar 

  38. Nakahira K, Haspel JA, Rathinam VAK, Lee S-J, Dolinay T, Lam HC, et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol. 2011;12(3):222–30.

    Article  CAS  PubMed  Google Scholar 

  39. Saki M, Prakash A. DNA damage related crosstalk between the nucleus and mitochondria. Free Radic Biol Med. 2017;107:216–27.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang Q, Itagaki K, Hauser CJ. Mitochondrial DNA is released by shock and activates neutrophils via p38 map kinase. Shock. 2010;34(1):55–9.

    Article  PubMed  CAS  Google Scholar 

  41. Battersby BJ, Richter U. Why translation counts for mitochondria – retrograde signalling links mitochondrial protein synthesis to mitochondrial biogenesis and cell proliferation. J Cell Sci. 2013;126(19):4331–8.

    Article  CAS  PubMed  Google Scholar 

  42. Kadlec AO, Beyer AM, Ait-Aissa K, Gutterman DD. Mitochondrial signaling in the vascular endothelium: beyond reactive oxygen species. Basic Res Cardiol. Springer Berlin Heidelberg; 2016;111(3):26.

    Google Scholar 

  43. Hashimoto Y, Niikura T, Tajima H, Yasukawa T, Sudo H, Ito Y, et al. A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer’s disease genes and Abeta. Proc Natl Acad Sci U S A. 2001;98(11):6336–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee C, Zeng J, Drew BG, Sallam T, Martin-Montalvo A, Wan J, et al. The mitochondrial-derived peptide MOTS-c promotes metabolic homeostasis and reduces obesity and insulin resistance. Cell Metab. 2015;21(3):443–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Muzumdar RH, Huffman DM, Atzmon G, Buettner C, Cobb LJ, Fishman S, et al. Humanin: a novel central regulator of peripheral insulin action. PLoS One. 2009;4(7):e6334.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Yen K, Lee C, Mehta H, Cohen P. The emerging role of the mitochondrial-derived peptide humanin in stress resistance. J Mol Endocrinol. 2013;50(1):R11–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fuku N, Pareja-Galeano H, Zempo H, Alis R, Arai Y, Lucia A, et al. The mitochondrial-derived peptide MOTS-c: a player in exceptional longevity? Aging Cell. 2015;14(6):921–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gong Z, Tas E, Muzumdar R. Humanin and age-related diseases: a new link? Front Endocrinol (Lausanne). 2014;5:210.

    Article  Google Scholar 

  49. Gidlund E-K, Walden von F, Venojärvi M, Risérus U, Heinonen OJ, Norrbom J, et al. Humanin skeletal muscle protein levels increase after resistance training in men with impaired glucose metabolism. Physiol Rep. 2016;4(23):e13063.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Thummasorn S, Shinlapawittayatorn K, Khamseekaew J, Jaiwongkam T, Chattipakorn SC, Chattipakorn N. Humanin directly protects cardiac mitochondria against dysfunction initiated by oxidative stress by decreasing complex I activity. Mitochondrion. 2018;38:31–40.

    Article  CAS  PubMed  Google Scholar 

  51. Ma ZA, Zhao Z, Turk J. Mitochondrial dysfunction and β-cell failure in type 2 diabetes mellitus. Exp Diabetes Res. 2012;2012:703538.

    Article  PubMed  CAS  Google Scholar 

  52. Marzetti E, Csiszar A, Dutta D, Balagopal G, Calvani R, Leeuwenburgh C. Role of mitochondrial dysfunction and altered autophagy in cardiovascular aging and disease: from mechanisms to therapeutics. Am J Physiol Heart Circ Physiol. 2013;305(4):H459–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gamboa JL, Billings FT, Bojanowski MT, Gilliam LA, Yu C, Roshanravan B, et al. Mitochondrial dysfunction and oxidative stress in patients with chronic kidney disease. Physiol Rep. 2016;4(9):e12780.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Galvan DL, Green NH, Danesh FR. The hallmarks of mitochondrial dysfunction in chronic kidney disease. Kidney Int. 2017;92(5):1051–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chae S, Ahn BY, Byun K, Cho YM, Yu M-H, Lee B, et al. A systems approach for decoding mitochondrial retrograde signaling pathways. Sci Signal. American Association for the Advancement of Science. 2013;6(264):rs4.

    Google Scholar 

  56. Page E, McCallister LP. Quantitative electron microscopic description of heart muscle cells. Application to normal, hypertrophied and thyroxin-stimulated hearts. Am J Cardiol. 1973;31(2):172–81.

    Article  CAS  PubMed  Google Scholar 

  57. Covian R, Balaban RS. Cardiac mitochondrial matrix and respiratory complex protein phosphorylation. Am J Physiol Heart Circ Physiol. 2012;303(8):H940–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ferrari R, Censi S, Mastrorilli F, Boraso A. Prognostic benefits of heart rate reduction in cardiovascular disease. Eur Heart J Suppl. 2003;5:G10–4.

    Article  Google Scholar 

  59. Palmer JW, Tandler B, Hoppel CL. Biochemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle. J Biol Chem. 1977;252(23):8731–9.

    CAS  PubMed  Google Scholar 

  60. Glancy B, Hartnell LM, Malide D, Yu Z-X, Combs CA, Connelly PS, et al. Mitochondrial reticulum for cellular energy distribution in muscle. Nature. 2015;523(7562):617–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Glancy B, Hartnell LM, Combs CA, Fenmou A, Sun J, Murphy E, et al. Power grid protection of the muscle mitochondrial reticulum. Cell Rep. 2017;19(3):487–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bogenhagen D, Clayton DA. Mouse L cell mitochondrial DNA molecules are selected randomly for replication throughout the cell cycle. Cell. 1977;11(4):719–27.

    Article  CAS  PubMed  Google Scholar 

  63. Montoya J, Christianson T, Levens D, Rabinowitz M, Attardi G. Identification of initiation sites for heavy-strand and light-strand transcription in human mitochondrial DNA. Proc Natl Acad Sci USA. National Academy of Sciences. 1982;79(23):7195–9.

    Article  CAS  Google Scholar 

  64. Clayton DA. Vertebrate mitochondrial DNA-a circle of surprises. Exp Cell Res. 2000;255(1):4–9.

    Article  CAS  PubMed  Google Scholar 

  65. Shadel GS, Clayton DA. Mitochondrial DNA maintenance in vertebrates. Annu Rev Biochem. 1997;66(1):409–35.

    Article  CAS  PubMed  Google Scholar 

  66. Wanrooij S, Falkenberg M. The human mitochondrial replication fork in health and disease. Biochim Biophys Acta. 2010;1797(8):1378–88.

    Article  CAS  PubMed  Google Scholar 

  67. Spelbrink JN. Functional organization of mammalian mitochondrial DNA in nucleoids: history, recent developments, and future challenges. IUBMB Life. 2010;62(1):19–32.

    CAS  PubMed  Google Scholar 

  68. Clayton DA. Transcription and replication of mitochondrial DNA. Hum Reprod. 2000;15(suppl 2):11–7.

    Article  PubMed  Google Scholar 

  69. Abdul Aziz, Mohamed Yusoff, Farizan Ahmad, Zamzuri Idris, Hasnan Jaafar and Jafri Malin Abdullah. Understanding mitochondrial DNA in brain tumorigenesis. In: Molecular considerations and evolving surgical management issues in the treatment of patients with a brain tumor: InTech,United Kingdome; 2015. https://www.intechopen.com/books/molecular-considerations-and-evolving-surgical-management-issues-in-thetreatment-of-patients-with-a-brain-tumor.

  70. FustE JM, Wanrooij S, Jemt E, Granycome CE, Cluett TJ, Shi Y, et al. Mitochondrial RNA polymerase is needed for activation of the origin of light-strand DNA replication. Mol Cell. Elsevier. 2010;37(1):67–78.

    Article  CAS  Google Scholar 

  71. Asin-Cayuela J, Gustafsson CM. Mitochondrial transcription and its regulation in mammalian cells. Trends Biochem Sci. 2007;32(3):111–7.

    Article  CAS  PubMed  Google Scholar 

  72. Sologub M, Litonin D, Anikin M, Mustaev A, Temiakov D. TFB2 is a transient component of the catalytic site of the human mitochondrial RNA polymerase. Cell. 2009;139(5):934–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Roberti M, Polosa PL, Bruni F, Manzari C, Deceglie S, Gadaleta MN, et al. The MTERF family proteins: mitochondrial transcription regulators and beyond. Biochim Biophys Acta. 2009;1787(5):303–11.

    Article  CAS  PubMed  Google Scholar 

  74. Medeiros DM. Assessing mitochondria biogenesis. Methods. 2008;46(4):288–94.

    Article  CAS  PubMed  Google Scholar 

  75. Hood DA, Joseph A-M. Mitochondrial assembly: protein import. Proc Nutr Soc. 2004;63(2):293–300.

    Article  CAS  PubMed  Google Scholar 

  76. Wiedemann N, Pfanner N. Mitochondrial machineries for protein import and assembly. Annu Rev Biochem. 2017;86:685–714.

    Article  CAS  PubMed  Google Scholar 

  77. Iqbal S, Hood DA. The role of mitochondrial fusion and fission in skeletal muscle function and dysfunction. Front Biosci. 2015;20:157–72.

    Article  CAS  Google Scholar 

  78. Fisher RP, Lisowsky T, Parisi MA, Clayton DA. DNA wrapping and bending by a mitochondrial high mobility group-like transcriptional activator protein. J Biol Chem. 1992;267(5):3358–67.

    CAS  PubMed  Google Scholar 

  79. Falkenberg M, Gaspari M, Rantanen A, Trifunovic A, Larsson N-G, Gustafsson CM. Mitochondrial transcription factors B1 and B2 activate transcription of human mtDNA. Nat Genet. 2002;31(3):289–94.

    Article  CAS  PubMed  Google Scholar 

  80. Scarpulla RC. Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim Biophys Acta. 2011;1813(7):1269–78.

    Article  CAS  PubMed  Google Scholar 

  81. Lyonnais S, Tarrés-Soler A, Rubio-Cosials A, Cuppari A, Brito R, Jaumot J, et al. The human mitochondrial transcription factor A is a versatile G-quadruplex binding protein. Sci Rep. 2017;7:43992.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Holt IJ, Reyes A. Human mitochondrial DNA replication. Cold Spring Harb Perspect Biol. 2012;1:4(12).

    Google Scholar 

  83. Dufour CR, Wilson BJ, Huss JM, Kelly DP, Alaynick WA, Downes M, et al. Genome-wide orchestration of cardiac functions by the orphan nuclear receptors ERRalpha and gamma. Cell Metab. 2007;5(5):345–56.

    Article  CAS  PubMed  Google Scholar 

  84. Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly DP. Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest. American Society for Clinical Investigation. 2000;106(7):847–56.

    Article  CAS  Google Scholar 

  85. Garnier A, Fortin D, Deloménie C, Momken I, Veksler V, Ventura-Clapier R. Depressed mitochondrial transcription factors and oxidative capacity in rat failing cardiac and skeletal muscles. J Physiol. 2003;551(Pt 2):491–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Leone TC, Lehman JJ, Finck BN, Schaeffer PJ, Wende AR, Boudina S, et al. PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol. 2005;3(4):e101.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Arany Z, He H, Lin J, Hoyer K, Handschin C, Toka O, et al. Transcriptional coactivator PGC-1 alpha controls the energy state and contractile function of cardiac muscle. Cell Metab. 2005;1(4):259–71.

    Article  CAS  PubMed  Google Scholar 

  88. Chinsomboon J, Ruas J, Gupta RK, Thom R, Shoag J, Rowe GC, et al. The transcriptional coactivator PGC-1alpha mediates exercise-induced angiogenesis in skeletal muscle. Proc Natl Acad Sci U S A. 2009;106(50):21401–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Norrbom J, Sällstedt EK, Fischer H, Sundberg CJ, Rundqvist H, Gustafsson T. Alternative splice variant PGC-1 -b is strongly induced by exercise in human skeletal muscle. AJP: Endocrinol Metab. 2011;301(6):E1092–8.

    CAS  Google Scholar 

  90. Perry CGR, Hawley JA. Molecular basis of exercise-induced skeletal muscle mitochondrial biogenesis: historical advances, current knowledge, and future challenges. Cold Spring Harb Perspect Med. 2018;8(9):a029686.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Jäger S, Handschin C, St-Pierre J, Spiegelman BM. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci USA. National Acad Sciences. 2007;104(29):12017–22.

    Article  CAS  Google Scholar 

  92. Jeninga EH, Schoonjans K, Auwerx J. Reversible acetylation of PGC-1: connecting energy sensors and effectors to guarantee metabolic flexibility. Oncogene. 2010;29(33):4617–24.

    Article  CAS  PubMed  Google Scholar 

  93. Lai L, Leone TC, Zechner C, Schaeffer PJ, Kelly SM, Flanagan DP, et al. Transcriptional coactivators PGC-1alpha and PGC-lbeta control overlapping programs required for perinatal maturation of the heart. Genes & Development Cold Spring Harbor Lab. 2008;22(14):1948–61.

    CAS  Google Scholar 

  94. Hoppeler H, Fluck M. Plasticity of skeletal muscle mitochondria: structure and function. Med Sci Sports Exerc. 2003;35(1):95–104.

    Article  CAS  PubMed  Google Scholar 

  95. Vincent AE, Turnbull DM, Eisner V, Hajnóczky G, Picard M. Mitochondrial Nanotunnels. Trends Cell Biol. 2017;27(11):787–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhang L, Trushin S, Christensen TA, Bachmeier BV, Gateno B, Schroeder A, et al. Altered brain energetics induces mitochondrial fission arrest in Alzheimer’s disease. Sci Rep. Nature Publishing Group. 2016;6(1):18725.

    CAS  Google Scholar 

  97. Elliott HR, Samuels DC, Eden JA, Relton CL, Chinnery PF. Pathogenic mitochondrial DNA mutations are common in the general population. Am J Hum Genet. 2008;83(2):254–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gorman GS, Schaefer AM, Ng Y, Gomez N, Blakely EL, Alston CL, et al. Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann Neurol. 2015;77(5):753–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wallace DC, Chalkia D. Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring Harb Perspect Biol. 2013;5(11):a021220.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Suomalainen A. Therapy for mitochondrial disorders: little proof, high research activity, some promise. Semin Fetal Neonatal Med. 2011;16(4):236–40.

    Article  PubMed  Google Scholar 

  101. Holt IJ, Harding AE, Morgan-Hughes JA. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature. 1988;331(6158):717–9.

    Article  CAS  PubMed  Google Scholar 

  102. Payne BAI, Wilson IJ, Yu-Wai-Man P, Coxhead J, Deehan D, Horvath R, et al. Universal heteroplasmy of human mitochondrial DNA. Hum Mol Genet. 2013;22(2):384–90.

    Article  CAS  PubMed  Google Scholar 

  103. Tuppen HAL, Blakely EL, Turnbull DM, Taylor RW. Mitochondrial DNA mutations and human disease. Biochim Biophys Acta. 2010;1797(2):113–28.

    Article  CAS  PubMed  Google Scholar 

  104. Brunel-Guitton C, Levtova A, Sasarman F. Mitochondrial Diseases and Cardiomyopathies. Can J Cardiol. 2015;31(11):1360–76.

    Article  PubMed  Google Scholar 

  105. Nunnari J, Suomalainen A. Mitochondria: in sickness and in health. Cell. 2012;148(6):1145–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Pietiläinen KH, Naukkarinen J, Rissanen A, Saharinen J, Ellonen P, Keränen H, et al. Global transcript profiles of fat in monozygotic twins discordant for BMI: pathways behind acquired obesity. Groop LC, editor. PLoS Med. Public Library of Science; 2008;5(3):e51.

    Google Scholar 

  107. Verdejo HE, del Campo A, Troncoso R, Gutierrez T, Toro B, Quiroga C, et al. Mitochondria, myocardial remodeling, and cardiovascular disease. Curr Hypertens Rep. 2012;14(6):532–9.

    Article  CAS  PubMed  Google Scholar 

  108. Karamanlidis G, Nascimben L, Couper GS, Shekar PS, del Monte F, Tian R. Defective DNA replication impairs mitochondrial biogenesis in human failing hearts. Circ Res. American Heart Association Inc. 2010;106(9):1541–8.

    CAS  Google Scholar 

  109. Ahuja P, Wanagat J, Wang Z, Wang Y, Liem DA, Ping P, et al. Divergent mitochondrial biogenesis responses in human cardiomyopathy. Circulation. American Heart Association Inc. 2013;127(19):1957–67.

    CAS  Google Scholar 

  110. Knight JA. Diseases and disorders associated with excess body weight. Ann Clin Lab Sci. 2011;41(2):107–21.

    PubMed  Google Scholar 

  111. Matsuda M, Shimomura I. Increased oxidative stress in obesity: Implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Obes Res Clin Pract. 2013;7(5):e330–41.

    Article  PubMed  Google Scholar 

  112. Putti R, Sica R, Migliaccio V, Lionetti L. Diet impact on mitochondrial bioenergetics and dynamics. Front Physiol. 2015;6:109.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Vondra K, Rath R, Bass A, Slabochová Z, Teisinger J, Vitek V. Enzyme activities in quadriceps femoris muscle of obese diabetic male patients. Diabetologia. 1977;13(5):527–9.

    Article  CAS  PubMed  Google Scholar 

  114. Kelley DE, Goodpaster B, Wing RR, Simoneau JA. Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss. Am J Phys. 1999;277(6 Pt 1):E1130–41.

    CAS  Google Scholar 

  115. Simoneau JA, Veerkamp JH, Turcotte LP, Kelley DE. Markers of capacity to utilize fatty acids in human skeletal muscle: relation to insulin resistance and obesity and effects of weight loss. FASEB J. 1999;13(14):2051–60.

    Article  CAS  PubMed  Google Scholar 

  116. Kelley DE, He J, Menshikova EV, Ritov VB. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes. 2002;51(10):2944–50.

    Article  CAS  PubMed  Google Scholar 

  117. Mootha VK, Lindgren CM, Eriksson K-F, Subramanian A, Sihag S, Lehar J, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34(3):267–73.

    Article  CAS  PubMed  Google Scholar 

  118. Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med. 2004;350(7):664–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sreekumar R, Nair KS. Skeletal muscle mitochondrial dysfunction & diabetes. Indian J Med Res. 2007;125(3):399–410.

    CAS  PubMed  Google Scholar 

  120. Croston TL, Thapa D, Holden AA, Tveter KJ, Lewis SE, Shepherd DL, et al. Functional deficiencies of subsarcolemmal mitochondria in the type 2 diabetic human heart. Am J Physiol Heart Circ Physiol. 2014;307(1):H54–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Mohsin S, Khan M, Nguyen J, Alkatib M, Siddiqi S, Hariharan N, et al. Rejuvenation of human cardiac progenitor cells with Pim-1 kinase. Circ Res. American Heart Association Inc. 2013;113(10):1169–79.

    CAS  Google Scholar 

  122. Din S, Konstandin MH, Johnson B, Emathinger J, Völkers M, Toko H, et al. Metabolic dysfunction consistent with premature aging results from deletion of Pim kinases. Circ Res. American Heart Association Inc. 2014;115(3):376–87.

    CAS  Google Scholar 

  123. Petrosillo G, Matera M, Moro N, Ruggiero FM, Paradies G. Mitochondrial complex I dysfunction in rat heart with aging: critical role of reactive oxygen species and cardiolipin. Free Radic Biol Med. 2009;46(1):88–94.

    Article  CAS  PubMed  Google Scholar 

  124. Paradies G, Paradies V, De Benedictis V, Ruggiero FM, Petrosillo G. Functional role of cardiolipin in mitochondrial bioenergetics. Biochim Biophys Acta. 2014;1837(4):408–17.

    Article  CAS  PubMed  Google Scholar 

  125. Preston CC, Oberlin AS, Holmuhamedov EL, Gupta A, Sagar S, Syed RHK, et al. Aging-induced alterations in gene transcripts and functional activity of mitochondrial oxidative phosphorylation complexes in the heart. Mech Ageing Dev. 2008;129(6):304–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Niemann B, Chen Y, Teschner M, Li L, Silber R-E, Rohrbach S. Obesity induces signs of premature cardiac aging in younger patients: the role of mitochondria. J Am Coll Cardiol. 2011;57(5):577–85.

    Article  CAS  PubMed  Google Scholar 

  127. Niemann B, Pan R, Teschner M, Boening A, Silber R-E, Rohrbach S. Age and obesity-associated changes in the expression and activation of components of the AMPK signaling pathway in human right atrial tissue. Exp Gerontol. 2013;48(1):55–63.

    Article  CAS  PubMed  Google Scholar 

  128. Peterson CM, Johannsen DL, Ravussin E. Skeletal muscle mitochondria and aging: a review. J Aging Res. 2012;2012:1–20.

    Article  Google Scholar 

  129. Chabi B, de Camaret BM, Chevrollier A, Boisgard S, Stepien G. Random mtDNA deletions and functional consequence in aged human skeletal muscle. Biochem Biophys Res Commun. 2005;332(2):542–9.

    Article  CAS  PubMed  Google Scholar 

  130. Hwang AB, Jeong D-E, Lee S-J. Mitochondria and organismal longevity. Curr Genomics. 2012;13(7):519–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Sun J, Folk D, Bradley TJ, Tower J. Induced overexpression of mitochondrial Mn-superoxide dismutase extends the life span of adult Drosophila melanogaster. Genetics. Genetics Society of America. 2002;161(2):661–72.

    CAS  Google Scholar 

  132. Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE, Emond M, et al. Extension of murine life span by overexpression of catalase targeted to mitochondria. Science. American Association for the Advancement of Science. 2005;308(5730):1909–11.

    Article  CAS  Google Scholar 

  133. Dell'Agnello C, Leo S, Agostino A, Szabadkai G, Tiveron C, Zulian A, et al. Increased longevity and refractoriness to Ca2 -dependent neurodegeneration in Surf1 knockout mice. Hum Mol Genet. 2007;16(4):431–44.

    Article  CAS  PubMed  Google Scholar 

  134. Copeland JM, Cho J, Lo T, Hur JH, Bahadorani S, Arabyan T, et al. Extension of Drosophila life span by RNAi of the mitochondrial respiratory chain. Curr Biol. 2009;19(19):1591–8.

    Article  CAS  PubMed  Google Scholar 

  135. Lee S-J, Hwang AB, Kenyon C. Inhibition of respiration extends C. elegans life span via reactive oxygen species that increase HIF-1 activity. Curr Biol. 2010;20(23):2131–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Yang W, Hekimi S. A mitochondrial superoxide signal triggers increased longevity in Caenorhabditis elegans. PLoS Biol. 2010;8(12):e1000556.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Onken B, Driscoll M. Metformin induces a dietary restriction-like state and the oxidative stress response to extend C. elegans Healthspan via AMPK, LKB1, and SKN-1. PLoS One. 2010;5(1):e8758.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Hwang AB, Ryu E-A, Artan M, Chang H-W, Kabir MH, Nam H-J, et al. Feedback regulation via AMPK and HIF-1 mediates ROS-dependent longevity in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 2014;111(42):E4458–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Reznick RM, Shulman GI. The role of AMP-activated protein kinase in mitochondrial biogenesis. J Physiol. 2006;574(Pt 1):33–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Hardie DG. AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev. 2011;25(18):1895–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Fontana L, Meyer TE, Klein S, Holloszy JO. Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proc Natl Acad Sci USA. National Acad Sciences. 2004;101(17):6659–63.

    Article  CAS  Google Scholar 

  142. Heilbronn LK, De Jonge L, Frisard MI, DeLany JP, Larson-Meyer DE, Rood J, et al. Effect of 6-month calorie restriction on biomarkers of longevity, metabolic adaptation, and oxidative stress in overweight individuals. JAMA. 2006;295(13):1539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Fernström M, Bakkman L, Loogna P, Rooyackers O, Svensson M, Jakobsson T, et al. Improved muscle mitochondrial capacity following gastric bypass surgery in obese subjects. OBES SURG. Springer US. 2016;26(7):1391–7.

    Article  Google Scholar 

  144. López-Lluch G, Hunt N, Jones B, Zhu M, Jamieson H, Hilmer S, et al. Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency. Proc Natl Acad Sci USA. National Acad Sciences. 2006;103(6):1768–73.

    Article  CAS  Google Scholar 

  145. Faulks SC, Turner N, Else PL, Hulbert AJ. Calorie restriction in mice: effects on body composition, daily activity, metabolic rate, mitochondrial reactive oxygen species production, and membrane fatty acid composition. J Gerontol A Biol Sci Med Sci. 2006;61(8):781–94.

    Article  PubMed  Google Scholar 

  146. Civitarese AE, Carling S, Heilbronn LK, Hulver MH, Ukropcova B, Deutsch WA, et al. Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med. Public Library of Science. 2007;4(3):e76.

    Google Scholar 

  147. Finley LWS, Lee J, Souza A, Desquiret-Dumas V, Bullock K, Rowe GC, et al. Skeletal muscle transcriptional coactivator PGC-1α mediates mitochondrial, but not metabolic, changes during calorie restriction. Proc Natl Acad Sci USA. National Acad Sciences. 2012;109(8):2931–6.

    Article  CAS  Google Scholar 

  148. Manev H, Dzitoyeva S. Progress in mitochondrial epigenetics. Biomol Concepts. 2013;4(4):381–9.

    Article  CAS  PubMed  Google Scholar 

  149. Iacobazzi V, Castegna A, Infantino V, Andria G. Mitochondrial DNA methylation as a next-generation biomarker and diagnostic tool. Mol Genet Metab. 2013;110(1–2):25–34.

    Article  CAS  PubMed  Google Scholar 

  150. Chinnery PF, Elliott HR, Hudson G, Samuels DC, Relton CL. Epigenetics, epidemiology and mitochondrial DNA diseases. Int J Epidemiol. 2012;41(1):177–87.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Lambertini L, Byun H-M. Mitochondrial epigenetics and environmental exposure. Curr Environ Health Rep. Springer International Publishing. 2016;3(3):214–24.

    Article  CAS  Google Scholar 

  152. Hernández-Aguilera A, Fernández-Arroyo S, Cuyàs E, Luciano-Mateo F, Cabre N, Camps J, et al. Epigenetics and nutrition-related epidemics of metabolic diseases: Current perspectives and challenges. Food Chem Toxicol. 2016;96:191–204.

    Article  PubMed  CAS  Google Scholar 

  153. Kelly RDW, Mahmud A, McKenzie M, Trounce IA, St John JC. Mitochondrial DNA copy number is regulated in a tissue specific manner by DNA methylation of the nuclear-encoded DNA polymerase gamma A. Nucleic Acids Res. 2012;40(20):10124–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Stimpfel M, Jancar N, Virant-Klun I. New challenge: mitochondrial epigenetics? Stem Cell Rev. Springer US. 2017;4(2):13–4.

    Google Scholar 

  155. Sadakierska-Chudy A, Frankowska M, Filip M. Mitoepigenetics and drug addiction. Pharmacol Ther. 2014;144(2):226–33.

    Article  CAS  PubMed  Google Scholar 

  156. Sitarz KS, Elliott HR, Karaman BS, Relton C, Chinnery PF, Horvath R. Valproic acid triggers increased mitochondrial biogenesis in POLG-deficient fibroblasts. Mol Genet Metab. 2014;112(1):57–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Menga A, Palmieri EM, Cianciulli A, Infantino V, Mazzone M, Scilimati A, et al. SLC25A26overexpression impairs cell function via mtDNA hypermethylation and rewiring of methyl metabolism. FEBS J. 2017;284(6):967–84.

    Article  CAS  PubMed  Google Scholar 

  158. Matilainen O, Quirós PM, Auwerx J. Mitochondria and epigenetics – crosstalk in homeostasis and stress. Trends Cell Biol. 2017;27(6):453–63.

    Article  CAS  PubMed  Google Scholar 

  159. Brown DA, Perry JB, Allen ME, Sabbah HN, Stauffer BL, Shaikh SR, et al. Expert consensus document: mitochondrial function as a therapeutic target in heart failure. Nat Rev Cardiol. 2017;14(4):238–50.

    Article  CAS  PubMed  Google Scholar 

  160. Holloszy JO, Booth FW. Biochemical adaptations to endurance exercise in muscle. Annu Rev Physiol. 1976;38:273–91.

    Article  CAS  PubMed  Google Scholar 

  161. Booth FW, Roberts CK. Linking performance and chronic disease risk: indices of physical performance are surrogates for health. Br J Sports Med. 2008;42(12):950–2.

    Article  CAS  PubMed  Google Scholar 

  162. Chimen M, Kennedy A, Nirantharakumar K, Pang TT, Andrews R, Narendran P. What are the health benefits of physical activity in type 1 diabetes mellitus? A literature review. Diabetologia. 2012;55(3):542–51.

    Article  CAS  PubMed  Google Scholar 

  163. Russell AP, Foletta VC, Snow RJ, Wadley GD. Skeletal muscle mitochondria: a major player in exercise, health and disease. Biochim Biophys Acta. 2014;1840(4):1276–84.

    Article  CAS  PubMed  Google Scholar 

  164. Roh J, Rhee J, Chaudhari V, Rosenzweig A. The role of exercise in cardiac aging: from physiology to molecular mechanisms. Circ Res. American Heart Association Inc. 2016;118(2):279–95.

    CAS  Google Scholar 

  165. Holloszy JO. Biochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J Biol Chem. 1967;242(9):2278–82.

    CAS  PubMed  Google Scholar 

  166. Hood DA. Invited review: contractile activity-induced mitochondrial biogenesis in skeletal muscle. J Appl Physiol. 2001;90(3):1137–57.

    Article  CAS  PubMed  Google Scholar 

  167. Green HJ, Helyar R, Ball-Burnett M, Kowalchuk N, Symon S, Farrance B. Metabolic adaptations to training precede changes in muscle mitochondrial capacity. J Appl Physiol. 1992;72(2):484–91.

    Article  CAS  PubMed  Google Scholar 

  168. Adams GR, Hather BM, Baldwin KM, Dudley GA. Skeletal muscle myosin heavy chain composition and resistance training. J Appl Physiol. 1993;74(2):911–5.

    Article  CAS  PubMed  Google Scholar 

  169. Spina RJ, Chi MM, Hopkins MG, Nemeth PM, Lowry OH, Holloszy JO. Mitochondrial enzymes increase in muscle in response to 7-10 days of cycle exercise. J Appl Physiol. 1996;80(6):2250–4.

    Article  CAS  PubMed  Google Scholar 

  170. Pilegaard H, Saltin B, Neufer PD. Exercise induces transient transcriptional activation of the PGC-1alpha gene in human skeletal muscle. J Physiol. 2003;546(Pt 3):851–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Benziane B, Burton TJ, Scanlan B, Galuska D, Canny BJ, Chibalin AV, et al. Divergent cell signaling after short-term intensified endurance training in human skeletal muscle. Am J Physiol Endocrinol Metab. 2008;295(6):E1427–38.

    Article  CAS  PubMed  Google Scholar 

  172. Vega RB, Huss JM, Kelly DP. The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor α in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol. American Society for Microbiology. 2000;20(5):1868–76.

    Article  CAS  Google Scholar 

  173. Handschin C, Chin S, Li P, Liu F, Maratos-Flier E, Lebrasseur NK, et al. Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1α muscle-specific knock-out animals. J Biol Chem. American Society for Biochemistry and Molecular Biology. 2007;282(41):30014–21.

    CAS  Google Scholar 

  174. Geng T, Li P, Okutsu M, Yin X, Kwek J, Zhang M, et al. PGC-1 plays a functional role in exercise-induced mitochondrial biogenesis and angiogenesis but not fiber-type transformation in mouse skeletal muscle. AJP: Cell Physiology. 2009;298(3):C572–9.

    Google Scholar 

  175. Leick L, Lyngby SS, Wojtasewski JF, Pilegaard H. PGC-1α is required for training-induced prevention of age-associated decline in mitochondrial enzymes in mouse skeletal muscle. Exp Gerontol. 2010;45(5):336–42.

    Article  CAS  PubMed  Google Scholar 

  176. Zechner C, Lai L, Zechner JF, Geng T, Yan Z, Rumsey JW, et al. Total skeletal muscle PGC-1 deficiency uncouples mitochondrial derangements from fiber type determination and insulin sensitivity. Cell Metab. 2010;12(6):633–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Lin J, Wu H, Tarr PT, Zhang C-Y, Wu Z, Boss O, et al. Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature. 2002;418(6899):797–801.

    Article  CAS  PubMed  Google Scholar 

  178. Safdar A, Little JP, Stokl AJ, Hettinga BP, Akhtar M, Tarnopolsky MA. Exercise increases mitochondrial PGC-1alpha content and promotes nuclear-mitochondrial cross-talk to coordinate mitochondrial biogenesis. J Biol Chem. 2011;286(12):10605–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell. 1999;98(1):115–24.

    Article  CAS  PubMed  Google Scholar 

  180. Akimoto T, Pohnert SC, Li P, Zhang M, Gumbs C, Rosenberg PB, et al. Exercise stimulates Pgc-1alpha transcription in skeletal muscle through activation of the p38 MAPK pathway. J Biol Chem [Internet]. 2005;280(20):19587–93. Available from: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=15767263&retmode=ref&cmd=prlinks

    Article  CAS  Google Scholar 

  181. Zhang Y, Uguccioni G, Ljubicic V, Irrcher I, Iqbal S, Singh K, et al. Multiple signaling pathways regulate contractile activity-mediated PGC-1α gene expression and activity in skeletal muscle cells. Physiol Rep. 2014;1:2(5).

    Google Scholar 

  182. Park J-Y, Wang P-Y, Matsumoto T, Sung HJ, Ma W, Choi JW, et al. p53 improves aerobic exercise capacity and augments skeletal muscle mitochondrial DNA content. Circ Res. 2009;105(7):705. –12–11pfollowing712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Aquilano K, Baldelli S, Pagliei B, Cannata SM, Rotilio G, Ciriolo MR. p53 orchestrates the PGC-1α-mediated antioxidant response upon mild redox and metabolic imbalance. Antioxid Redox Signal. 2013;18(4):386–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Sen N, Satija YK, Das S. PGC-1α, a key modulator of p53, promotes cell survival upon metabolic stress. Mol Cell. Elsevier. 2011;44(4):621–34.

    Article  CAS  Google Scholar 

  185. Saleem A, Carter HN, Hood DA. p53 is necessary for the adaptive changes in cellular milieu subsequent to an acute bout of endurance exercise. AJP: Cell Physiology. 2013;306(3):C241–9.

    Google Scholar 

  186. Saleem A, Hood DA. Acute exercise induces tumour suppressor protein p53 translocation to the mitochondria and promotes a p53-Tfam-mitochondrial DNA complex in skeletal muscle. J Physiol. 2013;591(Pt 14):3625–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Cantó C, Auwerx J. PGC-1α, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipidol. 2009;20(2):98–105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Adhihetty PJ, Uguccioni G, Leick L, Hidalgo J, Pilegaard H, Hood DA. The role of PGC-1 on mitochondrial function and apoptotic susceptibility in muscle. AJP: Cell Physiology. 2009;297(1):C217–25.

    CAS  Google Scholar 

  189. Philp A, Chen A, Lan D, Meyer GA, Murphy AN, Knapp AE, et al. Sirtuin 1 (SIRT1) deacetylase activity is not required for mitochondrial biogenesis or peroxisome proliferator activated receptor- coactivator-1 (PGC-1 ) deacetylation following endurance exercise. J Biol Chem. 2011;286(35):30561–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Tanner CB, Madsen SR, Hallowell DM, Goring DMJ, Moore TM, Hardman SE, et al. Mitochondrial and performance adaptations to exercise training in mice lacking skeletal muscle LKB1. AJP: Endocrinol Metab. 2013;305(8):E1018–29.

    CAS  Google Scholar 

  191. Drake JC, Wilson RJ, Yan Z. Molecular mechanisms for mitochondrial adaptation to exercise training in skeletal muscle. FASEB J. 2016;30(1):13–22.

    Article  CAS  PubMed  Google Scholar 

  192. Twig G, Hyde B, Shirihai OS. Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view. Biochim Biophys Acta. 2008;1777(9):1092–7.

    Article  CAS  PubMed  Google Scholar 

  193. Lira VA, Okutsu M, Zhang M, Greene NP, Laker RC, Breen DS, et al. Autophagy is required for exercise training-induced skeletal muscle adaptation and improvement of physical performance. FASEB J. 2013;27(10):4184–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Pagano AF, Py G, Berna H, Candau RB, Sanchez AMJ. Autophagy and protein turnover signaling in slow-twitch muscle during exercise. Med Sci Sports Exerc. 2014;46(7):1314–25.

    Article  CAS  PubMed  Google Scholar 

  195. Varnauskas E, Bjorntorp P, Fahlen M, Prerovsky I, Stenberg J. Effects of physical training on exercise blood flow and enzymatic activity in skeletal muscle. Cardiovasc Res. 1970;4(4):418–22.

    Article  CAS  PubMed  Google Scholar 

  196. Hoppeler H, Lüthi P, Claassen H, Weibel ER, Howald H. The ultrastructure of the normal human skeletal muscle. Pflugers Arch. Springer-Verlag. 1973;344(3):217–32.

    Article  CAS  Google Scholar 

  197. Booth FW, Narahara KA. Vastus lateralis cytochrome oxidase activity and its relationship to maximal oxygen consumption in man. Pflugers Arch. Springer-Verlag. 1974;349(4):319–24.

    Article  CAS  Google Scholar 

  198. Hoppeler H, Howald H, Conley K, Lindstedt SL, Claassen H, Vock P, et al. Endurance training in humans: aerobic capacity and structure of skeletal muscle. J Appl Physiol. 1985;59(2):320–7.

    Article  CAS  PubMed  Google Scholar 

  199. Hood DA, Uguccioni G, Vainshtein A, D'souza D. Mechanisms of exercise-induced mitochondrial biogenesis in skeletal muscle: implications for health and disease. Compr Physiol. 2011;1(3):1119–34.

    PubMed  Google Scholar 

  200. Montero D, Cathomen A, Jacobs RA, Flück D, de Leur J, Keiser S, et al. Haematological rather than skeletal muscle adaptations contribute to the increase in peak oxygen uptake induced by moderate endurance training. J Physiol. 2015;593(20):4677–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Baldwin KM, Klinkerfuss GH, Terjung RL, Molé PA, Holloszy JO. Respiratory capacity of white, red, and intermediate muscle: adaptative response to exercise. Am J Phys. 1972;222(2):373–8.

    Article  CAS  Google Scholar 

  202. Jacobs RA, Fluck D, Bonne TC, Burgi S, Christensen PM, Toigo M, et al. Improvements in exercise performance with high-intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function. J Appl Physiol. 2013;115(6):785–93.

    Article  PubMed  Google Scholar 

  203. Scalzo RL, Peltonen GL, Binns SE, Shankaran M, Giordano GR, Hartley DA, et al. Greater muscle protein synthesis and mitochondrial biogenesis in males compared with females during sprint interval training. FASEB J. 2014;28(6):2705–14.

    Article  CAS  PubMed  Google Scholar 

  204. Nielsen J, Gejl KD, Hey-Mogensen M, Holmberg H-C, Suetta C, Krustrup P, et al. Plasticity in mitochondrial cristae density allows metabolic capacity modulation in human skeletal muscle. J Physiol. 2017;595(9):2839–47.

    Article  CAS  PubMed  Google Scholar 

  205. Greggio C, Jha P, Kulkarni SS, Lagarrigue S, Broskey NT, Boutant M, et al. Enhanced respiratory chain supercomplex formation in response to exercise in human skeletal muscle. Cell Metab. 2017;25(2):301–11.

    Article  CAS  PubMed  Google Scholar 

  206. Coffey VG, Zhong Z, Shield A, Canny BJ, Chibalin AV, Zierath JR, et al. Early signaling responses to divergent exercise stimuli in skeletal muscle from well-trained humans. FASEB J. 2006;20(1):190–2.

    Article  CAS  PubMed  Google Scholar 

  207. Wilkinson SB, Phillips SM, Atherton PJ, Patel R, Yarasheski KE, Tarnopolsky MA, et al. Differential effects of resistance and endurance exercise in the fed state on signalling molecule phosphorylation and protein synthesis in human muscle. J Physiol. 2008;586(15):3701–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Vissing K, McGee SL, Farup J, Kjølhede T, Vendelbo MH, Jessen N. Differentiated mTOR but not AMPK signaling after strength vs endurance exercise in training-accustomed individuals. Scand J Med Sci Sports. 2013;23(3):355–66.

    Article  CAS  PubMed  Google Scholar 

  209. Burd NA, Andrews RJ, West DWD, Little JP, Cochran AJR, Hector AJ, et al. Muscle time under tension during resistance exercise stimulates differential muscle protein sub-fractional synthetic responses in men. J Physiol. 2012;590(2):351–62.

    Article  CAS  PubMed  Google Scholar 

  210. Bohé J, Low A, Wolfe RR, Rennie MJ. Human muscle protein synthesis is modulated by extracellular, not intramuscular amino acid availability: a dose-response study. J Physiol. 2003;552(Pt 1):315–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  211. Robinson MM, Dasari S, Konopka AR, Johnson ML, Manjunatha S, Esponda RR, et al. Enhanced protein translation underlies improved metabolic and physical adaptations to different exercise training modes in young and old humans. Cell Metab. 2017;25(3):581–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Tang JE, Hartman JW, Phillips SM. Increased muscle oxidative potential following resistance training induced fibre hypertrophy in young men. Appl Physiol Nutr Metab. 2006;31(5):495–501.

    Article  CAS  PubMed  Google Scholar 

  213. Kon M, Ohiwa N, Honda A, Matsubayashi T, Ikeda T, Akimoto T, et al. Effects of systemic hypoxia on human muscular adaptations to resistance exercise training. Physiol Rep. 2014;1:2(6).

    Google Scholar 

  214. Wang N, Hikida RS, Staron RS, Simoneau JA. Muscle fiber types of women after resistance training–quantitative ultrastructure and enzyme activity. Pflugers Arch. 1993;424(5–6):494–502.

    Article  CAS  PubMed  Google Scholar 

  215. Porter C, Reidy PT, Bhattarai N, Sidossis LS, Rasmussen BB. Resistance exercise training alters mitochondrial function in human skeletal muscle. Med Sci Sports Exerc. 2015;47(9):1922–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. MacDougall JD, Hicks AL, MacDonald JR, McKelvie RS, Green HJ, Smith KM. Muscle enzymatic adaptations to sprint interval training. Medicine &amp Science in Sports &amp Exercise. 1996;28(Supplement):21.

    Article  Google Scholar 

  217. Barnett C, Carey M, Proietto J, Cerin E, Febbraio MA, Jenkins D. Muscle metabolism during sprint exercise in man: influence of sprint training. J Sci Med Sport. 2004;7(3):314–22.

    Article  CAS  PubMed  Google Scholar 

  218. Gibala MJ, Little JP, Van Essen M, Wilkin GP, Burgomaster KA, Safdar A, et al. Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. J Physiol. 2006;575(Pt 3):901–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Burgomaster KA, Howarth KR, Phillips SM, Rakobowchuk M, Macdonald MJ, McGee SL, et al. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol. 2008;586(1):151–60.

    Article  CAS  PubMed  Google Scholar 

  220. Gibala MJ, McGee SL, Garnham AP, Howlett KF, Snow RJ, Hargreaves M. Brief intense interval exercise activates AMPK and p38 MAPK signaling and increases the expression of PGC-1 in human skeletal muscle. J Appl Physiol. 2009;106(3):929–34.

    Article  CAS  PubMed  Google Scholar 

  221. Wojtaszewski JFP, Nielsen P, Hansen BF, Richter EA, Kiens B. Isoform-specific and exercise intensity-dependent activation of 5′-AMP-activated protein kinase in human skeletal muscle. J Physiol. 2000;528(1):221–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Wojtaszewski JFP, Mourtzakis M, Hillig T, Saltin B, Pilegaard H. Dissociation of AMPK activity and ACCβ phosphorylation in human muscle during prolonged exercise. Biochem Biophys Res Commun. 2002;298(3):309–16.

    Article  CAS  PubMed  Google Scholar 

  223. Chen Z-P, Stephens TJ, Murthy S, Canny BJ, Hargreaves M, Witters LA, et al. Effect of exercise intensity on skeletal muscle AMPK signaling in humans. Diabetes. 2003;52(9):2205–12.

    Article  CAS  PubMed  Google Scholar 

  224. Casuso RA, Plaza-Díaz J, Ruiz-Ojeda FJ, Aragón-Vela J, Robles-Sanchez C, Nordsborg NB, et al. High-intensity high-volume swimming induces more robust signaling through PGC-1α and AMPK activation than sprint interval swimming in m. triceps brachii. PLoS One. 2017;12(10):e0185494.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  225. Gibala M. Molecular responses to high-intensity interval exercise. Appl Physiol Nutr Metab. 2009;34(3):428–32.

    Article  CAS  PubMed  Google Scholar 

  226. Hood MS, Little JP, Tarnopolsky MA, Myslik F, Gibala MJ. Low-volume interval training improves muscle oxidative capacity in sedentary adults. Med Sci Sports Exerc. 2011;43(10):1849–56.

    Article  CAS  PubMed  Google Scholar 

  227. Hickson RC, Dvorak BA, Gorostiaga EM, Kurowski TT, Foster C. Potential for strength and endurance training to amplify endurance performance. J Appl Physiol. 1988;65(5):2285–90.

    Article  CAS  PubMed  Google Scholar 

  228. Bell GJ, Syrotuik D, Martin TP, Burnham R, Quinney HA. Effect of concurrent strength and endurance training on skeletal muscle properties and hormone concentrations in humans. Eur J Appl Physiol. Springer-Verlag. 2000;81(5):418–27.

    Article  CAS  Google Scholar 

  229. Lundberg TR, Fernandez-Gonzalo R, Tesch PA, Rullman E, Gustafsson T. Aerobic exercise augments muscle transcriptome profile of resistance exercise. AJP: Regulatory, Integrative and Comparative Physiology. 2016:ajpregu.00035.2016.

    Google Scholar 

  230. Lundberg TR, Fernandez-Gonzalo R, Tesch PA. Exercise-induced AMPK activation does not interfere with muscle hypertrophy in response to resistance training in men. J Appl Physiol. 2014;116(6):611–20.

    Article  PubMed  Google Scholar 

  231. Donges CE, Burd NA, Duffield R, Smith GC, West DWD, Short MJ, et al. Concurrent resistance and aerobic exercise stimulates both myofibrillar and mitochondrial protein synthesis in sedentary middle-aged men. J Appl Physiol. 2012;112(12):1992–2001.

    Article  CAS  PubMed  Google Scholar 

  232. Fan W, Evans RM. Exercise mimetics: impact on health and performance. Cell Metab. 2017;25(2):242–7.

    Article  CAS  PubMed  Google Scholar 

  233. Zamora M, Pardo R, Villena JA. Pharmacological induction of mitochondrial biogenesis as a therapeutic strategy for the treatment of type 2 diabetes. Biochem Pharmacol. 2015;98(1):16–28.

    Article  CAS  PubMed  Google Scholar 

  234. Overington JP, Al-Lazikani B, Hopkins AL. How many drug targets are there? Nat Rev Drug Discov. Nat Publ Group. 2006;5(12):993–6.

    CAS  Google Scholar 

  235. Pang J, Xu X, Getman MR, Shi X, Belmonte SL, Michaloski H, et al. G protein coupled receptor kinase 2 interacting protein 1 (GIT1) is a novel regulator of mitochondrial biogenesis in heart. J Mol Cell Cardiol. 2011;51(5):769–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Cameron RB, Beeson CC, Schnellmann RG. Development of therapeutics that induce mitochondrial biogenesis for the treatment of acute and chronic degenerative diseases. J Med Chem. 2016;59(23):10411–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Daubert MA, Yow E, Dunn G, Marchev S, Barnhart H, Douglas PS, et al. Novel mitochondria-targeting peptide in heart failure treatment. Circ Heart Fail. 2017;10(12):e004389.

    Article  CAS  PubMed  Google Scholar 

  238. Fan W, Waizenegger W, Lin CS, Sorrentino V, He M-X, Wall CE, et al. PPARδ promotes running endurance by preserving glucose. Cell Metab. 2017;25(5):1186–93. e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Zhang J, Liu H, Luo S, Lu Z, Chávez-Badiola A, Liu Z, et al. Live birth derived from oocyte spindle transfer to prevent mitochondrial disease. Reprod Biomed Online. 2017;34(4):361–8.

    Article  PubMed  Google Scholar 

  240. Bianconi E, Piovesan A, Facchin F, Beraudi A, Casadei R, Frabetti F, et al. An estimation of the number of cells in the human body. Ann Hum Biol. 2013;40(6):463–71.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva-Karin Gidlund .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gidlund, EK. (2019). Exercise and the Mitochondria. In: Kokkinos, P., Narayan, P. (eds) Cardiorespiratory Fitness in Cardiometabolic Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-04816-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04816-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04815-0

  • Online ISBN: 978-3-030-04816-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics