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Abstract. Automatic segmentation of medical images finds abundant applica-
tions in clinical studies. Computed Tomography (CT) imaging plays a critical
role in diagnostic and surgical planning of craniomaxillofacial (CMF) surgeries
as it shows clear bony structures. However, CT imaging poses radiation risks for
the subjects being scanned. Alternatively, Magnetic Resonance Imaging
(MRI) is considered to be safe and provides good visualization of the soft
tissues, but the bony structures appear invisible from MRI. Therefore, the
segmentation of bony structures from MRI is quite challenging. In this paper, we
propose a cascaded generative adversarial network with deep-supervision dis-
criminator (Deep-supGAN) for automatic bony structures segmentation. The
first block in this architecture is used to generate a high-quality CT image from
an MRI, and the second block is used to segment bony structures from MRI and
the generated CT image. Different from traditional discriminators, the deep-
supervision discriminator distinguishes the generated CT from the ground-truth
at different levels of feature maps. For segmentation, the loss is not only con-
centrated on the voxel level but also on the higher abstract perceptual levels.
Experimental results show that the proposed method generates CT images with
clearer structural details and also segments the bony structures more accurately
compared with the state-of-the-art methods.

1 Introduction

Generating a precise three-dimensional (3D) skeletal model is an essential step during
craniomaxillofacial (CMF) surgical planning. Traditionally, computed tomography
(CT) images are used in CMF surgery. However, a patient has to be exposed under
radiation [1]. Magnetic Resonance Imaging (MRI), on the other hand, provides a safer
scanning without radiation and non-invasive way to render CMF anatomy. However, it
is extremely difficult to accurately segment CMF bony structures from MRI due to the

© Springer Nature Switzerland AG 2018
A. F. Frangi et al. (Eds.): MICCAI 2018, LNCS 11073, pp. 720–727, 2018.
https://doi.org/10.1007/978-3-030-00937-3_82

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00937-3_82&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00937-3_82&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00937-3_82&amp;domain=pdf


confusing boundaries between bones and air (both appearing to be black in MRI), low
signal-to-noise ratio, and partial volume effect.

Recently, deep learning has demonstrated outstanding performance in a wide range
of computer vision and image analysis applications. With a properly designed loss
function, deep learning methods can automatically learn complex hierarchical features
for a specific task. In particular, fully convolutional neural network (FCN) [2] was
proposed to perform image segmentation by down-sampling and up-sampling streams.
U-Net based methods further proposed skip connections to concatenate the lower fine
feature maps to the higher coarse feature maps [3]. Nie et al. proposed a 3D deep-
learning based cascade framework, in which a 3D U-Net is used to train a coarse
segmentation and then a CNN is cascaded for fine-grained segmentation [4]. However,
most of the previous works typically perform segmentation on the original MRI with
low contrast for bony structures. Inspired by great success of Generative Adversarial
Network (GAN) [5] in generating realistic images, we hypothesize that the segmen-
tation problem can also be treated as an estimation problem, i.e., generating realistic CT
images from MRIs and performing segmentation from the generated CT images. In this
paper, we propose a framework of deep-supervision adversarial learning for CMF
structure segmentation on the MR images. Our proposed framework consists of two
major steps: (1) a simulation GAN to estimate a CT image from an MR image, and
(2) a segmentation GAN to segment CMF bony structures based on both the original
MR image and the generated CT image. Specifically, a CT image is first generated
from a given MR image by a deep-supervision discriminative GAN, where a perceptive
loss strategy is developed to obtain the knowledge from the real CT image in terms of
both local detailed information and global structures. Furthermore, in segmentation
task, with the proposed perceptive loss strategy, the discriminative GAN evaluates the
segmentation results with the feature maps at different layers and the feedback structure
information from both the original MR image and the generated CT image.

2 Method

In this section, we propose a cascaded generative adversarial network with deep-
supervision discriminators (Deep-supGAN) to perform CMF bony structures seg-
mentation from the MR image and generated CT image. The proposed framework is
shown in Fig. 1. It includes two parts: (1) a simulation GAN that estimates a CT image
from an MR image and (2) a segmentation GAN that segments the CMF bony
structures based on both the original MR image and the generated CT image. The
simulation GAN consists of the deep-supervision discriminators designed at each
convolution layer to evaluate the quality of the generated image. In segmentation GAN,
the deep-supervision perception loss is employed to evaluate the segmentation at
multiple levels. Note that, for the discriminators of both parts, we utilize the first four
convolution layers of a VGG-16 network [6] pre-trained on the ImgeNet dataset to
extract the feature maps.
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2.1 Simulation GAN

The simulation GAN for generating CT from MRI is shown in the upper portion of
Fig. 1. Considering z as a ground-truth MRI patch, x as a ground-truth CT patch, and x0

as a generated CT patch, we design a generator Gc zð Þ to map a given MR image patch
into a CT image patch. To make the generated CT image patch similar to the ground-
truth CT image in terms of both local details and global structures, we design multiple
deep-supervision discriminator Dl

c xð Þ; l ¼ 1; 2; 3; � � �ð Þ. Here, Dl
c xð Þ is a discriminator

at the l-th layer of a pre-trained VGG-16 network, where each layer can extract features
with different scales, from local details to global structures. Thus, each discriminator
compares the generated CT with the ground-truth CT in different scales, resulting in an
accurate simulation. To match the generated CT with the ground-truth CT, an adver-
sarial game is played between Gc zð Þ and Dl

c xð Þ. The loss function for the game is
described as:

min
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c

Ex� p xð Þ
X

l

X
i; j
log Dl

c xð Þ� �
i; j

� �h i
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X
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where p xð Þ is the distribution of the original CT data, q zð Þ is the distribution of the
original MRI data, Dl

c xð Þ� �
i; j is the i; jð Þ-th element in matrix Dl

c xð Þ, and L is the

number of layers connected with discriminator.

2.2 Segmentation GAN

Similarly, with the generated CT x0 from Gc zð Þ, we can construct a segmentation GAN
Gs z; x

0� �
, which learns to predict a bony structures segmentation y0. Then, the ground-

truth y and the predicted segmentation y0 are forwarded to the discriminator Ds yð Þ to get
an evaluation. Note that, different from the discriminator Dl

c in the simulation GAN, the
discriminator Ds yð Þ is only designed for the feature map at the last layer of the pre-
trained VGG-16 net. The adversarial game for segmentation is as follows:

minGs maxDs Ey� p yð Þ logDs yð Þ½ � þEz;x0 � q z;x0ð Þ log 1� Ds Gs z; x
0ð Þð Þð Þ½ � ð2Þ

where p yð Þ is the distribution of ground-truth segmentation images, and q z; x0ð Þ is the
joint distribution of the original MRI and the generated CT data. For the segmentation
results, a voxel-wise loss is intuitively considered as follows:

Lvox ¼ Ez; x0 � q z; x0ð Þ Gs z; x
0ð Þ � yk k2 ð3Þ

Moreover, we also consider a perceptual loss Llpercp to encourage the consistence of
features maps from generated segmentation and ground-truth segmentation. To this
end, the pre-trained part of the discriminator is utilized to extract multi-layer feature
maps from the generated segmentation and ground-truth segmentation. Taking ul yð Þ as
the feature map of input y at the l-th layer of the feature extraction network, and Nl as

722 M. Zhao et al.



the number of voxels in feature map ul yð Þ, we can obtain the perceptual loss for the l-th
layer as follows:

Ll
percp ¼ Ez; x0 � q z; x0ð Þ

1
Nl

ul Gs z; x
0ð Þð Þ � ul yð Þk k2

� 	
ð4Þ

In summary, the total loss function with respect to the generator is:

minGs Ez; x0 � q z; x0ð Þ � logDs Gs z; x
0ð Þð Þ½ � þ k1Lvox þ k2

XL

l¼1
Ll
percp ð5Þ

where parameters k1 and k2 are utilized to balance the importance of the three loss
functions.

3 Experimental Results

3.1 Dataset

The experiments were conducted on the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database [7]. It consists of 16 subjects with paired MRI and CT scans. The MRI
scans were obtained by a Siemens Triotim scanner, with a voxel size of 1.2 � 1.2
1 mm3, TE 2.95 ms, TR 2300 ms, and flip angle 9. The CT scans were obtained from a
Siemens Somatom scanner, with a voxel size of 0.59 � 0.59 � 3 mm3.
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Fig. 1. The overview of the proposed Deep-supGAN. Top: CT generation net, where the
generator Gc takes MRI patch z as input and generates the corresponding CT patch x0, while the
discriminator Dl

c takes generated CT patch x0 and ground-truth CT patch x as input and produces
classification (ground-truth = 1, generated = 0). Bottom: segmentation net, where Gs takes MRI
patch z and generated CT patch x0 as input and then generates the segmentation y0, while Ds takes
the generated segmentation y0 and the ground-truth segmentation y as input and produces
classification (ground-truth = 1, generated = 0).
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The preprocessing was conducted as follows. Both MRI and CT scans were
resampled to size 152 � 184 � 149 with a voxel size of 1 � 1� 1 mm3. Each CT was
aligned with its corresponding MRI. All intensities of MRI and CT were rescaled into
[− 1, 1]. To be compatible with VGG-16 net, both MRI and CT data were cropped into
patches of size 152 � 184 � 3 for training. The experiments were conducted on the 16
subjects in a leave-one-out cross validation. To measure the quality of the generated CT,
we used the mean absolute error (MAE) and peak-signal-to-noise-ratio (PSNR). To
measure the segmentation accuracy, we used Dice similarity coefficient (DSC). We
adopted TensorFlow to implement the proposed framework. The network was trained
using Adam with a learning rate of 1e−4 and a momentum of 0.9. In the experiments, we
empirically set the parameters in the proposed method as: L ¼ 4; k1 ¼ 1 and k2 ¼ 1.

3.2 Impact of Deep-Supervision Feature Maps

To evaluate the effectiveness of the deep-supervision strategy on the simulation GAN,
we train the network with the discriminator in different layers of the pre-trained VGG-
16 network. The results are shown in Fig. 2. It is obvious that the lower layer the
discriminator is applied, the clearer the results will be. A quantitative comparison is
shown in Table 1, indicating that, when the lower layer is connected with discrimi-
nator, the PSNR is bigger and the MAE is smaller.

To evaluate the effectiveness of the deep-supervision strategy on the segmentation
GAN, we train the network with the perception reconstruction loss in different layers of
the pre-trained VGG-16 network. As shown in Fig. 3, the results with higher layer
connected with perceptual loss, L2

percp and L3
percp, are more smooth and accurate in thin

structures, as shown in the yellow rectangles. The DSC of different layer connected
with perceptual loss is provided in Table 2, which again indicates that the deep-
supervision perceptual loss enhances the performance greatly.

CTMRI 1
cD

4
cD

3
cD

2
cD

Fig. 2. CT generated by proposed Deep-supGAN with different layers connected with the
discriminator. Left to right: original MRI, four CT images generated with the fourth, third,
second, and first layer respectively connected with the discriminator, and ground-truth CT.

Table 1. PSNR and MAE with different layer connected with the discriminator.

Layer ID 1 2 3 4

PSNR 23.03 23.95 24.40 25.11
MAE (%) 1.99 1.61 1.45 1.23
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3.3 Impact of Generated CT

To evaluate the contribution of generated CT to the segmentation results, the seg-
mentation results only with MRI as input (denoted as with MRI) is shown in Fig. 4. The
segmentation result with both original MRI and generated CT as input (denoted as with
MRI + CT) is more smooth and complete for thin structures, especially in the regions
indicated by the yellow rectangles. The quantitative comparison in terms of DSC is
shown in Table 3. It can be seen that the performance is significantly improved with the
generated CT.

MRI Ground-truth1
percepL 2

percepL 3
percepLvoxL

Fig. 3. Segmentation of proposed Deep-supGAN with different layers connected with the
perceptual loss.

Table 2. DSC (%) of proposed Deep-supGAN with different layers connected with the
perceptual loss.

Layer ID Lvox L1
percp L2

percp L3
percp

DSC (%) 90.52 92.16 94.24 94.46

MRI U-Net With MRI With MRI+CTGanSeg Ground-truth

Fig. 4. Segmentation results by comparison methods. Left to right: Original MRI, U-Net,
GanSeg, our method with MRI, our method with MRI+CT, and ground-truth.

Table 3. DSC (%) of compared methods on 16 subjects using leave-one-out cross validation.

Methods U-Net [3] GanSeg [8] With MRI With MRI + CT

DSC (%) 85.47 83.30 89.94 94.46
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3.4 Impact of Pre-trained VGG-16 Network

Here we compare the generated CT with two different training settings: (1) learning the
discriminator from scratch (denoted as Scratch) and (2) utilizing a pre-trained VGG-16
network (denoted as VGG-16) for the discriminator. As shown in Fig. 5, the CT
generated with pre-trained VGG-16 is much clearer and more realistic than that trained
from scratch.

3.5 Comparison with State-of-the-Art Segmentation Methods

To illustrate the advantage of our method on bony structures segmentation, we also
compared it with two widely-used deep learning methods, i.e., U-Net [3] based seg-
mentation method and Generative Adversarial Network based semantic segmentation
method [8] (denoted as GanSeg, a traditional GAN with the generator designed as
segmentation network). Comparison results on a typical subject are shown in Fig. 4. It
can be seen that both U-Net and GanSeg failed to accurately segment bony structures,
as indicated by yellow rectangles. Compared with these two methods, our proposed
method can achieve more accurate segmentation. The quantitative comparison in terms
of DSC is shown in Table 3. It clearly demonstrates the advantage of our proposed
method in terms of segmentation accuracy.

4 Conclusion

In this paper, we proposed a cascade GAN network, Deep-supGAN, to segment CMF
bony structures from the combination of an original MRI and a generated CT image.
A GAN with deep-supervision discriminator is designed to generate a CT image from
an MRI. With the generated CT image, a GAN with deep-supervision perceptual loss is
designed to perform bony structures segmentation using both original MRI and the
generated CT image. The combination of MRI and CT image can provide comple-
mentary information about bony structures for the segmentation task. Comparisons
with the state-of-the-art methods demonstrate the advantage of our proposed method in
terms of segmentation accuracy.

CTMRI Scratch VGG-16

Fig. 5. The impact of pre-trained VGG-16 for generating CT. Left to right: original MRI, two
CT images generated respectively by our method with discriminator (1) trained from scratch and
(2) utilizing a pre-trained VGG-16, and ground-truth CT.
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