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Abstract. Image segmentation is a crucial step in many computer-
aided medical image analysis tasks, e.g., automated radiation therapy.
However, low tissue-contrast and large amounts of artifacts in medical
images, i.e., CT or MR images, corrupt the true boundaries of the target
tissues and adversely influence the precision of boundary localization in
segmentation. To precisely locate blurry and missing boundaries, human
observers often use high-resolution context information from neighboring
regions. To extract such information and achieve fine-grained segmenta-
tion (high accuracy on the boundary regions and small-scale targets), we
propose a novel hierarchical dilated network. In the hierarchy, to main-
tain precise location information, we adopt dilated residual convolutional
blocks as basic building blocks to reduce the dependency of the network
on downsampling for receptive field enlargement and semantic informa-
tion extraction. Then, by concatenating the intermediate feature maps of
the serially-connected dilated residual convolutional blocks, the resultant
hierarchical dilated module (HD-module) can encourage more smooth
information flow and better utilization of both high-level semantic infor-
mation and low-level textural information. Finally, we integrate several
HD-modules in different resolutions in a parallel connection fashion to
finely collect information from multiple (more than 12) scales for the net-
work. The integration is defined by a novel late fusion module proposed
in this paper. Experimental results on pelvic organ CT image segmen-
tation demonstrate the superior performance of our proposed algorithm
to the state-of-the-art deep learning segmentation algorithms, especially
in localizing the organ boundaries.

1 Introduction

Image segmentation is an essential component in computer-aided diagnosis
and therapy systems, for example, dose planning for imaging-guided radiation
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Fig. 1. Illustration of the blurry and vanishing boundaries in pelvic CT images. The
green, red and blue masks indicate segmentation ground-truth of bladder, prostate,
and rectum, respectively.

therapy (IGRT) and quantitative analysis for disease diagnosis. To obtain reli-
able segmentation for these applications, not only a robust detection of global
object contours is required, a fine localization of tissue boundaries and small-
scale structures is also fundamental. Nevertheless, the defection of image quality
due to acquisition and process operations of medical images poses challenges to
researchers in designing dependable segmentation algorithms.

Take the pelvic CT image as an example. The low soft-tissue-contrast makes
the boundaries of target organs vague and hard to detect. This makes the nearby
organs visually merged as a whole (see Fig. 1). In addition, different kinds of arti-
facts, e.g., metal, motion, and wind-mild artifacts, corrupt the real boundaries
of organs and, more seriously, split the holistic organs into isolated parts with
various sizes and shapes by generating fake boundaries (see Subject 2 in Fig. 1).

Numerous methods have been proposed in the literature to solve the prob-
lem of blurry image segmentation. Among the recently proposed algorithms,
deep learning methods that are equipped with end-to-end learning mechanisms
and representative features have become indispensable components and helped
the corresponding algorithms to achieve state-of-the-art performances in many
applications. For example, in [9], Oktay et al. integrated shape priors into a
convolutional network through a novel regularization model to constrain the
network of making appropriate estimation in the corrupted areas. In [6], Chen et
al. introduced a multi-task network structure to simultaneously conduct image
segmentation and boundary delineation to achieve better boundary localization
performance. A large improvement has been made by the recently proposed algo-
rithms. In the mainstream deep learning-based segmentation methods, to achieve
good segmentation accuracy, high-resolution location information (provided by
skip connections) is integrated with robust semantic information (extracted by
downsampling and convolutions) to allow the network making local estimation
with global guidance. However, both these kinds of information cannot help
accurately locate the blurry boundaries contaminated by noise and surrounded
by fake boundaries, thus posing the corresponding algorithms under potential
failure in fine-grained medical image segmentation.

In this paper, to better detect the blurry boundary and tiny semantic struc-
tures, we propose a novel hierarchical dilated network. The main idea of our
design is to first extract high-resolution context information, which is accurate
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for localization and abundant in semantics. Then, based on the obtained high-
resolution information, we endow our network the ability to infer the precise
location of boundaries at blurry areas by collecting tiny but important clues
and through observing the surrounding contour tendency in high resolution. To
implement this idea, in the designed network, dilation is adopted to replace
downsampling for receptive field enlargement to maintain precise location infor-
mation. Also, by absorbing both the strength of DenseNet (the feature propa-
gation and reuse mechanism) [3] and ResNet (the iterative feature refinement
mechanism) [1], we concatenate the intermediate feature maps of several serially-
connected dilated residual convolutional blocks and propose our hierarchical
dilated module (HD-module). Then, different from the structures of ResNet and
DenseNet, which link the dense blocks and residual blocks in a serial manner, we
use parallel connections to integrate several deeply supervised HD-modules in
different resolutions and construct our proposed hierarchical dilated neural net-
work (HD-Net). After that, a late fusion module is introduced to further merge
intermediate results from different HD-modules. In summary, the advantages of
the proposed method are three-fold: (1) It can provide a better balance between
what and where by providing high-resolution semantic information, thus helping
improve the accuracy on blurry image segmentation; (2) It can endow sufficient
context information to tiny structures and achieve better segmentation results
on targets with small sizes; (3) It achieves smoother information flow and more
elaborate utilization of multi-level (semantic and textural) and multi-scale infor-
mation. Extensive experiments indicate superior performance of our method to
the state-of-the-art deep learning medical image segmentation algorithms.

2 Method

In this section, we introduce our proposed hierarchical dilated neural network
(HD-Net) for fine-grained medical image segmentation.

2.1 Hierarchical Dilated Network

Hierarchical Dilated Module (HD-Module). In order to extract high-
resolution context information and protect the tiny semantic structure, we select
dilated residual blocks as basic building blocks for our network. These blocks
can arbitrarily enlarge the receptive field and efficiently extract context infor-
mation without any compromise on the location precision. Also, the dilation
operations eliminate the dependency on downsampling of the networks, thus
allowing the tiny but important structures within images to be finely protected
for more accurate segmentation. Our proposed hierarchical dilated module is
constructed by concatenating the intermediate feature maps of several serially-
connected dilated residual convolutional blocks (see Fig. 2). In the designed mod-
ule, because of the combination of dense connections (concatenation) and resid-
ual connections, more smooth information flow is encouraged, and also, more
comprehensive multi-level (textural and semantic) and multi-scale information
is finely preserved.
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Fig. 2. Proposed hierarchical dilated network (HD-Net).

Hierarchical Dilated Network (HD-Net). To comprehensively exploit the
diverse high-resolution semantic information from different scales, we further
integrate several HD-modules and propose hierarchical dilated network (HD-
Net). As we can see at the bottom of Fig. 2, convolution and downsampling
operations tightly integrate three HD-modules from different resolutions into the
network. Then, after upsampling and deep supervision operations [6], the inter-
mediate probability maps of the three modules are further combined to generate
the final output. The numbers of channels L1, L2, and L3 of the three modules
are 32, 48 and 72, respectively. The dilation factors are set as d1 = 3, d2 = 5
for high-resolution, d3 = 2, d4 = 4 for medium-resolution, and d5 = 2, d6 = 2
for low-resolution module. In this setting, when generating the output proba-
bility maps, multi-scale information from 12 receptive fields with sizes ranging
from 7 to 206 is directly visible to the final convolutional layers, making the
segmentation result precise and robust.

Late Fusion Module. Element-wise max or average [6] operations are two
common fusion strategies in deep learning research. However, these methods
treat all the results equally. Therefore, to better fuse the intermediate deeply
supervised results from different sub-networks, we propose a late fusion module
that weighs the outputs according to their quality and how they convey comple-
mentary information compared to other outputs. Specifically, we first generate
the element-wise max and average of original outputs as intermediate results,
and then automatically merge all the results through convolution. In this way,
the enhanced intermediate results are automatically fused with more appropriate
weights, to form an end-to-end model.
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Fig. 3. Sketches of network structures of (a) ResNet, (b) DenseNet and (c) the pro-
posed HD-Net. In the figure, unbroken arcs indicate concatenation, dotted arcs indicate
element-wise plus, and straight lines indicate ordinal connections. Solid and hollow cir-
cles indicate convolution with and without dilation.

2.2 Comparison with ResNet and DenseNet

As discussed earlier, the proposed HD-Net borrows the advantages of both resid-
ual neural networks and dense networks. In this sub-section, we briefly compare
the differences between these networks (See Fig. 3 for intuitive comparison).

Intra-block Connections. Residual blocks are constructed in a parallel man-
ner by linking several convolutional layers with identity mapping, while dense
blocks are constructed in a serial-parallel manner by densely linking all the pre-
ceding layers with the later layers. However, as pointed out by the latest research,
although both networks perform great in many applications, the effective paths
in residual networks are proved to be relatively shallow [2], which means the
information interaction between lower layers and higher layers is not smooth
enough. Also, compared to DenseNet, Chen et al. [8] argued that too frequent
connections from the preceding layers may cause redundancy within the network.
To solve the problem of information redundancy of DenseNet, in our network
the dilated residual convolutions are selected as basic building blocks. In this
building block, dilation can help speed up the process of iterative representa-
tion refinement within residual blocks [4], thus making the features extracted by
two consecutive dilated residual convolution blocks be more diverse. Moreover,
to solve the problem of lacking long-term connections within ResNet, we intro-
duce dense connections into the serially connected dilated residual blocks and
encourage a smoother information flow throughout the network.

Inter-block Connections. As far as inter-block connections are concerned,
both ResNet and DenseNet use serial connection manners. As can be imagined,
this kind of connection may suffer from a risk of blocking the low-layer textu-
ral information to be visible to the final segmentation result. Consequently, in
our designed network, we adopt a parallel connection between HD-modules to
achieve more direct utilization of multi-level information.

The Usage of Downsampling. ResNet and DenseNet mainly use downsam-
pling operations to enlarge receptive field and to extract semantic information.
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But in our proposed network, dilation becomes the main source of receptive
field enlargement. Downsampling is mainly utilized for improving the informa-
tion diversity and robustness of the proposed network. This setting also makes
the design of parallel connections between modules to be more reasonable.

In summary, thanks to the dilation operations and the hierarchical structure,
the high-resolution semantic information in different scales is fully exploited.
Hence, HD-Net tends to provide a more detailed segmentation result, making it
potentially more suitable for fine-grained medical image segmentation.

3 Experiments

Dataset and Implementation Details. To test the effectiveness of the pro-
posed HD-Net, we adopt a pelvic CT image dataset with 339 scans for evaluation.
The contours of the three main pelvic organs, i.e., prostate, bladder, and rec-
tum have been delineated by experienced physicians and serve as ground-truth
for segmentation. The dataset is randomly divided into training, validation and
testing sets with 180, 59 and 100 samples, respectively. The patch size for all
the compared networks is 144 × 208 × 5. The implementations of all the com-
pared algorithms are based on Caffe platform. To make a fair comparison, we
use Xavier method to initialize parameters, and employ the Adam optimiza-
tion method with fixed hyper-parameters for all the compared methods. Among
the parameters, the learning rate (lr) is set to 0.001, and the decay rate hyper-
parameters β1 and β2 are set to 0.9 and 0.999, respectively. The batch size of all
compared methods is 10. The models are trained for at least 200,000 iterations
until we observe a plateau or over-fitting tendency according to validation losses.

Evaluating the Effectiveness of Dilation and Hierarchical Structure
in HD-Net. To conduct such an evaluation, we construct three networks for
comparison. The first one is the HD-Net introduced in Sect. 2. The second one
is an HD-Net without dilation (denoted by H-Net). The third one is constructed
by the HD-module but without the hierarchical structure, i.e., with only one
pathway (referred to as D-Net). The corresponding Dice similarity coefficient
(DSC) and average surface distance (ASD) of these methods are listed in Table 1.
Through the results, we can find that the introduction of dilation can contribute
an improvement of approximately 1.3% on Dice ratio and 0.16 mm on ASD,
while the introduction of hierarchical structure can contribute an improvement
of approximately 2.3% on Dice ratio and 0.34 mm on ASD. It verifies the effec-
tiveness of dilation and hierarchical structure in HD-Net.

Evaluating the Effectiveness of Late Fusion Module. From the reported
DSC and ASD in Table 2, we can see that, with the help of the late fusion module,
the network performance improves compared with the networks using average
fusion (Avg-Fuse), max fusion (Max-Fuse), and simple convolution (Conv-Fuse).
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Table 1. Evaluation of dilation and hierarchical structure in HD-Net.

Networks Prostate Bladder Rectum Prostate Bladder Rectum

DSC (%) ASD (mm)

H-Net 86.1± 4.9 91.6± 8.7 85.5± 5.5 1.57± 0.78 1.58± 2.34 1.39± 0.50

D-Net 85.3± 4.7 91.5± 7.6 84.1± 5.4 1.62± 0.53 1.75± 2.53 1.70± 0.69

HD-Net 87.7±3.7 93.4±5.5 86.5±5.2 1.39±0.36 1.34±1.75 1.32±0.50

Table 2. Evaluation of the effectiveness of the proposed late fusion module.

Networks Prostate Bladder Rectum Prostate Bladder Rectum

DSC (%) ASD (mm)

Avg-Fuse 87.0± 3.9 93.0± 6.2 85.7± 5.3 1.50± 0.44 1.43± 2.04 1.42± 0.48

Max-Fuse 87.2± 3.9 93.2± 5.4 86.1± 5.3 1.43± 0.37 1.21± 0.92 1.47± 0.67

Conv-Fuse 87.3± 3.9 93.1± 5.4 85.9± 5.5 1.45± 0.42 1.47± 2.41 1.48± 0.72

Proposed 87.7±3.7 93.4±5.5 86.5±5.2 1.39±0.36 1.34± 1.75 1.32±0.50

Comparison with the State-of-the-Art Methods. Table 3 compares our
proposed HD-Net with several state-of-the-art deep learning algorithms. Among
these methods, U-Net [5] achieved the best performance on ISBI 2012 EM chal-
lenge dataset; DCAN [6] has won the 1st prize in 2015 MICCAI Grand Segmen-
tation Challenge 2 and 2015 MICCAI Nuclei Segmentation Challenge; DenseSeg
[7] has won the first prize in the 2017 MICCAI grand challenge on 6-month
infant brain MRI segmentation.

Table 3 shows the segmentation results of U-Net [5], DCAN [6], DenseSeg
[7], as well as our proposed network. As can be seen, all the results from the
compared algorithms are reasonably well on predicting the global contour of the
target organs; however, our proposed algorithm still outperforms the state-of-
the-art methods by approximately 1% in Dice ratio and nearly 10% in average
surface distance for prostate and rectum. By visualizing the segmentation results
of a representative sample in Fig. 4, we can see that the improvement mainly
comes from the better boundary localization.

Table 3. Comparison with the state-of-the-art deep learning algorithms.

Networks Prostate Bladder Rectum Prostate Bladder Rectum

DSC (%) ASD (mm)

U-Net [5] 86.0± 5.2 91.7± 5.9 85.5± 5.1 1.53± 0.49 1.77± 1.85 1.47± 0.53

DCAN [6] 86.8± 4.3 92.7± 7.1 84.8± 5.8 1.55± 0.55 1.72± 2.59 1.85± 1.13

DenseSeg [7] 86.5± 3.8 92.5± 7.0 85.2± 5.5 1.58± 0.53 1.37± 1.30 1.53± 0.76

Proposed 87.7±3.7 93.4±5.5 86.5±5.2 1.39±0.36 1.34±1.75 1.32±0.50
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Fig. 4. Illustration of segmentation results. The first row visualizes the axial seg-
mentation results and the corresponding intensity image (yellow curves denote the
ground-truth contours). The second row is the 3D difference between the estimated
and the ground-truth segmentation results. In these sub-figures, yellow and white por-
tions denote the false positive and false negative predictions, respectively. The last
sub-figure shows the 3D ground-truth contours.

4 Conclusion

In this paper, to address the adverse effect of blurry boundaries and also conduct
fine-grained segmentation for medical images, we proposed to extract multiple
high-resolution semantic information. To this end, we first replace downsampling
with dilation for receptive field enlargement for accurate location prediction.
Then, by absorbing both the advantages of residual blocks and dense blocks, we
propose a new module with better mid-term and long-term information flow and
less redundancy, i.e., hierarchical dilated module. Finally, by further integrating
several HD-module with different resolutions using our newly defined late fusion
module in parallel, we propose our hierarchical dilated network. Experimental
results, based on a CT pelvic dataset, demonstrate the superior segmentation
performance of our method, especially on localizing the blurry boundaries.
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