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Abstract. This paper introduces a new type of deep learning scheme for fully-
automated abdominal multi-organ CT segmentation using transfer learning.
Convolutional neural network with 3D U-net is a strong tool to achieve volu-
metric image segmentation. The drawback of 3D U-net is that its judgement is
based only on the local volumetric data, which leads to errors in categorization.
To overcome this problem we propose 3D U-JAPA-net, which uses not only the
raw CT data but also the probabilistic atlas of organs to reflect the information
on organ locations. In the first phase of training, a 3D U-net is trained based on
the conventional method. In the second phase, expert 3D U-nets for each organ
are trained intensely around the locations of the organs, where the initial weights
are transferred from the 3D U-net obtained in the first phase. Segmentation in
the proposed method consists of three phases. First rough locations of organs are
estimated by probabilistic atlas. Second, the trained expert 3D U-nets are applied
in the focused locations. Post-process to remove debris is applied in the final
phase. We test the performance of the proposed method with 47 CT data and it
achieves higher DICE scores than the conventional 2D U-net and 3D U-net.
Also, a positive effect of transfer learning is confirmed by comparing the pro-
posed method with that without transfer learning.
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1 Introduction

Multilayer neural networks attracted great attention in the 1980s and in the early 1990s.
The most influential work was the invention of error back-propagation learning [1],
which is still used in current deep neural networks. During those years several types of
network architectures were tried, such as Neocognitron [2] and mixture of experts [3].
After the long ice age of neural networks from the late 1990s to around 2010, the idea
of deep convolutional neural networks (CNNs), which inherited some features of
Neocognitron, was proposed [4] and realized unprecedented performance in the area of
image recognition. Owing to the rapid progress of graphical processor units (GPUs),
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fast training of deep convolutional neural networks has been enabled with a low-cost
PC, which leads to the current boom of deep learning.

Deep learning using a CNN can be a strong tool in the area of medical imaging
also. Since the proposal of U-net [5], which is based on fully convolutional network
(FCN) [6], deep CNNs have been applied to various biomedical image segmentation
tasks and have outperformed the conventional algorithms. To apply deep CNNs to 3D
volume data, 3D U-net has been proposed [7], where 3-dimensional convolutions are
applied to attain volumetric segmentation. 3D U-net is easily applied to multi-organ CT
segmentation, which is an important pre-process for computer-aided diagnosis and
therapy.

The drawback of 3D U-net is that its judgement is based only on the local volu-
metric data, which often leads to errors in multi-organ segmentation. Some modifica-
tions of learning have been tried to overcome this problem. For example, Roth et al.
proposed a hierarchical 3D FCN that takes a coarse-to-fine approach, where the net-
work is trained to delineate the organ of interest roughly in the first stage and is trained
for detailed segmentation in the second stage [8]. A probabilistic approach can be
merged with FCNs [9], but the performance is not improved significantly.

Before the rise of deep learning, several approaches to multiple organ segmentation
from 3D medical images had been proposed. These approaches commonly utilize a
number of radiological images with manual tracing of organs, called atlases, as training
data, and can be classified into multi-atlas label fusion, machine learning, and statistical
atlas approaches.

Statistical atlas approaches have been most commonly applied to abdominal organ
segmentation. Explicit prior models constructed from atlases, such as the probabilistic
atlas (PA) [10, 11] and statistical shape models [12, 13] are used in these approaches.

Okada et al. proposed abdominal multi-organ segmentation method using condi-
tional shape-location and unsupervised intensity priors (S-CSL-UI), assuming that
variation of shape and location of abdominal organs were constrained by the organs
whose segmentation was stable and relatively accurate [14]. The method using hier-
archical modeling interrelation of organs improved the accuracy and stability of seg-
mentation, and it demonstrated effective reduction of the search space. These methods,
however, have been outperformed by CNNs.

In this paper, we propose a new 3D U-net learning scheme, which we name 3D U-
JAPA-net (Judgement Assisted by PA). The proposed scheme utilizes not only CNNs
but also PA information to overcome the drawbacks of the conventional 2D U-net and
3D U-net. Also, the proposed method comprises transfer learning [15] and mixture of
experts to make effective use of PA information so that more accurate multi-organ
segmentation may be attained.

2 Methods

The goal in this paper is to realize fully-automated segmentation of 8 abdominal
organs: liver; spleen; left and right kidneys; pancreas; gallbladder (GB); aorta; and
inferior vena cava (IVC). For this purpose, we compare the performances of the
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following 5 methods: S-CSL-UI; 2D U-net; 3D U-net; Mixture of 3D U-nets; and 3D
U-JAPA-net, which we propose in this paper.

A U-net consists of a contracting path and an expansive path. The contracting path
follows the typical architecture of a convolutional network. It consists of repeated
application of two 3 � 3 convolutions, each followed by a rectified linear unit (ReLU)
and a 2 � 2 max pooling operation. At each down-sampling step, the number of feature
channels is doubled. Every step in the expansive path consists of an up-sampling of the
feature map followed by a 2 � 2 up-convolution that halves the number of feature
channels, a concatenation with the feature map from the contracting path, and two
3 � 3 convolutions, each followed by a ReLU. Cropping is needed due to the loss of
border pixels in every convolution. At the final layer, a 1 � 1 convolution is used to
map each 64-component feature vector to the desired number of classes.

3D U-net is a simple expansion of 2D U-net, where both convolution and max
pooling operates in 3 dimensions like 3 � 3 � 3 or 2 � 2 � 2. In [7], batch nor-
malization (BN) [16] is introduced before each ReLU. Though 3D U-net can reflect the
3D structure of CT data, size of calculation becomes huge when the input data size is
large.

3D U-JAPA-net, which we introduce here, is an expansion of 3D U-net. The
learning scheme of 3D U-JAPA-net is shown in Fig. 1.

In the first learning phase, a 3D U-net with 9 output layers corresponding each class
(8 organs and background) is trained using the whole data inside the bounding boxes of
all organs. Also, we prepare PA for each organ based on the training data with the
method in [14]. After the first training converges, the weights of this network are
transferred to 8 expert 3D U-nets for each organ, each of which has 2 output layers
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Fig. 1. Learning scheme of 3D U-JAPA-net. Blue boxes represent feature maps and the
numbers of feature maps are denoted on top of each box. (Color figure online)

428 H. Kakeya et al.



(the organ and the background). Therefore the initial weights of 8 networks are the
same except for those connected to the final output layer. In the second learning phase,
each expert 3D U-net specialized for each organ accepts volumetric data including the
corresponding organ, and the weights are modified by the gradient descent method.

In the test phase, the trained network specialized for each organ accepts data
including the voxels whose PA values of that organ are non-zero. If the output “organ”
is larger than the output “background” in the final layer, that voxel is labeled as part of
that organ.

To see the effect of transfer learning in the above scheme, we also test the system
where the first learning phase is removed from 3D U-JAPA-net, which means that each
expert network starts from random weights before training.

Since the judgement is given by voxel unit in the U-net based systems, debris
emerges in the result. We apply largest component selection as the post-process to
remove debris for all the U-net based systems.

3 Experiments and Results

We compared the performances of the following 5 methods: S-CSL-UI; 2D U-net; 3D
U-net; Mixture of 3D U-nets for each organ without transfer learning (3D M-U-nets);
and 3D U-JAPA-net.

Each method was tested to segment 8 abdominal organs: liver; spleen; left and right
kidneys; pancreas; GB; aorta; and IVC. We used 47 CT data from 47 patients with
normal organs obtained in the late arterial phase at the same hospital and applied two-
fold cross-validations to evaluate the performance of each method. The resolution of
each CT slice image was 512 � 512 pixels. Among 47 CT data, 9 data had 159 slices
and the voxel size was 0.625 � 0.625 � 1.25 [mm3]. The voxel size of other 37 data
was 0.781 � 0.781 � 0.625 [mm3] and the numbers of slices were between 305 and
409. The last one, consisting of 345 slices, had 0.674 � 0.674 � 0.625 [mm3] voxels.

For 2D U-net, the slice images were first down-sampled to 256 � 256 pixels. Then
the same algorithm in [5] was used, where 3 � 3 convolutions were applied twice in
each layer and the max pooling and up-conversion were applied 4 times. For 3D U-net,
the input to the network was a 132 � 132 � 116 voxel tile of the image with 1
channel. After that, the same algorithm in [7] was used, where 3 � 3 � 3 convolutions
were applied twice in each layer, while the max pooling and up-conversion were
applied 3 times. The output of the final layer becomes 44 � 44 � 28 voxels due to the
repeated truncation in every convolution.

We applied dropout of connections in the bottom layer to avoid over-fitting both in
2D U-net and 3D U-net. Data augmentation was not applied in this experiment for
simplicity. Also, the training data and the test data are made so that the output voxels
may not overlap in order to reduce the calculation time.

As for 3D U-JAPA-net, the above 3D U-net was used both in the first and the second
stages of training. When the weights were transferred from the trained network to the
expert network for each organ, the connections between the last layer and the second last
layer were randomized, for the numbers of output layers were different between the 3D
U-net in the first stage of training and the expert 3D U-nets for each organ.
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All the U-net components were implemented with TensorFlow framework [17].
The PC we used was composed of Intel Core i7-8700 K CPU, 32 GB main memory,
and NVIDIA GeForce GTX 1080 Ti GPU with 11 GB video memory. The detail of
training was as follows: training epochs = 30; learning rate = 1.0 � 10−4; batch
size = 3. It took 2.5 h to train 2D-U-net with this PC. As for 3D U-net, it took 16 h to
train all organs and it took between 40 and 130 min to train each organ respectively
except for the liver, which took 9.5 h to train because of its large size.

Figure 2 shows the DICE scores given by the 5 segmentation methods. The results
of paired t-tests between the proposed method and the other methods are indicated in
the figure. As the figure shows, the proposed method attains notably better performance
than the conventional methods. The performance given by the mixture of experts
without transfer learning is poorer, which shows that transfer learning is effective to
attain high DICE scores.
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Fig. 2. Results of eight abdominal organ segmentation by five methods. Bold numbers are the
highest DICE/recall/precision rates for each organ.
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Figure 3 shows an example of segmentation results, which effectively demonstrate
usefulness of the proposed method. 3D U-JAPA-net can recall part of pancreas and GB
that other U-net based systems miss. Also, the leakage, which stands out in S-CSL-UI,
is not apparent in the other methods including 3D U-JAPA-net.

The effect of increase in training data was tested by comparing 2-fold and 4-fold
cross-validations of 3D U-JAPA-net. The result is shown in Table 1. The DICE score
is improved significantly in the segmentation of pancreas (p = 0.012) by applying 4-
fold cross-validation.

The performances of the proposed method and the prior method [8], which is also a
modified version of 3D U-net, are compared in Table 2. DICE scores obtained by the
proposed method are distinctively higher, which indicates the excellence of the pro-
posed method.

(a) (b) (c) (d)

(e) (f) (g)

(a) CT image
(b) Ground truth
(c) 3D U-JAPA-net
(d) 3D M-U-nets
(e) 3D U-net
(f) 2D U-net
(g) S-CSL-UI

Fig. 3. An illustrative segmentation results obtained by five methods. White arrows show the
failed regions by the conventional priors. Black arrows show the leakages by the conventional
priors. (Color figure online)

Table 1. Comparison of 3D U-JAPA-net DICE scores obtained by two-fold and four-fold cross-
validations.

Liver Spleen r-kidney l-kidney Pancreas GB Aorta IVC

2-fold
4-fold

0.971
0.971

0.969
0.969

0.975
0.986

0.984
0.985

0:861
0:882

�� 0.918
0.915

0.969
0.966

0.908
0.907

Table 2. Comparison of two modified versions of 3D U-net.

Roth et al. [8] 3D U-JAPA-net
Liver Spleen Pancreas Liver Spleen Pancreas

DICE Mean 0.954 0.928 0.822 0.971 0.969 0.882
Std 0.020 0.080 0.102 0.014 0.014 0.070
Median 0.960 0.954 0.845 0.974 0.973 0.901

Subjects 150 (testing) 47 (4-fold cross
validation)
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4 Discussion

When 2D U-net and 3D U-net are compared, 2D U-net is good at segmenting larger
organs, while 3D U-net is adept at segmenting smaller organs. Since 2D U-net covers
larger areas in a single slice, it can grasp wider areas with a single shot, which leads to
the above characteristic of performance.

3D U-JAPA-net overcomes the drawback of 3D U-net, which covers a smaller area
in each slice, with the help of PA and outperforms both 2D U-net and 3D U-net in
segmentation of almost all organs. Improvement by 3D U-JAPA net is especially
significant in segmentation of pancreas, GB, and IVC, which have been difficult to
segment properly for the conventional methods. The effect of transfer learning is
significant in these organs, which shows the validity of the proposed method.

The number of data used here is limited and further study with a larger data size is
needed to increase the reliability of the proposed method. In general, however, deep
neural networks can attain better performance when the number of training data
increases. A higher DICE score may be obtained if we use a larger data set for training
with the proposed method.

In this paper PA has been used to see where the value is non-zero or not, for the
number of CT samples is small and the values are discrete. When the number of
samples is increased and the probabilities become more reliable, arithmetic usage of the
probability values can raise DICE scores.

5 Conclusion

In this paper, we have proposed 3D U-JAPA-net, which uses not only the raw CT data
but also the probabilistic atlas of organs to reflect the information on organ locations to
realize fully-automated abdominal multi-organ CT segmentation. As a result of the 2-
fold cross-validation with 47 CT data from 47 patients, the proposed method has
marked significantly higher DICE scores than the conventional 2D U-net and 3D U-net
in the segmentation of most organs.

The proposed method can be easily implemented for those who can use Ten-
sorFlow or similar deep learning tools, for all needed to be done in the proposed
method is to make a probabilistic atlas, train a 3D U-net, copy the trained weights to the
mixture of 3D U-nets, and train those 3D U-nets. The method described here is worth a
trial for those who want to make a reliable fully-automated multi-organ segmentation
system with little effort.
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