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Abstract. Real-time prostate gland localization in trans-rectal ultra-
sound images is required for automated ultrasound guided prostate
biopsy procedures. We propose a new deep learning based approach
aimed at localizing several prostate landmarks efficiently and robustly.
Our multitask learning approach primarily makes the overall algorithm
more contextually aware. In this approach, we not only consider the
explicit learning of landmark locations, but also build-in a mechanism
to learn the contour of the prostate. This multitask learning is further
coupled with an adversarial arm to promote the generation of feasible
structures. We have trained this network using ∼4000 labeled trans-
rectal ultrasound images and tested on an independent set of images
with ground truth landmark locations. We have achieved an overall Dice
score of 92.6% for the adversarially trained multitask approach, which is
significantly better than the Dice score of 88.3% obtained by only learn-
ing of landmark locations. The overall mean distance error using the
adversarial multitask approach has also improved by 20% while reduc-
ing the standard deviation of the error compared to learning landmark
locations only. In terms of computational complexity both approaches
can process the images in real-time using a standard computer with a
CUDA enabled GPU.

1 Introduction

Multi-parametric MRI can greatly improve prostate cancer detection and can
also lead to a more accurate biopsy verdict by highlighting areas of suspicion [1].
Unfortunately, MR-guided procedures are costly and restrictive, whereas ultra-
sound guidance offers more flexibility and can exploit added MR information
through fusion [9]. A key step in diagnostic MR and live trans-rectal ultrasound
registration is the real-time, automated prostate gland localization within the
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ultrasound image. This localization could be achieved by automatically identi-
fying image landmarks on the border of the prostate. This task by itself is in
general challenging due to low tissue contrast leading to fuzzy boundaries and
varying prostate gland sizes in the population. Furthermore, prostate calcifica-
tions cause shadowing within the ultrasound image hindering the observation
of the gland boundary. An example of this case is shown in Fig. 1(a). Learning
these landmark locations is further complicated by inherent label noise as these
landmarks are not defined with absolute certainty. A small inter-slice variability
in prostate shape could result in rather larger deviation in the landmark loca-
tions, which are placed by expert annotators. Our analysis of this uncertainty is
further explained in Sect. 2.

Through an initial set of experiments we observed that individual landmark
detection/regression does not yield satisfactory results as the global context
in terms of how the landmarks are connected is not properly utilized. Even for
expert annotators, context is essential to place the challenging landmarks, specif-
ically ones in regions with little signal or cues. Incorporating topological/spatial
priors into landmark detection tasks is an active area of research with broad
applications. Conditional Random Fields incorporating priors have been used
with deep learning to improve delineation tasks in computer vision [3,11]. In
medical imaging, improving landmark and contour localization tasks through the
use of novel deep learning architectures has been presented in [6,10]. In particu-
lar in [10], the authors considered the sequential detection of prostate boundary
through the use of recurrent neural networks in polar coordinate transformed
images; however, their method assumes that the prostate is already localized
and cropped.

In this work we propose a deep adversarial multitask learning approach to
address the challenges associated with robust prostate landmark localization.
Our design aims to improve performance in regions, where the boundary is
ambiguous, by using the spatial context to inform landmark placement. Mul-
titask learning provides an effective way to bias a network to learn additional
information that can be useful for the original task through the use of auxiliary
tasks [2]. In particular, to bring in the global context, we learn to predict the
complete boundary contour in addition to each landmark location to enforce
the overall algorithm in being contextually aware. This multitasking network is
further coupled by a discriminator network that provides feedback regarding the
predicted contour feasibility. Our work shares similarities with [4], where the
authors used multitasking with adversarial regularization in human pose esti-
mation in an extensive network. Unlike the method in [4], our approach is easily
trainable and can perform at high frame rates and compared to [10], it does not
require prior prostate gland localization.

2 Methods

This study includes data from trans-rectal ultrasound examinations of 32
patients, resulting in 4799 images. Six landmarks distributed on the prostate
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boundary are marked by expert annotators. In particular, the landmark loca-
tions are chosen to cover the anterior section of the gland (close to bladder),
posterior section (close to rectum), and left and right extent of the gland consid-
ering the shape of the probe pressing into the prostate. Examples of annotations
can be seen in Fig. 1(a). Nonetheless the landmarks cannot be placed with com-
plete certainty due to poor boundaries, missing defining features, shadowing and
other physiological occurrences such as calcifications. We characterized this land-
mark annotation uncertainty by measuring the change in landmark position in
successive frames. The mean and standard deviation for each landmark position
is given in Table 1. It is understood that part of this positional difference is due
to probe and patient movement but nevertheless they can be treated as a lower
bound for the localization error that can be achieved.

Each image is acquired as part of a 2D sweep across the prostate and all
images were resampled to have a resolution of 0.169 mm/pixel and then padded
or cropped so that the resulting image size is 512× 512. Training data is tripled
via augmentation with translation (±30–70 pixels) plus noise (σ = 0.05) and
rotation (±4–7◦) plus noise (σ = 0.05). We split the data into 3 sets: 23 patients
for training (3717 images, 77%), 6 patients for validation (853 images, 18%),
and 3 patients for testing (229 images, 5%). For all methods explained below the
ultrasound data is given to the network as 2-D images.
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Fig. 1. (a) Ultrasound images with target labels: 2D Gaussian landmarks (center,
green) and contours (right, green). (b) Each pixel has a distribution over 7 classes:
6 landmark classes and the background class. Moving away from the center of a land-
mark, the landmark probability decreases and the background probability increases.

2.1 Baseline Approach for Landmark Detection

Given the landmark locations, our approach takes a classification approach
through the use of a shared background in locating the landmarks rather than the
classical regression approach. The network has a 5 layer convolutional encoder
and a corresponding decoder with 5 × 5 kernels, padding of 2, stride of 1, and
a pooling factor of 2 at each layer. The number of filters in the first layer is
32; this doubles with every convolutional layer in the encoder to a maximum
of 512. The decoder halves the number of filters with each convolutional layer.
The final output is convolved with a 1 × 1 kernel into 7 channels (one for each
landmark and a background class). The configuration of the convolutional, batch
normalizing, rectifying, and pooling layers can be seen in Fig. 2.
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We model each landmark as a 2D Gaussian function centered on the land-
mark. The standard deviation of this Gaussian can in part incorporate the
uncertainty involved in the landmark locations. In contrast to the regression
approaches that regress locations or probability maps independently for each
landmark, here we take a classification approach which couples the estimation
through a shared background. For each pixel in the ultrasound image, we assign
a probability distribution over 7 classes, where we treat each landmark and the
background as separate classes. For a pixel that is at the center of a Gaussian
for a landmark, the probability for that landmark class is 1 whereas rest of the
probabilities are set to zero. These probabilities are obtained by independently
normalizing each Gaussian distribution so that the maximum of the Gaussian is
1. Similarly for a pixel that does not overlap with any of the Gaussian functions,
the background class has probability 1 and rest of the classes are set to zero. For
a pixel that overlaps with one of the landmarks but not necessarily at the center,
the probability distribution over the classes is shared between the corresponding
landmark class and the background class. This is illustrated in Fig. 1(b). This
framework can be trivially extended to scenarios where the Gaussian functions
for the landmarks overlap. We learn a mapping of training images x in train-
ing set X that represents the probability distribution of every pixel in x over
the classes. This mapping, Slm (x), is learnt through the minimization of the
following supervised loss where Ylm denotes the training set labels:

Llm = −E(x,ylm)∼(X,Ylm)[log Slm (x)]. (1)

During test time the landmark locations are obtained by processing the out-
put maps, i.e., by extracting the maxima. The joint prediction of landmark and
background classes could help the network become more aware of the positions
of each landmark relative to one another. However, this background class encom-
passes the entire space wherever a landmark does not exist. As such, it does not
explicitly relate the points or highlight specific image features that are relevant
to the connections between points (e.g. organ contour).

2.2 Multitask Learning for Joint Landmark and Contour Detection

When deciding a landmark location, expert annotators/clinicians are equipped
with the prior knowledge that the landmarks exist along the prostate boundary
which is a smooth, closed contour. Motivated by this intuition we identify two
distinct priors: First, the points lie along the prostate boundary, and then this
boundary must form a smooth, closed contour despite occlusions. We incorpo-
rate these priors through multitask learning and the use of an adversarial cost
function.

In multitask learning, the network must identify a set of auxiliary labels in
addition to the main labels. The main labels (in this case landmarks) help the
network to learn the appearance of the landmarks; meanwhile the auxiliary labels
should promote learning of complementary cues that the network may otherwise
ignore. A fuzzy contour following the prostate boundary is obtained by Gaussian
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Fig. 2. Our baseline network has an encoder-decoder architecture where the receptive
field size is large enough to contain the entire prostate. The multitask network outputs
a boundary contour along with the landmarks which is then fed to a discriminator
network to evaluate its similarity to training set samples.

blurring the spline generated by the main landmark labels. The boundary is used
as an auxiliary label to incorporate the first spatial prior, that all landmarks lie
on the prostate boundary. The goal of the multitask addition is to bias the
network’s features such that prostate boundary detection is enhanced. Since the
boundary overlaps directly with the landmarks, the auxiliary task lends itself
well to exploitation in the shared parameter representation. Figure 2 displays
the addition of the auxiliary label for the multitask framework. Note that the
network size does not increase, except for the final layer, because the parameters
are shared between both tasks.

Similar to the landmark setup, we learn a mapping of training images,
Scnt (x), representing the likelihood of being a contour pixel by minimizing the
following supervised loss, where Ycnt denotes the training set labels associated
with the contour:

Lcnt = −E(x,ycnt)∼(X,Ycnt)[log Scnt (x)]. (2)

Discriminator Network
While the multitask framework aims to increase the network’s awareness of the
prostate boundary features, it does not enforce any constraint on the predicted
contour shape. As such, a discriminator network is added to motivate fulfillment
of the second prior, that the boundary is a smooth closed shape. This is helpful
because the low tissue contrast can make it challenging for the boundary detec-
tion (learned by the multitask network) to give clean estimates without false
positives. The discriminator network is trained in a conditional style where the
input training image is provided together with the network generated or the real
contour. The design is similar to the encoder in the main encoder-decoder net-
work with the difference being the discriminator network is extended one layer
further and the first 3 layers have a pooling factor of 4 instead of 2. These changes
are made to rapidly discard high resolution details and focus the discriminator’s
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evaluation on the large scale appearance. We then define the discriminator loss
as follows:

LadvD
= −E(x,ycnt)∼(X,Ycnt)[log D (x,ycnt)]

−E(x∼X)[log (1 − D (x, Scnt(x)))]. (3)

In [5], the authors defined the generator loss as the negative of the discrim-
inator loss defined in Eq. 3, resulting in a min-max problem over the generator
and discriminator parameters. The authors in [5] (and several others [7,8]) have
also stated the difficulty with the min-max optimization problem and suggested
maximizing the log probability of the discriminator being mistaken as the gen-
erator loss. This corresponds to the following adversarial loss for the landmark
and contour network S:

LadvS
= −E(x∼X)[log D (x, Scnt(x))]. (4)

Adversarial Landmark and Contour Detection Framework
The landmark and contour detection network is trained by minimizing the fol-
lowing functional with respect to its parameters θS :

arg min
θS

Ltotal = Llm + λ1Lcnt + λ2LadvS
(5)

The discriminator is trained by minimizing LadvD
with respect to its parameters

θD. We optimize these two losses in an alternating manner by keeping θS fixed
in the optimization of the discriminator and θD fixed in the optimization of the
detector network. In our experiments, we picked λ1 = 1 and λ2 = 0.02 using
cross validation.

3 Results and Discussion

Landmark location has a range of acceptable solutions on the prostate bound-
ary that is also visible in the noise of the annotated labels. As such, the Dice
score between the spline interpolated prostate masks is used as the primary
evaluation metric. In addition, the Euclidean distance between predictions and
targets and the 80th percentile of this distance are calculated. Baseline Dice score
and average landmark error are 88.3% and 3.56 mm respectively. The multitask
approach improves these scores to 90.2% and 3.12 mm. Adversarial training fur-
ther improves the results to 92.6% and 2.88 mm. In particular, note the large
improvement for landmark 4 (Table 1). This is the most anterior landmark (close
to bladder) which generally has the highest error due to shadowing. Also, the
improvement in the standard deviation of the Dice score indicates that the adver-
sarially regulated multitask framework produces the most robust predictions.

Figure 3 displays prediction examples given by each method. In the top row,
the plain multitask approach is able to improve the right-most landmark place-
ment, but the most anterior landmark location is still inaccurate. In such cases,
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Table 1. Landmark annotation error together with error for baseline, multitask, and
adversarial multitask methods in units of mm.

Metric Noise Baseline Multitask Multitask GAN

Mean landmark error± S.D. 0.98± 0.28 2.11± 1.41 1.94± 1.36 1.77± 1.43

1.45± 0.44 2.33± 1.28 1.90± 1.13 1.97± 0.96

2.17± 0.60 4.03± 5.13 3.38± 3.68 3.41± 3.17

1.99± 0.47 6.29± 6.13 6.72± 5.59 5.01± 3.90

2.19± 0.74 3.44± 2.77 2.73± 1.94 3.09± 2.43

1.43± 0.54 3.21± 4.05 2.02± 1.85 2.01± 1.57

Overall avg. 1.70± 0.51 3.56± 3.46 3.12± 2.60 2.88± 2.24

80th percentile 1.42 3.19 3.04 2.75

2.05 3.44 2.85 2.72

3.17 4.59 4.41 5.08

2.87 8.31 9.09 7.75

3.14 4.83 4.27 4.68

2.03 3.71 2.75 2.90

Overall avg. 2.45 4.68 4.42 4.32

Avg. dice±S.D. - 88.3%± 7.3% 90.2%± 7.2% 92.6%± 3.6%

Fig. 3. Adversarially regulated multitask learning produces more complete contours
resulting in better landmark placement compared to its plain counterpart. Ultrasound
images with target (green) and prediction (blue diamonds, connected by spline) over-
lays. Red arrows indicate corrections of gross errors. Multitask predictions include an
overlay of the contour prediction (blue heatmap).

features learned for boundary detection can mistakenly highlight areas with high
contrast, e.g. calcification within the prostate. The adversarially trained detector
improves the landmark placement significantly. In the bottom row, the boundary
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prediction is also hindered by shadowing, but the proposed framework still
improves the overall shape of the contour along with the landmark placements.

The multitask learning framework helps biasing the landmark placement
toward the prostate boundary through shared weights of two tasks, namely land-
mark detection and boundary estimation. As the predicted contour is not always
of high quality especially when there is signal dropouts, an adversarial regular-
ization is used to enhance boundary estimations and subsequently provide more
accurate landmark detection.
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