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Abstract. Respiratory motion models in radiotherapy are considered
as one possible approach for tracking mobile tumours in the thorax and
abdomen with the goal to ensure target coverage and dose conformation.
We present a patient-specific motion modelling approach which combines
navigator-based 4D MRI with recent developments in deformable image
registration and deep neural networks. The proposed regression model
based on conditional generative adversarial nets (cGANs) is trained to
learn the relation between temporally related US and MR navigator
images. Prior to treatment, simultaneous ultrasound (US) and 4D MRI
data is acquired. During dose delivery, online US imaging is used as
surrogate to predict complete 3D MR volumes of different respiration
states ahead of time. Experimental validations on three volunteer lung
datasets demonstrate the potential of the proposed model both in terms
of qualitative and quantitative results, and computational time required.
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1 Introduction

Respiratory organ motion causes serious difficulties in image acquisition and
image-guided interventions in abdominal or thoracic organs, such as liver or
lungs. In the field of radiotherapy, respiration induced tumour motion has to be
taken into account in order to precisely deliver the radiation dose to the target
volume while sparing the surrounding healthy tissue and organs at risk. With
the introduction of increasingly precise radiation delivery systems, such as pencil
beam scanned (PBS) proton therapy, suitable motion mitigation techniques are
required to fully exploit the advantages which come with conformal dose delivery
[2]. Tumour tracking based on respiratory motion modelling provides a potential
solution to these problems, and as a result a large variety of motion models and
surrogate data have been proposed in recent years [7].
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Fig. 1. Schematics of the motion modelling pipeline. See Sect. 2 for details.

In this work we present an image-driven and patient-specific motion mod-
elling approach relying on 2D ultrasound (US) images as surrogate data. The
proposed approach is targeted primarily but not exclusively at PBS proton ther-
apy of lung tumours. We combine hybrid US and magnetic resonance imaging
(MRI), navigator-based 4D MRI methods [12] and recent developments in deep
neural networks [4,6] into a motion modelling pipeline as illustrated in Fig. 1. In
a pre-treatment phase, a regression model between abdominal US images and
2D deformation fields of MR navigator scans is learned using the conditional
adversarial network presented in [6]. During dose delivery, US images are used
as inputs to the trained model in order to generate the corresponding navigator
deformation field, and hence to predict a 3D MR volume of the patient.

Artificial neural networks (ANN) have previously been investigated for time-
series prediction in image-guided radiotherapy in order to cope with system
latencies [3,5]. While these approaches rely on relatively simple network archi-
tectures, such as multilayer perceptrons with one hidden layer only, a more
recent work combines fuzzy logic and an ANN with four hidden layers to predict
intra- and inter-fractional variations of lung tumours [8]. Common to the afore-
mentioned methods is that the respiratory motion was retrieved from external
markers attached to the patients’ chest, either measured with fluoroscopy [5]
or LED sensors and cameras [8]. However, external surrogate data might suf-
fer from a lack of correlation between the measured respiratory motion and the
actual internal organ motion [12]. To overcome these limitations, the use of US
surrogates for motion modelling offers a potential solution. In [9], anatomical
landmarks extracted from US images in combination with a population-based
statistical shape model are used for spatial and temporal prediction of the liver.
Our work has several distinct advantages over [9]: we are able to build patient-
specific and dense volume motion models without the need for manual landmark
annotation. Moreover, hybrid US/MR imaging has been investigated for out-of-
bore synthesis of MR images [10]. A single-element US transducer was used for
generating two orthogonal MR slices.

The proposed image-driven motion modelling approach has only become fea-
sible with recent advances in deep learning, in particular with the introduction
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of generative adversarial nets (GANs) [4]. In this framework, two models are
trained simultaneously while competing with each other: a generative model G
aims to fool an adversarially trained discriminator D, while the latter learns
to distinguish between real and generated images. Conditional GANs (cGANs)
have shown to be suitable for a multitude of image-to-image translation tasks
due to their generic formulation of the loss function [6]. We exploit the properties
of cGANs in order to synthesize deformation fields of MR images given 2D US
images as inputs.

While all components used within the proposed motion modelling frame-
work have been presented previously, to the best of our knowledge, this is the
first approach which suggests to integrate deep neural networks into the field
of respiratory motion modelling and 4D MR imaging. We believe the strength
of this work lies in the novelty of the motion modelling pipeline and underline
two contributions: First, we investigate the practicability of cGANs for medical
images where only relatively small training sets are available. Second, we present
a patient-specific motion model which is capable of predicting complete MR vol-
umes within reasonable time for image-guided radiotherapy. Moreover, thanks
to the properties of the applied 4D MRI method and the availability of ground
truth MR scans, we are able to quantitatively validate the prediction accuracy
of the proposed approach within a proof-of-concept study.

2 Method

Although MR navigators have been proved to be suitable surrogate data for
4D MR imaging and motion modelling [7,12], this imaging modality is often
not available during dose delivery in radiotherapy. Inspired by image-to-image
translation, one could think of a two step process to overcome this limitation:
first, a cGAN is trained to learn the relation between surrogate images available
during treatment and 2D MR images. Second, following the 4D MRI approach of
[12], an MR volume is stacked after registering the generated MR navigator to a
master image. The main idea of the approach proposed here is to join these two
steps into one by learning the relation between abdominal US images and the
corresponding deformation fields of 2D MR navigator slices. Directly predict-
ing navigator deformation fields has the major benefit that image registration
during treatment is rendered obsolete as it is inherently learned by the neural
network. Since this method is sensitive to the US imaging plane, we assume that
the patient remains in supine position and does not stand up between the pre-
treatment data acquisition and the dose delivery. The motion modelling pipeline
consists of three main steps as illustrated in Fig. 1 and explained below.

2.1 Data Acquisition and Image Registration

Simultaneous US/MR imaging and the interleaved MR acquisition scheme for 4D
MR imaging [12] constitute the first key component as shown in step 1© of Fig. 1.
For 4D MRI, free respiration acquisition of the target volume is performed using



84 A. Giger et al.

dynamic 2D MR images in sequential order. Interleaved to these so-called data
slices, a 2D navigator scan at fixed slice position is acquired. All MR navigator
slices are registered to an arbitrary master navigator image in order to obtain 2D
deformation fields. Following the slice stacking approach, the data slices repre-
senting the organ of interest in the most similar respiration state are grouped to
form a 3D MR volume. The respiratory state of the data slices is determined by
comparing the deformation fields of the embracing navigator slices. For further
details on 4D MRI, we refer to [12]. Unlike [12], deformable image registration
of the navigator slices is performed using the approach proposed in [11], which
was specifically developed for mask-free lung image registration.

We combine the 4D MRI approach with simultaneous acquisition of US
images in order to establish temporal correspondence between the MR navi-
gators and the US surrogate data. For the US image to capture the respiratory
motion, an MR-compatible US probe is placed on the subject’s abdominal wall
such that the diaphragm’s motion is clearly visible. The US probe is fastened
tightly by means of a strap passed around the subject’s chest.

2.2 Training of the Neural Network

We apply image-to-image translation as proposed in [6] in order to learn the
regression model between navigator deformation fields and US images. The
cGAN is illustrated in step 2© of Fig. 1: the generator G learns the mapping
from the recorded US images x and a random noise vector z to the deformation
field y, i.e. G : {x, z} �→ y. The discriminator D learns to classify between real
and synthesised image pairs. For the network to be able to distinguish between
mid-cycle states during inhalation and exhalation, respectively, we introduce gra-
dient information by feeding two consecutive US images as input to the cGAN.
Since the deformation field has two components, one in x and one y direction,
the network is trained for two input and two output channels. Moreover, instead
of learning the relation between temporally corresponding data of the two imag-
ing modalities, we introduce a time shift: given the US images at times ti−2 and
ti−1, we aim to predict the deformation field at time ti+1. Together with the pre-
viously generated deformation field at time ti−1, we are then able to reconstruct
an MR volume at ti as the estimates of the embracing navigators are known. In
real-time applications, this time shift allows for system latency compensation.

2.3 Real-Time Prediction of Deformation Fields and Stacking

During dose delivery, US images are continuously acquired and fed to the trained
cGAN (see step 3© in Fig. 1). The generated deformation fields at times ti−1 and
ti+1 are used to generate a complete MR volume at time ti by stacking the MR
data slices acquired in step 1©, analogous to [12].

3 Experiments and Results

Data Acquisition. The data used in this work was tailored to develop a motion
model of the lungs with abdominal US images of the liver and the diaphragm
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as surrogates. Three hybrid US/MR datasets of two healthy volunteers were
acquired on a 1.5 Tesla MR-scanner (MAGNETOM Aera, Siemens Healthineers,
Erlangen, Germany) using an ultra-fast balanced steady-state free precession
(uf-bSSFP) pulse sequence [1] with the following parameters: flip angle α = 35◦,
TE = 0.86 ms, TR = 1.91 ms, pixel spacing 2.08 mm, slice thickness 8mm, spac-
ing between slices 5.36 mm, image dimensions 192 × 190 × 32 (rows × columns ×
slice positions). Coronal multi-slice MR scans were acquired in sequential order
at a temporal resolution of fMR = 2.5 Hz which drops to fMR/2 = 1.25 Hz for
data slices and navigators considered separately. Simultaneous US imaging was
performed at fUS = 20 Hz using a specifically developed MR-compatible US
probe and an Acuson clinical scanner (Antares, Siemens Healthineers, Mountain
View, CA). Although the time sampling points of the MR and the US scans did
not exactly coincide, we assumed that corresponding image pairs represent the
lungs at sufficiently similar respiration states since fUS was considerably higher
than fMR. The time horizon for motion prediction was th = 1/fMR = 400 ms.

For each dataset, MR images were acquired for a duration of 9.5 min resulting
in 22 dynamics or complete scans of the target volume. Two datasets of the
same volunteer were acquired after the volunteer had been sitting for a couple
of minutes and the US probe was removed and repositioned. We treat these
datasets separately since the US imaging plane and the position of the volunteer
within the MR bore changed. The number of data slices and navigators per
dataset was N = 704 each. Volunteer 2 was advised to breath irregularly for
the last couple of breathing cycles. However, we excluded these data for the
quantitative analysis below. The datasets were split into Ntrain = 480 training
images and Ntest = {224, 100, 110} test images for datasets {1, 2, 3}, respectively.
We assumed that the training data represents the pretreatment data as described
in Sect. 2.1. It comprised the first 6.4 min or 15 dynamics of the dataset.

Training Details. We adapted the PyTorch implementation for paired image-to-
image translation [6] in order for the network to cope with medical images and
data with two input and two output channels. The US and MR images were
cropped and resized to 256 × 256 pixels. We used the U-Net based generator
architecture, the convolutional PatchGAN classifier as discriminator and default
training parameters as proposed in [6]. For each dataset, the network was trained
from scratch using the training sets described above and training was stopped
after 20 epochs or roughly 7 min.

Validation. For each consecutive navigator pair of the test set a complete MR
volume was stacked using the data slices of the training set as possible candi-
dates. In the following, we compare our approach with a reference method and
introduce the following notation: RDF is referred to as the reference stacking
method using the deformation fields computed on the actually recorded MR nav-
igator slices, and GDF denotes the proposed approach based on the generated
deformation fields obtained as a result of the cGAN.

The 2D histogram in Fig. 2 shows the correlation of the slices selected either
by RDF or GDF. The bins represent the dynamics of the acquisition and a strong
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Fig. 2. Slice selection illustrated as joint histogram for reference and generated defor-
mation fields, respectively. From left to right: datasets 1 to 3.

diagonal line is to be expected if the two methods select the same data slices for
stacking. The sum over the diagonals, that is the percentage of equally selected
slices, is indicated as pk for dataset k ∈ {1, 2, 3}. For all datasets the diagonal is
clearly visible and the matching rates are in the range of 43.8% to 63.8%. While
these numbers give a first indication of whether the generated deformation fields
are able to stack reasonable volumes, they are not a quantitative measure of
quality: two different but very similar data slices could be picked by the two
methods which would lead to off-diagonal entries but without affecting the image
quality of the generated MR volumes.

The histograms for datasets 2 and 3 suggest a further conclusion: the data
slices used for stacking are predominantly chosen from the last four dynamics
of the training sets (96.5% and 81.7%). Visual inspection of the US images in
dataset 2 revealed that one dominant vessel structure appeared more clearly
starting from dynamic 11 onwards. This might have been caused by a change in
the characteristics of the organ motion, such as organ drift, or a shift of the US
probe and emphasises the need for internal surrogate data.

Qualitative comparison of a sample deformation field is shown in Fig. 3a
where the reference and the predicted deformations are overlaid. Satisfactory
alignment can be observed with the exception of minor deviations in the region
of the intestine and the heart. Visual inspection of the stacked volumes by either
of the two methods RDF and GDF revealed only minor discontinuities in organ
boundaries and vessel structures.

Quantitative results were computed on the basis of image comparison: Each
navigator pair of the test set embraces a data slice acquired at a specific slice
position. We computed the difference between the training data slice selected
for stacking and the actually acquired MR image representing the ground truth.
The error was quantified as mean deformation field after 2D registration was per-
formed using the same registration method as in Sect. 2.1 [11]. The median error
lies below 1 mm and the maximum error below 3 mm for all datasets and both
methods. The average prediction accuracy can compete with previously reported
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Fig. 3. Qualitative and quantitative results. (a) Sample motion field of dataset 2 with
reference (green) and predicted (yellow) deformations, and (b) error distribution quan-
tified as mean deformation field.

values [9]. Comparing RDF and GDF, slightly better results were achieved for
the reference method which is, however, not available during treatment.

The proposed method required a mean computation time of 20 ms for pre-
dicting the deformation field on a NVIDIA Tesla V100 GPU, and 100 ms for
slice selection and stacking on a standard CPU. With a prediction horizon of
th = 400 ms, the motion model is real-time applicable and allows for online
tracking of the target volume.

4 Discussion and Conclusion

We presented a novel motion modelling framework which is persuasive in several
perspectives: the motion model relies on internal surrogate data, it is patient-
specific and capable of predicting dense volume information within reasonable
computation time for real-time applications, while training of the regression
model can be performed within 7 min only.

We are aware, though, that the proposed approach demands further investi-
gation: It shares the limitation with most motion models that respiration states
which have not been observed during pretreatment imaging cannot be recon-
structed during dose delivery. This includes in particular, extreme respiration
depth or baseline shifts due to organ drift. Also, the motion model is sensitive
to the US imaging plane, and a small shift of the US probe may have adverse
effects on the outcome. Therefore, the proposed framework requires the patients
to remain in supine position with the probe attached to their chests. Future work
will aim to alleviate this constraint by, for example, investigating the use of skin
tattoos for a precise repositioning of the US probe. Furthermore, the motion
model relies on a relatively small amount of training data which bears the dan-
ger of overfitting. The current implementation of the cGAN includes dropout but
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one could consider to additionally apply data augmentation on the input images.
Further effort will be devoted towards the development of effective data augmen-
tation strategies and must include a thorough investigation of the robustness of
cGANs within the context of motion modelling. Moreover, the formulation of
a control criterion which is capable of detecting defective deformation fields or
MR volumes is considered an additional necessity in future works.
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