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Abstract. Multi-task neural network architectures provide a mecha-
nism that jointly integrates information from distinct sources. It is ideal
in the context of MR-only radiotherapy planning as it can jointly regress
a synthetic CT (synCT) scan and segment organs-at-risk (OAR) from
MRI. We propose a probabilistic multi-task network that estimates: (1)
intrinsic uncertainty through a heteroscedastic noise model for spatially-
adaptive task loss weighting and (2) parameter uncertainty through
approximate Bayesian inference. This allows sampling of multiple seg-
mentations and synCTs that share their network representation. We test
our model on prostate cancer scans and show that it produces more accu-
rate and consistent synCTs with a better estimation in the variance of
the errors, state of the art results in OAR segmentation and a method-
ology for quality assurance in radiotherapy treatment planning.

1 Introduction

Radiotherapy treatment planning (RTP) requires a magnetic resonance (MR)
scan to segment the target and organs-at-risk (OARs) with a registered com-
puted tomography (CT) scan to inform the photon attenuation. MR-only RTP
has recently been proposed to remove dependence on CT scans as cross-modality
registration is error prone whilst extensive data acquisition is labourious. MR-
only RTP involves the generation of a synthetic CT (synCT) scan from MRI.
This synthesis process, when combined with manual regions of interest and safety
margins provides a deterministic plan that is dependent on the quality of the
inputs. Probabilistic planning systems conversely allow the implicit estimation
of dose delivery uncertainty through a Monte Carlo sampling scheme. A system
that can sample synCT and OAR segmentations would enable the development
of a fully end-to-end uncertainty-aware probabilistic planning system.
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Past methods for synCT generation and OAR segmentation stem from multi-
atlas propagation [1]. Applications of convolutional neural networks (CNNs) to
CT synthesis from MRI have recently become a topic of interest [2,3]. Condi-
tional generative adversarial networks have been used to capture fine texture
details [2] whilst a CycleGAN has been exploited to leverage the abundance of
unpaired training sets of CT and MR scans [3]. These methods however are
fully deterministic. In a probabilistic setting, knowledge of the posterior over
the network weights would enable sampling multiple realizations of the model
for probabilistic planning whilst uncertainty in the predictions would be benefi-
cial for quality control. Lastly, none of the above CNN methods segment OARs.
If a model were trained in a multi-task setting, it would produce OAR segmen-
tations and a synCT that are anatomically consistent, which is necessary for
RTP.

Past approaches to multi-task learning have relied on uniform or hand-tuned
weighting of task losses [4]. Recently, Kendall et al. [5] interpreted homoscedastic
uncertainty as task-dependent weighting. However, homoscedastic uncertainty is
constant in the task output and unrealistic for imaging data whilst yielding non-
meaningful measures of uncertainty. Tanno et al. [6] and Kendall et al. [7] have
raised the importance of modelling both intrinsic and parameter uncertainty
to build more robust models for medical image analysis and computer vision.
Intrinsic uncertainty captures uncertainty inherent in observations and can be
interpreted as the irreducible variance that exists in the mapping of MR to CT
intensities or in the segmentation process. Parameter uncertainty quantifies the
degree of ambiguity in the model parameters given the observed data.

This paper makes use of [6] to enrich the multi-task method proposed in
[5]. This enables modelling the spatial variation of intrinsic uncertainty via
heteroscedastic noise across tasks and integrating parameter uncertainty via
dropout [8]. We propose a probabilistic dual-task network, which operates on
an MR image and simultaneously provides three valuable outputs necessary
for probabilistic RTP: (1) synCT generation, (2) OAR segmentation and (3)
quantification of predictive uncertainty in (1) and (2) (Fig. 2). The architecture
integrates the methods of uncertainty modelling in CNNs [6,7] into a multi-
task learning framework with hard-parameter sharing, in which the initial layers
of the network are shared across tasks and branch out into task-specific layers
(Fig. 1). Our probabilistic formulation not only provides an estimate of uncer-
tainty over predictions from which one can stochastically sample the space of
solutions, but also naturally confers a mechanism to spatially adapt the relative
weighting of task losses on a voxel-wise basis.

2 Methods

We propose a probabilistic dual-task CNN algorithm which takes an MRI image,
and simultaneously estimates the distribution over the corresponding CT image
and the segmentation probability of the OARs. We use a heteroscedastic noise
model and binary dropout to account for intrinsic and parameter uncertainty,
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Fig. 1. Multi-task learning architecture. The predictive mean and variance
[fW

i (x), σW
i (x)2] are estimated for the regression and segmentation. The task-specific

likelihoods p(yi|W,x) are combined to yield the multi-task likelihood p(y1,y2|W,x).

respectively, and show that we obtain not only a measure of uncertainty over
prediction, but also a mechanism for data-driven spatially adaptive weighting of
task losses, which is integral in a multi-task setting. We employ a patch-based
approach to perform both tasks, in which the input MR image is split into
smaller overlapping patches that are processed independently. For each input
patch x, our dual-task model estimates the conditional distributions p(yi|x)
for tasks i = 1, 2 where y1 and y2 are the Hounsfield Unit and OAR class
probabilities. At inference, the probability maps over the synCT and OARs are
obtained by stitching together outputs from appropriately shifted versions of the
input patches.

Dual-Task Architecture. We perform multi-task learning with hard-
parameter sharing [9]. The model shares the initial layers across the two tasks
to learn an invariant feature space of the anatomy and branches out into four
task-specific networks with separate parameters (Fig. 1). There are two networks
for each task (regression and segmentation). Where one aims to performs CT
synthesis (regression) or OAR segmentation, and the remaining models intrinsic
uncertainty associated to the data and the task.

The rationale behind shared layers is to learn a joint representation between
two tasks to regularise the learning of features for one task by using cues from
the other. We used a high-resolution network architecture (HighResNet) [10]
as the shared trunk of the model for its compactness and accuracy shown in
brain parcellation. HighResNet is a fully convolutional architecture that utilises
dilated convolutions with increasing dilation factors and residual connections to
produce an end-to-end mapping from an input patch (x) to voxel-wise predictions
(y). The final layer of the shared representation is split into two task-specific
compartments (Fig. 1). Each compartment consists of two fully convolutional
networks which operate on the output of representation network and together
learn task-specific representation and define likelihood function p (yi|W,x) for
each task i = 1, 2 where W denotes the set of all parameters of the model.

Task Weighting with Heteroscedastic Uncertainty. Previous probabilis-
tic multitask methods in deep learning [5] assumed constant intrinsic uncer-
tainty per task. In our context, this means that the inherent ambiguity present
across synthesis or segmentation does not depend on the spatial locations within
an image. This is a highly unrealistic assumption as these tasks can be more
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challenging on some anatomical structures (e.g. tissue boundaries) than others.
To capture potential spatial variation in intrinsic uncertainty, we adapt the het-
eroscedastic (data-dependent) noise model to our multitask learning problem.

For the CT synthesis task, we define our likelihood as a normal distribution
p (y1|W,x) = N (fW

1 (x), σW
1 (x)2) where mean fW

1 (x) and variance σW
1 (x)2 are

modelled by the regression output and uncertainty branch as functions of the
input patch x (Fig. 1). We define the task loss for CT synthesis to be the nega-
tive log-likelihood (NLL) L1(y1,x;W) = 1

2σW
1 (x)2

||y1 − fW
1 (x)||2 + logσW

1 (x)2.
This loss encourages assigning high-uncertainty to regions of high errors, enhanc-
ing the robustness of the network against noisy labels and outliers, which are
prevalent at organ boundaries especially close to the bone.

For the segmentation, we define the classification likelihood as softmax
function of scaled logits i.e. p (y2|W,x) = Softmax(fW

2 (x)/2σW
2 (x)2) where

the segmentation output fW
2 (x) is scaled by the uncertainty term σW

2 (x)2

before softmax (Fig. 1). As the uncertainty σW
2 (x)2 increases, the Softmax

output approaches a uniform distribution, which corresponds to the max-
imum entropy discrete distribution. We simplify the scaled Softmax likeli-
hood by considering an approximation in [5], 1

σ2

∑
c′ exp( 1

2σW
2 (x)2

fW
2,c′(x)) ≈

(∑
c′ exp(fW

2,c′(x))
)1/2σW

2 (x)2 where c′ denotes a segmentation class. This yields
the NLL task-loss of the form L2(y2 = c,x;W) ≈ 1

2σW
2 (x)2

CE(fW
2 (x),y2 =

c) + logσW
2 (x)2, where CE denotes cross-entropy.

The joint likelihood factorises over tasks such that p (y1,y2|W,x) =
∏2

i p (yi|W,x). We can therefore derive the NLL loss for the dual-task model as

L(y1,y2 = c,x;W) =
||y1 − fW

1 (x)||2
2σW

1 (x)2
+

CE(fW
2 (x),y2 = c)

2σW
2 (x)2

+ log
(
σW
1 (x)2σW

2 (x)2
)

where both task losses are weighted by the inverse of heteroscedastic intrinsic
uncertainty terms σW

i (x)2, that enables automatic weighting of task losses on a
per-sample basis. The log-term controls the spread.

Parameter Uncertainty with Approximate Bayesian Inference. In data-
scarce situations, the choice of best parameters is ambiguous, and resorting to
a single estimate without regularisation often leads to overfitting. Gal et al. [8]
have shown that dropout improves the generalisation of a NN by accounting
for parameter uncertainty through an approximation of the posterior distribu-
tion over its weights q(W) ≈ p(W|X,Y1,Y2) where X = {x(1), . . . ,x(N)},
Y1 = {y(1)

1 , . . . ,y(N)
1 }, Y2 = {y(1)

2 , . . . ,y(N)
2 } denote the training data. We also

use binary dropout in our model to assess the benefit of modelling parameter
uncertainty in the context of our multitask learning problem.

During training, for each input (or minibatch), network weights are drawn
from the approximate posterior w′ ∼ q(W) to obtain the multi-task output
fw

′
(x) := [fw′

1 (x), fw′
2 (x), σw′

1 (x)2, σw′
2 (x)2]. At test time, for each input patch

x in an MR scan, we collect output samples {fw(t)
(x)}T

t=1 by performing T
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stochastic forward-passes with {w(t)}T
t=1 ∼ q(W). For the regression, we cal-

culate the expectation over the T samples in addition to the variance, which
is the parameter uncertainty. For the segmentation, we compute the expecta-
tion of class probabilities to obtain the final labels whilst parameter uncertainty
in the segmentation is obtained by considering variance of the stochastic class
probabilities on a class basis. The final predictive uncertainty is the sum of the
intrinsic and parameter uncertainties.

Implementation Details. We implemented our model within the NiftyNet
framework [11] in TensorFlow. We trained our model on randomly selected 152×
152 patches from 2D axial slices and reconstructed the 3D volume at test time.
The representation network was composed of a convolutional layer followed by
3 sets of twice repeated dilated convolutions with dilation factors [1, 2, 4] and a
final convolutional layer. Each layer (l) used a 3 × 3 kernel with features fR =
[64, 64, 128, 256, 2048]. Each task-specific branch was a set of 5 convolutional
layers of size [256l=1,2,3,4, ni,l=5] where ni,l=5 is equal to 1 for regression and σ
and equal to the number of segmentation classes. The first two layers were 3× 3
kernels whilst the final convolutional layers were fully connected. A Bernouilli
drop-out mask with probability p = 0.5 was applied on the final layer of the
representation network. We minimised the loss using ADAM with a learning rate
10−3 and trained up to 19000 iterations with convergence of the loss starting at
17500. For the stochastic sampling, we performed model inference 10 times at
iterations 18000 and 19000 leading to a set of T = 20 samples.

3 Experiments and Results

Data. We validated on 15 prostate cancer patients, who each had a T2-weighted
MR (3T, 1.46 × 1.46 × 5mm3) and CT scan (140kVp, 0.98 × 0.98 × 1.5mm3)
acquired on the same day. Organ delineation was performed by a clinician with
labels for the left and right femur head, bone, prostate, rectum and bladder.
Images were resampled to isotropic resolution. The CT scans were spatially
aligned with the T2 scans prior to training [1]. In the segmentation, we predicted
labels for the background, left/right femur head, prostate, rectum and bladder.

Experiments. We performed 3-fold cross-validation and report statistics over
all hold-out sets. We considered the following models: (1) baseline networks for
regression/segmentation (M1), (2) baseline network with drop-out (M2a), (3) the
baseline with drop-out and heteroscedastic noise (M2b), (4) multi-task network
using homoscedastic task weighting (M3) [5] and (5) multi-task network using
task-specific heteroscedastic noise and drop-out (M4). The baseline networks
used only the representation network with 1/2fR and a fully-connected layer
for the final output to allow a fair comparison between single and multi-task
networks. We also compared our results against the current state of the art in
atlas propagation (AP) [1], which was validated on the same dataset.

Model Performance. An example of the model output is shown in Fig. 2. We
calculated the Mean Absolute Error (MAE) between the predicted and refer-
ence scans across the body and at each organ (Table 1). The fuzzy DICE score



8 F. J. S. Bragman et al.

Fig. 2. Model output. Intrinsic and parameter uncertainty both correlate with regions
of high contrast (bone in the regression, organ boundary for segmentation). Note the
correlation between model error and the predicted uncertainty.

between the probabilistic segmentation and the reference was calculated for the
segmentation (Table 1). Best performance was in our presented method (M4) for
the regression across all masks except at the bladder. Application of the multi-
task heteroscedastic network with drop-out (M4) produced the most consistent
synCT across all models with the lowest average MAE and the lowest variation
across patients (43.3 ± 2.9 versus 45.7 ± 4.6 [1] and 44.3 ± 3.1 [5]). This was
significant lower when compared to M1 (p < 0.001) and M2 (p < 0.001). This
was also observed at the bone, prostate and bladder (p < 0.001). Whilst differ-
ences at p < 0.05 were not observed versus M2b and M3, the consistent lower
MAE and standard deviation across patients in M4 demonstrates the added
benefit of modelling heteroscedastic noise and the inductive transfer from the
segmentation task. We performed better than the current state of the art in atlas
propagation, which used both T1 and T2-weighted scans [1]. Despite equivalence
with the state of the art (Table 1), we did not observe any significant differences

Table 1. Model comparison. Bold values indicate when a model was significantly worse
than M4 p < 0.05. No data was available for significance testing with AP. M2b was
statistically better p < 0.05 than M4 in the prostate segmentation.

Models All Bone L femur R femur Prostate Rectum Bladder

Regression - synCT - Mean Absolute Error (HU)

M1 48.1(4.2) 131(14.0) 78.6(19.2) 80.1(19.6) 37.1(10.4) 63.3(47.3) 24.3(5.2)

M2a 47.4(3.0) 130(12.1) 78.0(14.8) 77.0(13.0) 36.5(7.8) 67(44.6) 24.1(7.5)

M2b [7] 44.5(3.6) 128(17.1) 75.8(20.1) 74.2(17.4) 31.2(7.0) 56.1(45.5) 17.8(4.7)

M3 [5] 44.3(3.1) 126(14.4) 74.0(19.5) 73.7(17.1) 29.4(4.7) 58.4(48.0) 18.2(3.5)

AP [1] 45.7(4.6) 125(10.3) - - - - -

M4 (ours) 43.3(2.9) 121(12.6) 69.7(13.7) 67.8(13.2) 28.9(2.9) 55.1(48.1) 18.3(6.1)

Segmentation - OAR - Fuzzy DICE score

M1 - - 0.91(0.02) 0.90(0.04) 0.67(0.12) 0.70(0.15) 0.92(0.05)

M2a - - 0.85(0.03) 0.90(0.04) 0.66(0.12) 0.69(0.13) 0.90(0.07)

M2b [7] - - 0.92(0.02) 0.92(0.01) 0.77(0.07) 0.74(0.13) 0.92(0.03)

M3 [5] - - 0.92(0.02) 0.92(0.02) 0.73(0.07) 0.76(0.10) 0.93(0.02)

AP [1] - - 0.89(0.02) 0.90(0.01) 0.73(0.06) 0.77(0.06) 0.90(0.03)

M4 (ours) - - 0.91(0.02) 0.91(0.02) 0.70(0.06) 0.74(0.12) 0.93(0.04)
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Fig. 3. Analysis of uncertainty estimation. (a) synCTs and z-scores for the a subject
between M4 (top) and M3 (bottom) models. (b) z-score distribution of all patients (15)
between both models.

between our model and the baselines despite an improvement in mean DICE at
the prostate and rectum (0.70 ± 0.06 and 0.74 ± 0.12) versus the baseline M1
(0.67 ± 0.12, 0.70 ± 0.15). The intrinsic uncertainty (Fig. 2) models the uncer-
tainty specific to the data and thus penalises regions of high error leading to an
under-segmentation yet with higher confidence in the result.

Uncertainty Estimation for Radiotherapy. We tested the ability of the
proposed network to better predict associated uncertainties in the synCT error.
To verify that we produce clinically viable samples for treatment planning, we
quantified the distribution of regression z-scores for the multi-task heteroscedas-
tic and homoscedastic models. In the former, the total predictive uncertainty
is the sum of the intrinsic and parameter uncertainties. This leads to a better
approximation of the variance in the model. In contrast, the total uncertainty
in the latter reduces to the variance of the stochastic test-time samples. This is
likely to lead to a miscalibrated variance. A χ2 goodness of fit test was performed,
showing that the homoscedastic z-score distribution is not normally distributed
(0.82 ± 0.54, p < 0.01) in contrast to the heteroscedastic model (0.04 ± 0.84,
p > 0.05). This is apparent in Fig. 3 where there is greater confidence in the
synCT produced by our model in contrast the homoscedastic case.

The predictive uncertainty can be exploited for quality assurance (Fig. 4).
There may be issues whereupon time differences have caused variations in blad-
der and rectum filling across MR and CT scans causing patient variability in the

Fig. 4. Uncertainty in problematic areas. (a) T2 with reference segmentation, (b)
synCT with localised error, (c) intrinsic uncertainty, (d) parameter uncertainty, (e)
total predictive uncertainty and (f) error in HU (range [−750HU, 750HU]).
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training data. This is exemplified by large errors in the synCT at the rectum
(Fig. 4) and quantified by large localise z-scores (Fig. 4f), which correlate strongly
with the intrinsic and parameter uncertainty across tasks (Figs. 2 and 4).

4 Conclusions

We have proposed a probabilistic dual-network that combines uncertainty mod-
elling with multi-task learning. Our network extends prior work in multi-task
learning by integrating heteroscedastic uncertainty modelling to naturally weight
task losses and maximize inductive transfer between tasks. We have demon-
strated the applicability of our network in the context of MR-only radiother-
apy treatment planning. The model simultaneously provides the generation of
synCTs, the segmentation of OARs and quantification of predictive uncertainty
in both tasks. We have shown that a multi-task framework with heteroscedastic
noise modelling leads to more accurate and consistent synCTs with a constraint
on anatomical consistency with the segmentations. Importantly, we have demon-
strated that the output of our network leads to consistent anatomically correct
stochastic synCT samples that can potentially be effective in treatment planning.
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