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Abstract. Simultaneous segmentation and full quantification (estima-
tion of all diagnostic indices) of the myocardial infarction (MI) area are
crucial for early diagnosis and surgical planning. Current clinical meth-
ods still suffer from high-risk, non-reproducibility and time-consumption
issues. In this study, the multitask generative adversarial networks (MuT-
GAN) is proposed as a contrast-free, stable and automatic clinical tool
to segment and quantify MIs simultaneously. MuTGAN consists of gen-
erator and discriminator modules and is implemented by three seamless
connected networks: spatio-temporal feature extraction network compre-
hensively learns the morphology and kinematic abnormalities of the left
ventricle through a novel three-dimensional successive convolution; joint
feature learning network learns the complementarity between segmenta-
tion and quantification through innovative inter- and intra-skip connec-
tion; task relatedness network learns the intrinsic pattern between tasks
to increase the accuracy of estimations through creatively utilized adver-
sarial learning. MuTGAN minimizes a generalized divergence to directly
optimize the distribution of estimations by using the competition pro-
cess, which achieves pixel segmentation and full quantification of MIs.
Our proposed method yielded a pixel classification accuracy of 96.46%,
and the mean absolute error of the MI centroid was 0.977 mm, from 140
clinical subjects. These results indicate the potential of our proposed
method in aiding standardized MI assessments.
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1 Introduction

Simultaneous segmentation and quantification (including pixel segmentation and
full quantification of all indices such as the infarct size, segment percentage,
perimeter, centroid, major axis length, minor axis length and orientation) of a
myocardial infarction (MI) are crucial to clinical treatment of the MI [1]. It seg-
ments MI to predict the recovery of dysfunctional segments in chronic ischemic
heart diseases or to select therapeutic options; it estimates all indices that indi-
cate the presence, location, and transmurality of acute and chronic MI. The
combination can obtain all information required for a thorough understanding
of the extent of the MI to prevent further heart failure [2].

Fig. 1. (a) MuTGAN can accurately segment and quantify an infarction in one step
without contrast agents compared to (b) the high-risk, non-reproducible and time-
consuming current clinical methods.

Current clinical methods still suffer from high-risk, non-reproducibility and
time-consumption issues [3]. The clinical standards include two steps: (1) delayed
enhancement (DE) imaging by using magnetic resonance (MR) with gadolinium
contrast agents and (2) manual segmentation and quantification of all indices of
the MI from DE -MR image [2]. The high risk comes from the use of contrast
agents, which are fatal with regard to the kidney disease that accompanies more
than 20% of MI patients [3]. The non-reproducibility comes from the manual
process that is subject to high inter-observer variability and is subjective. The
time-consumption factor comes from the imaging process itself that requires mul-
tiple imaging techniques and a two-step process. Therefore, there is an urgent
clinical desire to obtain a non-contrast agent, stable and automated clinical tool.
However, while it is widely believed that an MI can be identified and localized
vaguely without a contrast agent through the detection of morphological and
kinematic abnormalities of the left ventricle (LV) directly from blurry cine MR
[4], it is still challenging to build a unified model for segmenting and quanti-
fying the MI simultaneously: (1) Effective learning of the relationship between
segmentation and quantification. Segmentation and quantification as two related
tasks sharing the same factors can share the information during the learning pro-
cess to produce a beneficial interaction [5]. However, it is difficult to uniformly



MuTGAN: Simultaneous Segmentation and Quantification 527

learn this beneficial interaction because of huge differences in the dimensions
and distribution between the two. (2) Comprehensive learning of the spatio-
temporal information inside of and between images. Extracting spatio-temporal
information from the myocardium and surrounding tissues in sequential images
is highly effective for building the intrinsic representation of the MI [6]. How-
ever, it is still difficult to systematically learn the asymmetry of the spatial and
temporal motion over different time steps from 2D+T image sequences [7]. (3)
Efficient leveraging of the relationship between quantification indices. Accurate
full quantification is highly dependent on the ability to leverage the important
relationship that exists between the different indices to directly optimize the esti-
mations [8]. However, it is difficult to train this relationship properly to reduce
the distribution error of the estimation due to the different locally optimal and
probability distributions of the different indices [9].

In this study, the multitask generative adversarial networks (MuTGAN) is
proposed for joint segmentation and quantification of MI directly from cine MR
without contrast agents. MuTGAN formulates the segmentation and seven quan-
tification indices into eight tasks that can be estimated simultaneously under
combined multitask and adversarial learning. To accomplish this, a novel three
dimensional (3D) successive convolutional framework that takes spatial correla-
tion over different time steps into consideration is proposed for extracting the
comprehensive spatio-temporal feature of MI from 2D+T images. An innovative
joint learning architecture as multitask learning that fuses the feature maps of
different level layers is proposed for achieving a reciprocal representation that
has a beneficial interaction between segmentation and quantification. A cre-
ative task relatedness adversarial learning that models the substantial pattern
between tasks is proposed for exploiting the inductive bias of the task’s rele-
vance to approximate the estimation distribution to the real data. In the end,
our MuTGAN not only simultaneously segments and quantifies MI for the first
time but also effectively exploits the trait of multitask to improve itself.

2 Methodology

MuTGAN was implemented by two competing modules: the generator (Sect. 2.2)
and discriminator (Sect. 2.3), as shown in Fig. 2. The two modules interact with
each other and consist of three seamlessly connected networks. The generator
first builds the spatio-temporal feature extraction network based on novelty
stacks of 3D convolution (Conv) and ConvLSTMs [10] to learn a comprehensive
representation of the 2D+T data through successive convolution over different
time steps in replacing the pooling layer; it then builds joint feature learning
network based on new skip architecture [11] to share the representation of the
segmentation and quantification by multiple skip connections between inter-
and intra-networks. The discriminator builds task relatedness network based on
bidirectional (Bi) -LSTMs [12] to creatively use adversarial training that takes
the complete contextual pattern between tasks as a criterion for measuring the
accuracy of estimations.
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Fig. 2. The architecture of MuTGAN: the generator combines spatio-temporal fea-
ture extraction network and joint feature learning network for multitask learning; the
discriminator uses task relatedness network for adversarial learning.

2.1 MuTGAN Formulation

The output of MuTGAN is multitask result Y ∈ (y1, y2, ..., yn, n = 8) including
one segmentation task y1 and seven quantification tasks y2, ..., yn. The objective
of MuTGAN is to simultaneously estimate Y from cine MR, which consists of
2D +T image sequences X ∈ (x1, x2, ..., xT ,RH×W×T ), where H and W are the
height and width of each temporal frames respectively (H = W = 64), and T is
the temporal step, T = 25. X can be considered as special 3D data (H ×W ×T ).
Given the discriminator and generator parameters θD and θG, each updated by
minimizing the losses LG and LD, MuTGAN can be express as:{

LD = L(d(Y )) − λL(d(g(X))) for θD

LG = L(g(X)) for θG

(1)

Where g(.) and d(.) are the generator and discriminator function, and λ ∈ [0, 1].

2.2 Generator

The generator module uses spatio-temporal feature extraction network and joint
feature learning network to generate candidate multitask estimations directly
from cine MR.

Spatio-Temporal Features Extraction Network (SFEN). The network
innovatively stacks ConvLSTMs and 3DConvs for accurate extraction of the left
ventricular morphology and kinematic abnormalities. ConvLSTMs and 3DConvs
are both effective tools for learning spatial and temporal information from 2D+T
data and are usually used separately. In our work, for a better handle on the
asymmetry distortion that is a unique myocardial motion pattern caused by
MI, special integration of ConvLSTMs and 3DConvs is used to consider spatial
correlation over different time steps. The benefit of this integration is two-fold:
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first, by using successive Convs instead of the pooling layers, temporal and spa-
tial information can be extracted simultaneously and equally. Second, multiple
temporal ranges with different spatial scales can be extracted by adjusting the
size of the Conv kernel over different layers. ConvLSTMs uses its internal mem-
ory to process 2D+T images, which creates an internal state that can discover
the dynamic temporal behavior between frames and allows for persistence [10].
Given that it, ft, c̃t, and ot represent the input, forget, cell, and output gates,
respectively, the ConvLSTMs are:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

it = σ(xt ∗ wxi + ht−1 ∗ whi + wibias)
ft = σ(xt ∗ wxf + ht−1 ∗ whf + wfbias)
c̃t = tanh(xt ∗ wxc̃ + ht−1 ∗ whc̃ + wc̃bias)
ct = c̃t � it + ct−1 � ft

ot = σ(xt ∗ wxo + ht−1 ∗ who + wobias)
ht = ot � tanh(ct)

(2)

Where c and h are the memory and output activations; σ and tanh are
the sigmoid and hyperbolic tangent non-linearities; ∗ represents the convolu-
tion operation, and � the Hadamard product. 3DConvs are inserted between
each ConvLSTMs, which stride 2×2×3 downsampling to reduce the resolution
both spatially and temporally. In the last of this networks (Conv13), each X
maps into a fixed-length vector FConv13 = fencoding(X) ≈ arg min

H
p((H − X) |

x1, . . . , xt),H ∈ (h1, ..., ht),FConv13 ∈ R
4×4×512.

Joint Feature Learning Network. A new multiple skip connection is used
to forcibly connect the segmentation and quantification, and joint learning ben-
eficial interactions to promote the learning mutually. This network combines
upsampling and the same successive Convs as SFEN uses the skip architecture
to integrate SFEN and learn a shared representation of the segmentation and
quantification. The skip architecture that fused feature maps of different lay-
ers to avoid spatial information loss and gradient dispersion has gained great
success in U-Net and ResNet. In our work, for segmentation, the skip archi-
tecture symmetrically connects the SFEN and joint feature learning network
(Conv12 → Conv18, Conv8 → Conv22, Conv4 → Conv26) to contain the full
context available in time series data and learn a more precise segmentation.
For regression, the skip architecture combines the FConv13 and each feature
map before the filters change in the joint learning network to integrate coarse,
high layer information with fine, low layer information to produce accurate and
detailed quantification. Two parallel, fully connected layers generate candidate
results ˜Y ≈ gpredicting(FConv13) = gpredicting(ỹ1, . . . , ỹn | fencoding(x1, . . . , xt)),
including ỹ1, a binary 64 × 64 image and seven indices ỹn.
Loss for Generator Training. Dice loss takes tackle class imbalance into
consideration is employed for the segmentation and mean absolute error (MAE)
for the quantification:

LG = Ldice(g(X), y1) +

n∑
i=2

Lmae(g(X), yi) =
2|y1 ∩ g(X)|
|y1| + |g(X)| +

n∑
i=2

|yi − g(X)|η (3)

Where η is the target norm, η ∈ {1, 2}.
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2.3 Discriminator

The discriminator creatively uses a task relatedness network to determine
whether the candidate multitask estimations fit the ground truth and directly
optimizes the candidate to improve MuTGAN performance based on the inher-
ent pattern between tasks.

Task Relatedness Network. The network utilize Bi-LSTMs to learn the inher-
ent pattern between tasks. LSTMs provides a general framework for learning this
pattern. However, Bi-LSTMs consider more complete contextual relationships
than LSTMs because of replacing each hidden sequence hl with the forward and
backward sequences

−→
hl and

←−
hl , ensuring that every hidden layer receives input

from both the forward and backward layers at the level below. In our work,
Bi-LSTMs regulates task relatedness by gates structures, which remove or add
information to the cell state by processing different tasks [12].

hl
n = fLSTM (Whl−1hlh

l−1
n + Whlhlh

l
n−1 + bl

h) (4)

where the hidden vector sequences hl
n are iteratively computed from Ỹ =

ỹ1, . . . , ỹn and all L (l = 1 to L) are layers in the stack. The network output is
Ŷl = WhLŷh

N
l + bŷ

Loss for Discriminator Training. For efficiently converging GANs, the dis-
criminator module is equivalent to minimizing the following MAE loss:

LD =
N∑

n=1

Lmae(d(ỹn), yn) =
N∑

n=1

|yn − d(ỹn)|η (5)

3 Materials and Implementation Details

A total of 140 patients were retrospectively selected between May 2015 and
May 2017 and completed cine and DE-MR imaging scans. MR imaging was
performed using a 3T MR system (MAGNETOM Verio, Siemens). SSFP cine
images were acquired during repeated breath holds: TR 3.1 ms, TE 1.3 ms, FA
45◦, FOV (276 × 340) mm2, matrix 156×192, slice thickness 6 mm, and 25 car-
diac phases. DE-MR imaging was performed in the same orientations and with
the same slice thickness as cine imaging ten minutes after the intravenous injec-
tion of gadolinium (Magnevist, 0.2 m mol/kg): TR = 10.5 ms, TE = 5.4 ms, and
FA= 30◦. Two radiologists with more than 10 years of experience manually seg-
mented and quantified the MI (syngo MR B17) in the DE-CMR images. If there
was disagreement, a consensus between the two experts must be reached. In our
experiments, a network with heart localization layers, described in [6], was used
to automatically crop cine MR to 64 × 64 region-of-interest sequences including
the LV. All experiments were assessed with a 10-fold cross-validation test.
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Fig. 3. (A) The infarction areas segmented and quantified by our method (green zone)
are consistent with the ground truth (yellow dotted line). (B) The different resolu-
tion feature maps indicate that MuTGAN effectively extracts spatio-temporal motion
information of different myocardial regions at different time steps.

4 Experiments and Results

MutGAN produces high performance with a pixel classification accuracy of
96.46%, the MAE of the centroid point is 0.97 mm with the ground truth
obtained manually by human experts, which demonstrates this method’s effec-
tiveness for segmentation and quantification of MI.

Accurate MI Segmentation. The experiment’s result shows that MuTGAN
can accurately locate the MI, as shown in Fig. 3. We achieve an overall pixel
classification accuracy of 96.46%, with a sensitivity of 91.82% and a specificity
of 98.21%; the Dice coefficient is 90.27 ± 0.05%; the ROCs and PRs curves are
shown in Fig. 4. The ground truth and result are binary images; each pixel is
assessed for infarction or normality (0 or 1).

Precise MI Quantification. MuTGAN can also obtain good quantification
of the MI, as shown in Fig. 3 and Table 1. The MAE computed between the
ground truth and our estimation of the infarction size is 22.311 ± 18.39 mm2,
the segment percentage is 1.04 ± 0.62%, the perimeter is 5.392 ± 4.66 mm, the
centroid is 0.977± 0.78 mm, the major axis length is 2.303± 1.88 mm, the minor
axis length is 1.030 ± 0.76 mm, and the orientation is 7.242 ± 3.63◦.

Advantage of GANs Architecture. Figure 4 and Table 1 show that MuT-
GAN has better segmentation and quantification performance in comparison to
those frameworks because of its combined ability for joint learning (Joi) and
adversarial learning (Adv). To evaluate this ability, MuTGAN (Joi+Adv), Gen-
erator (Joi) and separately estimated tasks by SFEN are implemented individ-
ually.

Advantages of the Spatio-temporal Feature Extraction Network.
Table 2 indicates that SFEN (3DConvs + ConvLSTMs) achieved better per-
formance than all other the frameworks because of its learned spatial correlation
over different time steps. To evaluate the performance of extraction, we replaced
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Fig. 4. ROCs and PRs demonstrate that MuTGAN can accurately segment infarct
areas by combining joint learning (Joi) and adversarial learning (Adv).

Table 1. MuTGAN works best in comparison with frameworks that do not utilize the
joint learning and adversarial learning.

MuTGAN Generator SFEN

Accuracy 96.46% 95.83% 94.13%

Sensitivity 91.82% 90.74% 81.86%

Specificity 98.21% 98.17% 96.64%

Dice (%) 90.27% 89.76% 83.13%

Infarct Size (mm2) 22.31 30.91 54.91

segments percentage 1.04% 2.05% 1.05%

Perimeter (mm) 5.39 10.26 7.53

Centroid (mm) 0.97 3.87 1.42

Majoraxislength (mm) 2.30 4.83 7.65

Minoraxislength (mm) 1.03 3.26 5.34

Orientation (◦) 7.24 8.51 8.47

the 3DConvs + ConvLSTMs with 3DConvs, ConvLSTMs, 3DConvs + LSTMs,
CNNs and LSTMs in our framework.

Comparison with Some Existing Methods. Table 3 demonstrates that
MuTGAN achieved higher segmentation and quantification accuracy compared
with existing classical methods in segmentation/quantification (Seq/Qua).

Table 2. MuTGAN works best in comparison with other frameworks.

MuTGAN ConvLSTMs 3DConvs 3DConvs+LSTM CNNs LSTMs

Accuracy 96.46% 96.31% 93.32% 94.48% 90.64% 90.63%

Dice 0.90 0.89 0.81 0.82 0.73 0.77

Infarct size 22.31 47.35 92.54 79.94 224.28 176.46
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Table 3. MuTGAN realized segmentation and quantification of MI simultaneously
without a contrast agent and yielded higher performance than some existing methods.

Seg/Qua Accuracy Dice Infarct size Centroid

MuTGAN Seg and Qua 96.46% 90.27% 22.31 0.97

Xu et al. [6] Seg only 94.35% 89.87% 92.02∗ 7.98∗
Popescu et al. [7] Seg only 85.68% 74.45% 176.28∗ 10.46∗
Bleton et al. [13] Seg only 84.78 71.62 224.28∗ 12.93∗

* The quantification result estimate from segmentation result.

5 Conclusions

Multitask generative adversarial networks have been proposed and, for the first
time, used for simultaneous segmentation and quantification of MI without con-
trast agents. MuTGAN was conducted on 140 subjects and yielded a pixel clas-
sification accuracy of 96.46%; the MAE of the infarction size was 22.31 mm2. All
of these results demonstrate that MuTGAN can aid in the clinical diagnosis of
MI assessments.
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