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Abstract. The estimation of patient-specific tissue properties in the
form of model parameters is important for personalized physiological
models. However, these tissue properties are spatially varying across
the underlying anatomical model, presenting a significance challenge of
high-dimensional (HD) optimization at the presence of limited measure-
ment data. A common solution to reduce the dimension of the param-
eter space is to explicitly partition the anatomical mesh, either into a
fixed small number of segments or a multi-scale hierarchy. This anatomy-
based reduction of parameter space presents a fundamental bottleneck
to parameter estimation, resulting in solutions that are either too low
in resolution to reflect tissue heterogeneity, or too high in dimension
to be reliably estimated within feasible computation. In this paper,
we present a novel concept that embeds a generative variational auto-
encoder (VAE) into the objective function of Bayesian optimization, pro-
viding an implicit low-dimensional (LD) search space that represents the
generative code of the HD spatially-varying tissue properties. In addi-
tion, the VAE-encoded knowledge about the generative code is further
used to guide the exploration of the search space. The presented method
is applied to estimating tissue excitability in a cardiac electrophysiolog-
ical model. Synthetic and real-data experiments demonstrate its ability
to improve the accuracy of parameter estimation with more than 10x
gain in efficiency.
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1 Introduction

Patient-specific cardiac models have shown increasing potential in personalized
treatment of heart diseases [9]. A significant challenge in personalizing these
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models arises from the estimation of patient-specific tissue properties that vary
spatially across the myocardium. To estimate these high-dimensional (HD) tissue
properties (in the form of model parameters) is not only algorithmically difficult
given indirect and sparse measurements, but also computationally intractable in
the presence of computing-intensive simulation models.

Numerous efforts have been made to circumvent the challenge of HD param-
eter estimation. Many works assume homogeneous tissue property that can be
represented by a single global model parameter [7]. To preserve local tissue prop-
erties, a common approach is to reduce the parameter space through an explicit
partitioning of the cardiac mesh. These efforts can be generally summarized
in two categories. In one approach, the cardiac mesh is pre-divided into 3–26
segments, each represented by a uniform parameter value [11]. Naturally, this
artificial low-resolution division has a limited ability to represent tissue hetero-
geneity that is not known a priori. It has also been shown that the initializa-
tion of model parameters becomes increasingly more critical as the number of
segments grows [11]. Alternatively, a multi-scale hierarchy of the cardiac mesh
can be defined for a coarse-to-fine optimization, which allows spatially-adaptive
resolution that is higher in certain regions than the others [3,4]. However, the
representation ability of the final partition is limited by the inflexibility of the
multi-scale hierarchy: homogeneous regions distributed across different scales
cannot be grouped into the same partition, while the resolution of heteroge-
neous regions can be limited by the level of scale the optimization can reach
[4]. In addition, because these methods involve a cascade of optimizations along
the hierarchy of the cardiac mesh, they are computationally expensive. In the
presence of models that could require hours or days for a single simulation, these
methods could quickly become computationally prohibitive.

In this paper, we present a novel HD parameter optimization approach that
replaces the explicit anatomy-based reduction of the parameter space, with an
implicit low-dimensional (LD) manifold that represents the generative code for
HD spatially-varying tissue properties. This is achieved by embedding within
the optimization a generative variational auto-encoder (VAE) model, trained
from a large set of spatially-varying tissue properties reflecting regional tissue
abnormality with various locations, sizes, and distributions. The VAE decoder is
utilized within the objective function of the Bayesian optimization [2] to provide
an implicit LD search space for HD parameter estimation. Meanwhile, the VAE-
encoded posterior distribution of the generative code is used to guide an efficient
exploration of the LD manifold. The presented method is applied to estimating
tissue excitability of a cardiac electrophysiological model using non-invasive elec-
trocardiogram (ECG) data. On both synthetic and real data experiments, the
presented method is compared against the use of anatomy-based LD [11] or
multi-scale representation of the parameter space [4]. Experiments demonstrate
that the presented method can achieve a drastic reduction in computational cost
while improving the accuracy of the estimated parameters. To the best of our
knowledge, this is the first work that utilizes a probabilistic generative model
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within an optimization framework for estimating HD model parameters. It pro-
vides an efficient and general solution to personalizing HD model parameters.

2 Background: Cardiac Electrophysiological System

Cardiac Electrophysiology Model: Among the different types of cardiac elec-
trophysiological models, phenomenological models such as the Aliev-Panfilov
(AP) model [1] can explain the macroscopic process of cardiac excitation with a
small number of model parameters and reasonable computation. Therefore, the
AP model given below is chosen to test the feasibility of the presented method:

∂u/∂t = ∇(D∇u) − cu(u − θ)(u − 1) − uv,

∂v/∂t = ε(u, v)(−v − cu(u − θ − 1)).
(1)

Here, u is the transmembrane action potential and v is the recovery current.
The transmural action potential is computed by solving the AP model (1) on a
3D myocardium discretized using the meshfree method [10]. Because u is most
sensitive to the value of the parameter θ [4], we focus on its estimation in this
study.

Body-Surface ECG Model: The propagation of the spatio-temporal trans-
mural action potential U to the potentials measured on the body surface Y can
be described by the quasi-static approximation of the electromagnetic theory [8].
Solving the governing equations on a discrete heart-torso mesh, a linear relation-
ship between U and Y can be obtained as: Y = H(U(θθθ)), where θθθ is the vector
of local parameters θ at the resolution of the cardiac mesh.

3 HD Parameter Estimation

To estimate θθθ, we maximize the similarity between the measured ECG and those
simulated by the combined electrophysiological and ECG model M(θθθ):

θ̂θθ = arg max
θθθ

−||Y − M(θθθ)||2. (2)

To enable the estimation of θθθ at the resolution of the cardiac mesh, the pre-
sented method embeds within the Bayesian optimization framework a stochastic
generative model that generates θθθ from a LD manifold. It includes two major
components as outlined in Fig. 1: (1) the construction of a generative model of
HD spatially-varying tissue properties at the resolution of the cardiac mesh, and
(2) a novel Bayesian optimization method utilizing the embedded generative
model.
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Fig. 1. Outline of the presented method, with the dimension of each VAE layer labeled.

3.1 LD-to-HD Parameter Generation via VAE

Generative VAE Model: We assume that the spatially varying tissue prop-
erties at the resolution of a cardiac mesh θθθ is generated by a small number
of unobserved continuous random variables z in a LD manifold. To obtain the
generative process from z to θθθ, the VAE consists of two modules: a probabilis-
tic deep encoder network with parameters ααα that approximates the intractable
true posterior density as qααα(z|θθθ); and a probabilistic deep decoder network with
parameters βββ that can probabilistically reconstruct θθθ given z as pβββ(θθθ|z). Both
networks consist of three fully-connected layers as shown in Fig. 1.

To train the VAE, we generate ΘΘΘ =
{
θθθ(i)

}N

i=1
consisting of N configurations

of heterogeneous tissue properties in a patient-specific cardiac mesh. The training
involves optimizing the variational lower bound on the marginal likelihood of
each training data θθθ(i) with respect to network parameters ααα and βββ:

L(ααα;βββ;θθθ(i)) = −DKL(qααα(z|θθθ(i))||pβββ(z)) + Eqα(z|θθθ(i))[logpβββ(θθθ(i)|z)], (3)

where we model pβββ(θθθ|z) with a Bernoulli distribution. To optimize Eq. (3),
stochastic gradient descent with standard backpropagation can be utilized.
Assuming the approximate posterior qα(z|θθθ) as a Gaussian density and the prior
pβββ(z) ∼ N (0, 1), their KL divergence can be derived analytically as:

DKL(qααα(z|θθθ(i))||pβββ(z)) = −1
2

∑
(1 + log(σσσ2

j ) − μμμ2
j − σσσ2

j ), (4)

where j is along the dimensions of z, and μμμ and σσσ2 are mean and variance
from qααα(z|θθθ(i)). Because stochastic latent variables are utilized, the gradient of
the expected negative reconstruction term during backpropagation cannot be
directly obtained. The popular re-parameterization trick is utilized to express z
as a deterministic variable as z(i) = μμμ(i) + σσσ(i)εεε, where εεε ∼ N (0, I) is noise [6].

Probabilistic Modeling of the Latent Code: The trained encoder provides
an approximated posterior density of the LD latent code qα(z|θθθ). This repre-
sents valuable knowledge about the probabilistic distribution of z learned from
a large training dataset. To utilize this in the subsequent optimization, we inte-
grate qα(z|θθθ) over the training data ΘΘΘ to obtain the density qααα(z) as a mixture
of Gaussians 1/N

∑N
i N (μμμ(i),ΣΣΣ(i)), where μμμ(i) and ΣΣΣ(i) are mean and covari-

ance from qααα(z|θθθ(i)). Because the number of mixture components in qααα(z) scales
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linearly with the number of training data, we approximate qααα(z) with a single
Gaussian density as N (

1/N
∑N

i μμμ(i), 1/N
∑N

i (ΣΣΣ(i) +μμμ(i)μμμ(i)T ) −μμμμμμT
)
. Alter-

natively, we approximate qααα(z) with a mixture of Gaussians with K << N
components, where k-means clustering with the Bregman divergence [5] as a
similarity metric is used to reduce the number of mixture components.

In this way, we obtain a generative model pβββ(θθθ|z) of HD tissue properties from
an implicit LD manifold, and prior knowledge of the LD manifold qααα(z) from
the probabilistic encoder. Both will be embedded into Bayesian optimization to
enable efficient and accurate HD parameter estimation.

3.2 Bayesian Optimization with Embedded Generative Model

Representing θθθ with the expectation of the trained decoder pβββ(θθθ|z), we obtain:

ẑ = arg max
z

−||Y − M
(
E[pβββ(θθθ|z])||2, (5)

which allow us to optimize the HD parameter θθθ in an implicit LD manifold of
z. For Bayesian optimization, we assume a zero mean Gaussian process (GP)
with an anisotropic Mátern 5/2 kernel as a prior over the objective function (5).
The optimization then consists of two iterative steps: (1) select point in the LD
manifold that allows the GP to globally approximate Eq. (5) (exploration) while
locally refining the area of optimum (exploitation); and (2) update the GP.

VAE-Informed Acquisition Function: To select points on LD manifold, we
adopt the expected improvement (EI) function that picks a point with maximum
expectation of improvement over the current best objective function value fm [2].
For a GP posterior ∼ N (μ(.), σ(.)), it can be obtained as:

EI(z) = (μ(z) − fm)Φ
(μ(z) − fm

σ(z)

)
+ σ(z)φ

(μ(z) − fm

σ(z)

)
, (6)

where Φ and φ are the cumulative distribution function and density function
of the standard normal distribution. Here, the first term controls exploitation
(through high μ) and the second term controls exploration (through high σ).
Because using only fm can lead to excessive exploitation, it is common to aug-
ment fm with a constant trade-off parameter ε as: fm + ε [2]. Here, we utilize
the VAE-encoded knowledge about the LD manifold qααα(z) to enforce higher
exploitation in the areas of high probability density for z, and lower elsewhere.
In specific, we define ε(z) = −fm

∑
i wi(z−μμμi)ΣΣΣ−1

i (z−μμμi), where w, μμμ, and ΣΣΣ
are the weight, mean, and variance of the K Gaussian mixture components in
qααα(z).

GP Update: After a new point z(n) is selected by maximizing the modified
EI, the objective function (5) is evaluated at the HD parameter given by the
mean of the generative model pβββ(θθθ|z(n)). The GP is then updated by adding the
new pair of z(n) and objective function value, and maximizing the log marginal
likelihood with respect to kernel parameters: length scales and kernel amplitude.
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4 Experiments

Synthetic Experiments: We include 27 synthetic experiments on three CT-
derived human heart-torso models. In each case, an infarct sized 2%–40% of the
heart was placed at differing locations using various combinations of the AHA
segments. The value of the parameter θ in the infarcted and the healthy region
is set to 0.5 and 0.15, respectively. 120-lead ECG is simulated and corrupted
with 20 dB Gaussian noise as measurement data. We evaluate the accuracy in
estimated parameters with two metrics: (1) root mean square error (RMSE)
between the true and estimated parameters; and (2) dice coefficient (DC) =
2(|S1∩S2|)
|S1|+|S2| , where S1 and S2 are the sets of nodes in the true and estimated

regions of infarct; these regions are determined by Otsu’s thresholding method.

VAE Architecture and Training: For each heart, we generate a training dataset
of tissue properties with various heterogeneous infarcts. Each infarct is generated
by random region growing in which, starting with one infarct node, one out of
the five closest neighbors of the present infarct is randomly added to the infarct
until an infarct of desired size is obtained. It is then added to training data.
Because infarcts thus generated tend to be very irregular, we also include infarcts
generated by growing the infarct with the node closest to its center. For each
heart, we extract 123,896, 155,099, and 116,459 data. The training of VAE with
an architecture as shown in Fig. 1 with the Adam optimizer on Titan X GPU
took 9.77, 13.96, and 9.0 min for each dataset.

Fig. 2. Comparison of BO-VAE EI Post-1 (blue bar) with: (1) FH and FS (green bars);
and (2) BO-VAE using standard EI, EI Isotropic, and EI Post-K (yellow bars) in terms
of DC, RMSE, and number of model evaluations (from left to right).

Comparison with Existing Methods: The presented method (termed as BO-VAE)
is compared against two common approaches based on explicit LD represen-
tation: (1) optimization over fixed 18 segments (fixed-segment (FS) method);
and (2) coarse-to-fine optimization along a fixed multi-scale hierarchy (fixed-
hierarchy (FH) method). As summarized in Fig. 2(a)(b), BO-VAE (blue bar) is
more accurate than the other two methods (green bars) in both DC and RMSE
(paired t-tests, p < 0.012). This is achieved at a reduction of the computational
cost by: 87.57% for the FS method and 98.73% for the FH method (Fig. 2(c)).

The FS method shows the lowest accuracy with some estimated parameters
either missing the infarct or including large false positives (Fig. 3) left. The FH
method overcomes this issue, although to a limited extent. In the LD represen-
tation obtained by the FH method as shown in Fig. 3 right several dimensions
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Fig. 3. Left: Examples of estimated parameters with BO-VAE, FH, and FS. Right:
Progression of FH on the multi-scale hierarchy for parameter estimation of (a) (green
leaf: homogeneous tissues; red leaf: heterogeneous tissues).

are wasted at representing homogeneous healthy regions (green) across different
scales, which limits its ability to optimize deeper along the tree. BO-VAE is not
limited by such explicitly-imposed anatomy-based structure, allowing it to attain
higher accuracy with only 2 latent dimensions and 1–10% of the computation.

The Effect of VAE-Encoded Knowledge About the LD Manifold: To study the
effect of incorporating the VAE-encoded qααα(z) in the EI, we compare the
standard EI with EI augmented with three types of distributions on z: (1)
pβββ(z) ∼ N (0, 1) (EI Isotropic), (2) approximated qααα(z) with a single Gaussian
density (EI Post-1); and (3) approximated qααα(z) with a mixture of 10 Gaussian
densities (EI Post-K). As shown in Fig. 2, the accuracy using all three distri-
butions is higher than that without using any, among which EI Post-1 has the
highest accuracy. Figure 4(b) illustrates that, when qααα(z) is utilized, the explo-
ration proceeds from the region of high probability density to the region of low
probability density. In comparison, with standard EI, the points are spread to
reduce overall variance (Fig. 4(a)); this could result in incorrect (Fig. 4(c)) or
suboptimal (Fig. 4(d)) solutions.

Fig. 4. Comparison of training points selected by EI (a) and EI Post-1 (b), and exam-
ples of the estimated parameters by the two acquisition functions (c–d).

We also experimented with HD latent code z. As shown in Fig. 5(a)(b), there
was only a marginal improvement in accuracy with a five vs. a two dimensional
(2d) latent code. It suggests that, given the focus of the training data on local
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Fig. 5. (a–b): Examples of estimated parameters using five vs. two dimensional latent
codes. (c–d): Latent code manifold based on (c) infarct location, and (d) infarct size.

infarcts, a 2d latent code may be sufficient to capture the necessary generative
factors. The plot of these 2d latent codes in Fig. 5(c)(d) show that they cluster
by infarct location and their radial direction accounts for the infarct size.

Real Data Experiments: Real-data studies are conducted on two patients
with previous myocardial infraction. Patient-specific heart and torso meshes are
constructed from axial CT images. Tissue excitability is estimated from 120-
lead ECG data. The results are evaluated by in-vivo bipolar voltage data which,
although not a direct measure of tissue excitability, provides a reasonable ref-
erence about the region of infarcts. The first two columns of Fig. 6 show the
original voltage data (red: dense infarct; purple: healthy tissue; green: infarct
border) and the same data registered to cardiac meshes.

The voltage map in case 1 (Fig. 6(a)) shows a highly heterogeneous infarct
spread over a large region in the lateral LV. The estimated parameters by all
methods capture this region of infarct. For this accuracy, the FH and FS methods
required 4056 and 1058 model evaluations, whereas BO-VAE required only 105
model evaluations. By contrast, as shown in Fig. 6(b), case 2 has a smaller region
of dense scar in the lateral LV. The estimated parameters by BO-VAE and FH
correctly reveal this region of scar, whereas the FS method is less accurate. In
this case, BO-VAE, FH method, and FS method required 105, 5798, and 1501
model evaluations respectively.

Fig. 6. Model parameter estimated with BO-VAE, FH, and FS on real-data study.

Conclusion: We present a novel approach to estimating HD model parameters,
achieved by embedding within the Bayesian optimization a generative model of
HD tissue properties from a LD manifold. Experiments show a gain in accuracy
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with drastically reduced computation. Future works include the incorporation
of training data from high resolution 3D imaging and study of alternatives to
incorporate the knowledge of latent manifold in Bayesian optimization.
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