
Learning Interpretable Anatomical
Features Through Deep Generative
Models: Application to Cardiac

Remodeling

Carlo Biffi1,2(B), Ozan Oktay1, Giacomo Tarroni1, Wenjia Bai1,
Antonio De Marvao2, Georgia Doumou2, Martin Rajchl1, Reem Bedair2,
Sanjay Prasad3, Stuart Cook3,4, Declan O’Regan2, and Daniel Rueckert1

1 Biomedical Image Analysis Group, Imperial College London, London, UK
c.biffi15@imperial.ac.uk

2 MRC London Clinical Sciences Centre, Imperial College London, London, UK
3 National Heart & Lung Institute, Imperial College London, London, UK

4 Duke-NUS Graduate Medical School, Singapore, Singapore

Abstract. Alterations in the geometry and function of the heart
define well-established causes of cardiovascular disease. However, cur-
rent approaches to the diagnosis of cardiovascular diseases often rely
on subjective human assessment as well as manual analysis of medical
images. Both factors limit the sensitivity in quantifying complex struc-
tural and functional phenotypes. Deep learning approaches have recently
achieved success for tasks such as classification or segmentation of medi-
cal images, but lack interpretability in the feature extraction and decision
processes, limiting their value in clinical diagnosis. In this work, we pro-
pose a 3D convolutional generative model for automatic classification of
images from patients with cardiac diseases associated with structural
remodeling. The model leverages interpretable task-specific anatomic
patterns learned from 3D segmentations. It further allows to visualise
and quantify the learned pathology-specific remodeling patterns in the
original input space of the images. This approach yields high accuracy in
the categorization of healthy and hypertrophic cardiomyopathy subjects
when tested on unseen MR images from our own multi-centre dataset
(100%) as well on the ACDC MICCAI 2017 dataset (90%). We believe
that the proposed deep learning approach is a promising step towards the
development of interpretable classifiers for the medical imaging domain,
which may help clinicians to improve diagnostic accuracy and enhance
patient risk-stratification.

1 Introduction

Alterations in the geometry and function of the heart (remodeling) are used as
criteria to diagnose and classify cardiovascular diseases as well as risk-stratify
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individual patients [1]. For instance, hypertrophic cardiomyopathy (HCM), a
leading cause of sudden death in adults [2], is an inherited disease of the heart
muscle which manifests clinically with unexplained left ventricular (LV) hyper-
trophy and can occur in many different patterns that are not readily quan-
tifiable [3]. Cardiovascular magnetic resonance (CMR) has become the gold-
standard imaging technique for quantitative assessment in the diagnosis and
risk-stratification of cardiomyopathy [4]. However, image interpretation is often
dependent on both clinical expertise and effective diagnostic criteria, making
automated data-driven approaches appealing for patient classification - espe-
cially as conventional manual analysis is not sensitive to the complex pheno-
typic manifestations of inherited heart disease. In recent years, large population
cohorts have been recruited, such as the UK Biobank study with cardiac imag-
ing in up 100,000 participants [5], requiring new approaches to high-throughput
analysis. Learning-based approaches that can capture complex phenotypic vari-
ation could offer an objective data-driven means of disease classification with-
out human intervention. Indeed, early work has shown the potential of machine
learning algorithms in distinguishing benign from pathological hypertrophy from
multiple manually-derived cardiac parameters [6].

Deep learning approaches have recently achieved outstanding results in the
field of medical imaging due to their ability to learn complex non-linear functions,
but they lack interpretability in the feature extraction and decision processes,
limiting their clinical value. In this work, we propose a variational autoencoder
(VAE) model [7] based on 3D convolutional layers, which is employed for classifi-
cation of cardiac diseases associated with structural remodeling. This generative
model enables us to visualise and leverage interpretable task-specific anatomical
patterns learned from the segmentation data. The performance of the proposed
approach is evaluated for the classification of healthy volunteers (HVols) and
HCM subjects on our own dataset multi-centre cohort and on the ACDC MIC-
CAI 2017 challenge dataset. This work makes two major contributions. First, we
introduce a deep learning architecture which can discriminate between different
clinical conditions through task-specific interpretable features, making the clas-
sification decision process transparent. Second, we develop a method to visualise
and quantify the learned pathology-specific remodeling in the original space of
the images, providing a data-driven method to study complex phenotypic man-
ifestations.

1.1 Related Work

Given the high dimensionality of medical images, a popular approach in the lit-
erature is to analyze them by constructing statistical shape models of the heart
using finite elements models or segmentation and co-registration algorithms to
derive subject-specific meshes [8,9]. Similar to brain image analysis, principal
component analysis (PCA) is then subsequently performed on these point dis-
tribution models to learn their main modes of deformation. These modes are then
employed in the discrimination of distinct groups of subjects by their shape dif-
ferences or to identify the ones mostly associated with diseases [10–12]. However,
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PCA shape components do not define the features that differentiate between
disease classes. For this purpose, approaches that search for new axes of varia-
tion that are clinically-meaningful have been proposed [13,14]. Relevant to this
work, in the brain imaging domain, Shakeri et al. [15] employed a VAE model
based on two fully connected layers to learn a low-dimensional representation of
co-registered hippocampal meshes, which is later employed in a multi-layer per-
ceptron to classify patients with Alzheimer disease. By contrast, the proposed
method can exploit a deep convolutional neural network architecture directly on
the segmentation maps to learn a discriminative latent space in an end-to-end
fashion.

2 Materials and Methods

2.1 Datasets

A multi-centre cohort consisting of 686 HCMs patients (57 ± 14 years, 27%
women, 77% Caucasian, HCM diagnosed using standard clinical criteria) and 679
healthy volunteers (40.6 ± 12.8 years, 55% women, 69% Caucasian) was consid-
ered for this work. Participants underwent CMR at 1.5-T on Siemens (Erlangen,
Germany) or Philips (Best, Netherlands) systems. Cine images were acquired
with a balanced steady-state free-precession sequence and included a stack of
images in the left ventricular short axis plane (voxel size 2.1× 1.3× 7 mm3, rep-
etition time/echo time of 3.2/1.6 ms, and flip angle of 60◦). End-diastolic (ED)
and end-systolic (ES) phases were segmented using a previously published and
extensively validated cardiac multi-atlas segmentation framework [9]. As a first
preprocessing step, we improved the quality of the 2D stacks segmentation by a
multi-atlas-aided upsampling scheme. For each segmentation, twenty manually-
annotated high-resolution atlases at ED and ES were warped to its space using a
landmark-based rigid registration. Then a free-form non-rigid registration with
a sparse set of control points was applied (nearest-neighbor interpolation) [16]
and fused with a majority voting consensus. In a second step, we aligned all
the quality-enhanced segmentations onto the same reference space at ED by
means of landmark-based and subsequent intensity-based rigid registration to
remove pose variations. After extracting the LV myocardium label, we cropped
and padded each segmentation to [x = 80, y = 80, z = 80, t = 1] dimension using
a bounding box centered at the LV’s ED myocardium. The latter operation
guarantees shapes to maintain their alignment after cropping. Finally, all the
segmentations underwent manual quality control in order to discard scans with
strong inter-slice motion or insufficient LV coverage. As an additional testing
dataset, 20 HVols and 20 HCMs from the ACDC MICCAI’17 challenge train-
ing dataset, consisting of 2D MR image sequences which are annotated at ED
and ES phases by a clinical expert, were pre-processed using the same pipeline
explained above.
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2.2 Deep Generative Model

Architecture. A schematic representation of the proposed architecture is
shown in Fig. 1. The network input X consists of subjects’ 3D LV myocardial
segmentations at ED and ES phases presented as a two-channel input. A 3D
convolutional VAE is employed to learn a d-dimensional probability distribution
representing the input segmentations X in a latent space through an encoder net-
work. In this work, this latent distribution is parametrized as d-dimensional nor-
mal distribution N (μi, σi) with mean μi and standard deviation σi, i = 1, . . . , d.
During training, a decoder network learns to reconstruct approximations of the
input segmentations X, which are denoted as X̂, by sampling vectors z from
the learned latent d-dimensional manifold Z, z ∈ Z = N (μ,σ). Simultane-
ously, a discriminative network (which is referred to as prediction network in
the context of the paper) constructed with a multilayer perceptron (MLP) is
connected to the mean vector μ and trained to discriminate between HVols and
HCMs subjects. This architecture is trained end-to-end with a loss function of
the form L = Lrec + αLKL + βLMLP . Lrec is the reconstruction loss and it
was implemented as a Sorensen-Dice loss between the input segmentations X
and their reconstruction X̂. LKL is the Kullback-Leibler divergence loss forcing
N (μ,σ) to be as close as possible to its prior distribution N (0,1). LMLP is the
cross-entropy loss for the MLP classification task. The latent space dimension
was fixed to d = 64. At test time, each input segmentation is reconstructed by
passing the predicted μ to z (without sampling from the latent space), while the
classification is performed as in training time.

Fig. 1. Generative model architecture. Registered LV segmentations at ED and ES
phases are mapped to a low-dimensional latent space. Each latent dimension is forced
to be normally distributed with mean μ and standard deviation σ. A decoder network
is then used to reconstruct the input segmentation from a low-dimensional vector z
sampled from the learned latent distribution (training) or the μ vector (testing). The
μ latent representation is used as input of a MLP to predict disease status.
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Interpreting Learned Features via Navigation in the Latent Space. Our
generative model architecture allows for visualization of the features learned by
the network in the original segmentation space. For this, the weights learned
by the MLP can be exploited to compute the partial derivative of the disease
class label C (yC) w.r.t. to the latent space representation μ of an input X,
i.e. ∂yC

∂μi
, by backpropagating the gradient from the class label C to μi using

chain-rule. Given a randomly selected healthy shape, we can use the derived
gradient to move the latent representation of a subject μ along the direction of
the latent code variability that maximises the probability of its classification to
class C using an iterative algorithm. Starting with the mean latent representation
μ0 = μ̄ of a healthy shape we can iteratively update μi at each step t accordingly
to Eq. 1:

μi,t = μi,t−1 + λ
∂y1

∂μi,t−1
, ∀i = 1, . . . d (1)

Here we use λ = 0.1. Finally, each latent representation μt at each step t can
be decoded back to the segmentation space by passing it to z, allowing for the
visualization of the corresponding reconstructed segmentations X̂.

3 Results

Our dataset was split into training, evaluation and testing sets consisting of
537 (276 HVols, 261 HCMs), 150 (75 HVols, 75 HCMs) and 200 (100 HVols,
100 HCMs) subjects respectively. The model was developed in Tensorflow, and
trained on a Nvidia Tesla K80 GPU using Adam Optimizer, learning rate of
10−4 and batch size of 16. After 96k iterations, the total validation loss function
stopped improving and the training was stopped. No significant changes in the
classification results were found by varying the loss parameters α and β, while α
was set to 0.1 as this captured local shape variations without losing the genera-
tive model properties. All the 200 subjects in the testing dataset were correctly
classified (100% accuracy) by the trained prediction network. The model also
correctly classified 36 out of the 40 ACDC MICCAI 2017 segmentations (90%
accuracy); of the 4 misclassified cases, 3 did not properly cover the whole LV,
which might be the cause for the error.

By employing the proposed method for latent space navigation, we deformed
a randomly selected healthy segmentation from the training set towards the
direction that maximizes its probability of being classified as HCM. On the
right of Fig. 2, we report the original segmentations of the selected subject at
ED and ES phases, their reconstruction from the VAE, and the reconstructed
segmentations at four different iterations of the latent space navigation method.
On the left of Fig. 2, the latent 64-dimensional representation μ of the training
set segmentations together with the latent representations μt obtained at each
iteration t were reduced for visualization purposes to a bi-dimensional space
using Laplacian Eigenmaps [17]. This technique allows to build a neighborhood
graph of the latent representations that can be used to monitor the transforma-
tion (light blue points) of the segmentation under study from the HVol cluster to
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the HCM cluster. At each reported step, LV mass (LVM) from each segmenta-
tion was derived by computing the volume of the myocardial voxels. Moreover,
a LV atlas segmentation having also labels for the LV cavity was non-rigidly
registered to each segmentation to compute LV cavity volume (LVCV) by com-
puting the volume of the blood pool voxels. Finally, for each iteration we also
report the probabilities of being an HVol or HCM as computed by the prediction
network. The learned deformations demonstrate a higher LVM and lower LVCV
with an asymmetric increase in septal wall thickness in the geometric transition
from HVol to HCM - which is the typical pattern of remodeling in this disease
[18]. At iteration 8, where the prediction network gives an indeterminate classi-
fication probability, LV geometry appears normal at ED but is thickened at ES
suggesting that altered contractility may also be a discriminative feature.

Fig. 2. On the left, Laplacian Eigenmaps (LE) bi-dimensional representation of the
latent μ of each subject in the training set (red and green dots) and of the μt obtained
through latent space navigation (light blue dots) for a random healthy shape. This
latter is displayed on the right, together with the decoded segmentations corresponding
to the sampled μt reported on the left at 4 exemplary iterations. The probabilities of
class HVOls and HCM, and the computed LVM and LVCV are also shown.

4 Discussion and Conclusion

We present a deep generative model for automatic classification of heart patholo-
gies associated with cardiac remodeling which leverages explainable task-specific
anatomical features learned directly from 3D segmentations. The proposed archi-
tecture is specifically designed to enable the visualization and quantification of
the learned features in the original segmentation space, making the classification
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decision process interpretable and potentially enabling quantification of disease
severity. In this work we also propose a simple method that allows navigation in
the low-dimensional manifold learned by the network, showing the potential clin-
ical utility of the derived latent representation for tracking and scoring patients
against a reference population. In the reported exemplar clinical application, the
learned features achieved high accuracy in the discrimination of healthy subjects
from HCM patients on our unseen testing dataset and on the ACDC MICCAI
17 dataset.

The proposed architecture can be easily extended to other cardiac related
clinical tasks by replacing the prediction network with survival, risk score or
other clinical models implemented as neural networks. The proposed approach
worked successfully on conventional MR acquisitions, showing its potential for
using routinely acquired clinical MR imaging. Moreover, the use of segmentation
masks could allow its application to a wider range of CMR images such as
multi-site images acquired from different machines and using different imaging
protocols. We acknowledge that our external testing dataset was small, in future
work we plan to evaluate the proposed approach on a bigger unseen dataset from
different centres and on various types of cardiomypathies. Further extensions will
also include the integration of clinical variables to the latent space as well as the
inclusion of other cardiac phases.

The proposed approach is a promising step towards the development of inter-
pretable deep learning classifiers for the medical imaging domain, which may
assist clinicians to improve diagnosis and provide new insight into patient strat-
ification. This general approach is not limited to the cardiac domain and can
potentially be extended to other image analysis tasks where pathological shape
change is prognostically relevant.
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