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Abstract. Phase contrast microscopy is a widely-used non-invasive
technique for monitoring live cells over time. High-throughput biolog-
ical experiments expect a wide-view (i.e., a low microscope magnifica-
tion) to monitor the entire cell population and a high magnification on
individual cell’s details, which is hard to achieve simultaneously. In this
paper, we propose a cascaded refinement Generative Adversarial Net-
work (GAN) for phase contrast microscopy image super-resolution. Our
algorithm uses an optic-related data enhancement and super-resolves a
phase contrast microscopy image in a coarse-to-fine fashion, with a new
loss function consisting of a content loss and an adversarial loss. The
proposed algorithm is both qualitatively and quantitatively evaluated
on a dataset of 500 phase contrast microscopy images, showing its supe-
rior performance for super-resolving phase contrast microscopy images.
The proposed algorithm provides a computational solution on achiev-
ing a high magnification on individual cell’s details and a wide-view on
cell populations at the same time, which will benefit the microscopy
community.

1 Introduction

Phase Contrast Microscopy [19] allows researchers to acquire images on hun-
dreds of live cells from different treatments over days or weeks without invasively
staining them (Fig. 1(a)). The high-throughput experiments need a wide-view to
monitor the entire cell population, so the magnification of phase contrast micro-
scope is set low. But, the low magnification loses cell details and provides low-
resolution (LR) images on individual cells (Fig. 1(b)). To obtain high-resolution
(HR) images with cell details, we have to increase the magnification with a
limited view on a small number of cells (Fig. 1(c)), which is not suitable for
monitoring large-scale cell populations.

To simultaneously achieve a high magnification and wide-view, we propose a
novel super-resolution approach to increase the image resolution on cell details
while maintaining the wide-view on cell populations.
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Fig. 1. (a) Monitoring cell populations with a low magnification; (b) A zoomed-in
image shows the low resolution on individual cells; (c) A high magnification visualizes
cell details but with a limited view.

2 Related Work and Our Proposal

The single image super-resolution problem is first tackled by some filtering
approaches such as linear, bicubic [8] and Lanczos [4]. However, these filtering
methods produce overly smoothed textures in the recovered HR images.

To preserve the edges in the recovered HR images, example-based approaches
[17,18] aiming at learning a mapping between low- and high-resolution image
patches are proposed. The example-based methods (or patch-based methods)
exploit the self-similarity property and construct high-resolution image patches
from the input image [5]. However, the example-based methods suffer from the
heavy computational cost of patch search. Moreover, the found low- and high-
resolution image patch pairs may not be sufficient to represent the large textural
variations in the testing images.

In order to overcome the drawbacks of the example-based approaches, deep
learning algorithms [3,9] are proposed to super-resolve an image. Instead of mod-
eling the low- and high-resolution mapping in the patch space, these algorithms
learn the nonlinear mapping in the image space. Dong et al. upscale an input LR
image and train a three layer deep convolutional network to learn an end-to-end
mapping between low- and high-resolution images [3]. Ledig et al. present a Gen-
erative Adversarial Network (GAN) for image super-resolution, which is capable
of inferring photo-realistic natural images for 4× upscaling factors [12]. Lai et al.
propose a Laplacian Pyramid Super-Resolution Network to progressively recon-
struct the sub-band residuals of the high-resolution images [11]. However, these
deep learning algorithms mainly focus on the natural image super-resolution,
and may not be suitable for super-resolving microscopy images as no optical
properties of the microscopy imaging are taken into account.

In this paper, we propose a cascaded refinement GAN for phase contrast
microscopy image super-resolution. The contributions of this study are mainly
in three aspects. First, to our best knowledge, this is the first framework capa-
ble of super-resolving phase contrast microscopy images for 8× upscaling factors.
Second, we design a perceptual loss consisting of an adversarial loss and a con-
tent loss for our algorithm and achieve the best performance on phase contrast
microscopy image super-resolution. Third, an optics-related data enhancement
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is developed to improve the performance of our algorithm on phase contrast
microscopy image super-resolution.

3 Preliminaries

3.1 Generative Adversarial Networks

There are one generator network G and one discriminator network D in the
Generative Adversarial Networks (GANs) [6]. These two networks are trained
alternatively to compete in a two-player min-max game. The generator G is
optimized to simulate the true data distribution by synthesizing images that are
challenging for the discriminator D to tell from the real ones. The discriminator D
is optimized to try not to be fooled by the generator G by correctly distinguishing
the real images from the synthetic images. These two networks play the min-max
game with the following objective function

min
G

max
D

V (D,G) = Ex∼pdata
[logD(x)] + Ez∼pz(z)[log(1 − D(G(z)))], (1)

where x is a real image sampled from the real data distribution pdata, z is a noise
vector drawn from distribution pz (e.g., Gaussian or uniform distribution).

3.2 Optics-Related Data Enhancement

The properties of phase contrast microscopy images (e.g., halo artifact and low
image contrast) motivated researchers to derive optics-related imaging models
for microscopy image restoration [16], which include a series of Diffraction Pat-
tern Filters (DPFs, Fig. 2(a1–a6)). Rather than solving the inverse problem of
image restoration, we leverage the DPFs to enrich phase contrast microscopy
images (Fig. 2(b0)) by convolving it with DPFs. As shown in Fig. 2(b1–b6), the
convolution generates a set of images sensitive to different types of cell regions,
which is an optics-related data enhancement to the original input.

Fig. 2. DPFs and the enriched phase contrast microscopy images.
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4 A Cascaded Refinement GAN for Super Resolution

In this section, we describe the network structure of the proposed cascaded
refinement generative adversarial network (GAN) for phase contrast microscopy
image super resolution, the loss function for network optimization, and the net-
work implementation and training details.

4.1 Network Architecture

Generator Architecture: As shown in Fig. 3, the LR phase contrast image is
first enhanced by convolving with some DPFs. The proposed generator takes the
enhanced image stacks as input and then refines them with cascaded refinement
modules. Each module operates at a certain resolution and the resolution is
doubled between two consecutive modules.

All the modules Ms(s ∈ {1, 2, 3}) are structurally identical and consist of
three layers: the input layer, the upsampling layer, and the convolutional layer
(Fig. 3). The input layer of the first module is the enriched image stack of the LR
image, while the input layers of the other modules are identical to the convolu-
tional layers of the previous modules. The upsampling layer is obtained by bilin-
early upsampling the input layer. As the upconvolutions is prone to introduce
characteristic artifacts to the output image [2,14], we discard the upconvolution
and use bilinear upsampling. The convolutional layer is obtained by implement-
ing 3 × 3 convolutions, layer normalization [1], and Leaky ReLu nonlinearlity
[13] operations on the upsampling layer. A linear projection (1 × 1 convolution)
is applied on the convolutional layer to project the feature tensor to the output
image. Note that the output image at each upsampling level is not used as the
input of the next module.

Fig. 3. Architecture of the Generator and Discriminator in our model.
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Discriminator Architecture: There are four downsampling modules in the
discriminator, and each downsampling module consists of 3×3 convolutions, layer
normalization, Leaky ReLu nonlinearlity, and 2×2 max-pooling operations. The
discriminator tries to classify whether an input image is real or fake.

4.2 Loss Function

Let x be the input LR image and y be the corresponding HR counterpart. Our
ultimate goal is to learn a generator G with parameters θG for generating a HR
image ŷ = G(x; θG) which is as similar to the ground truth HR image y as possi-
ble. To learn the parameters (θG in the generator and θD in the discriminator),
we formulate a perceptual loss function as the weighted sum of an adversarial
loss and a content loss:

L(y, ŷ) = Ladv(y, ŷ) + αLcon(y, ŷ). (2)

Adversarial Loss: The adversarial loss in the GAN encourages the generator
to generate images residing on the manifold of the ground truth images by trying
to fool the discriminator. From Eq. 1 we can see the adversarial loss is formulated
as Ez∼pz(z)[log(1−D(G(z))]. In our case, the generator takes a LR image instead
of a noise vector as the input, accordingly the adversarial loss Ladv(y, ŷ) over K
training samples can be defined as:

Ladv(y, ŷ) =
1
K

K∑

k=1

[log(1 − D(G(xk; θG); θD))], (3)

Early in training, we can minimize log(−D(G(xk; θG); θD)) instead of log(1 −
D(G(xk; θG)); θD) to mitigate the gradient saturation [6].

Content Loss: In addition to the adversarial loss in the GAN, we also add a
content loss Lcon(y, ŷ) to our perceptual loss function. Many previous state-of-
the-art approaches rely on the widely used pixel-wise mean square error (MSE)
loss to learn the parameters of the LR-HR mapping functions [3,15], however,
solutions of MSE optimization problems often lack the ability of learning high-
frequency contents and result in overly smoothed textures [7,12]. Instead, we
propose a new content loss using the DPFs to emphasize the loss on different
types of cell regions:

Lcon(y, ŷ) =
1
K

K∑

k=1

S∑

s=1

N−1∑

n=0

‖ys ∗ DPFn − ŷs ∗ DPFn‖1, (4)

where ys is the downsampled ground truth image at level s, ŷs is the generated
upscaled LR image at level s (the output layer of the sth module), S is the
number of refinement modules in the generator, N is the number of DPFs, and
‖ · ‖1 is the �1 distance.
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4.3 Implementation and Training Details

The number of refinement modules in our generator is decided by the upscaling
factor. In our experiments with the upscaling factor of 8×, there are 3 refinement
modules, corresponding to a resolution increase from 32× 32 to 256× 256 in the
generator. The Leaky ReLu in the generator and discriminator is with a negative
slope of 0.2. Zero-padding is implemented before the convolution to keep the
size of all feature maps unchanged in each module. The number of DPFs in our
experiment is 12.

To train our networks, we alternate between one gradient descent step on
the discriminator, and then one step on the generator. The minibatch stochastic
gradient descent (SGD) is used in our experiment and the Adam solver [10] with
momentum parameter 0.9 is applied to optimize the SGD. We use the batch size
of 1. The learning rate is 1e − 4, and the algorithm is trained for 100 iterations.
The weight α in the loss function is 1.

5 Experimental Results

Dataset: 11,500 high-resolution phase contrast microscopy images with different
cell densities are captured at the resolution of 256 ∗ 256 pixels, and the low-
resolution images are obtained by downsampling the high-resolution images.
After getting the high-resolution and low-resolution image pairs, we randomly
select 10,000 pairs of them as the training set, 1,000 as the validation set, and
500 as the testing set.

Evaluation Metrics: We evaluate the proposed super-resolution algorithm
with a widely-used image quality metric: Peak Signal-to-Noise Ratio (PSNR).

Evaluation: We compare our algorithm with the baseline bicubic [8] and the
current state-of-the-art LapSRN [11] algorithms. Figure 4 presents the visual
comparison results on some randomly picked images. The bicubic filtering gives
very blurry super-resolution results. LapSRN generates much sharper and clearer
high resolution images than bicubic, however, the generated images are over-
smoothed. It is mainly because the designed loss function of LapSRN is not
suitable for microscopy image super-resolution. By taking the optical property of
phase contrast microscopy imaging into consideration and designing a perceptual
loss, our proposed algorithm generates HR images with clear cell details.

Given an input phase contrast image with a wide-view (e.g., Fig. 5(a)), we
can divide the image into 32 × 32 patches, super-resolve each patch, and then
combine the predicted patches to generate a HR image with megapixel resolu-
tions (Fig. 5(b)).

Ablation Study: First, we investigate the effect of different loss functions. As
shown in (Fig. 6(b1, b2)), only using the adversarial loss cannot generate HR
images with clear overall contents though some cell details are exhibited. The
generated images by only using the content loss (Fig. 6(c1, c2)) are not sharp
enough and the cell structures are not presented well.
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Fig. 4. Upsampling phase contrast images by different algorithms (8× upsampling).

Fig. 5. Upsampling an input phase contrast image with a wide-view. Please zoom-in
the online version to observe cell details.

Second, we investigate the effect of the optics-related data enhancement. If
using the original image as the input to the generator in Fig. 3 (without enriching
the input image by DPFs, the content loss is defined as 1

K

∑K
k=1

∑S
s=1 ‖ys − ŷs‖

accordingly), the generated images (Fig. 6(d1, d2)) provide sharp images but
with some cell details missed, compared to the images generated using the
enriched input (Fig. 6(e1, e2)). The enriched phase contrast images can present
more feature information of cells, especially when the original input phase con-
trast image has low contrast and less textures.
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Fig. 6. The effect of different loss functions and the optics-related data enhancement.

The quantitative results of evaluation and ablation study are summarized
in Table 1, which shows that our cascaded refinement GAN with optics-related
data enhancement and perceptual loss (adversrial loss plus content loss) achieves
the best performance.

Table 1. Quantitative evaluation.

Bicubic [8] LapSRN
[11]

Ours Content
loss only

Adversarial
loss only

Single image
input

PSNR 20.6039 26.5055 27.8591 26.0928 11.6732 26.2914

6 Conclusion

In this paper, we investigate a super resolution algorithm to generate high-
resolution phase contrast microscopy images from the low-resolution ones.
Instead of upscaling the input image to the desired resolution directly, the pro-
posed algorithm predicts the high resolution image in a coarse-to-fine fashion,
i.e., increasing the spatial resolution of the input image progressively. A new
loss function is designed for the proposed algorithm which consists of a content
loss and an adversarial loss. The content loss forces the prediction of the high-
resolution image to be similar to the real image in the feature domain enriched
by optics-related data enhancement, while the adversarial loss encourages the
prediction to be sharp and with more cell details.

The experiments demonstrate that our algorithm is very effective to recover
high resolution phase contrast microscopy images from low resolution ones, and
our algorithm outperforms the current state-of-the-art super-resolution algo-
rithm. The research outcome provides a computational solution on achieving
a high magnification on individual cells’ details and a wide-view on cell popula-
tions at the same time, which will benefit the microscopy community.
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