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Abstract. Automatic and accurate Gleason grading of histopathology
tissue slides is crucial for prostate cancer diagnosis, treatment, and prog-
nosis. Usually, histopathology tissue slides from different institutions
show heterogeneous appearances because of different tissue preparation
and staining procedures, thus the predictable model learned from one
domain may not be applicable to a new domain directly. Here we propose
to adopt unsupervised domain adaptation to transfer the discriminative
knowledge obtained from the source domain to the target domain with-
out requiring labeling of images at the target domain. The adaptation is
achieved through adversarial training to find an invariant feature space
along with the proposed Siamese architecture on the target domain to
add a regularization that is appropriate for the whole-slide images. We
validate the method on two prostate cancer datasets and obtain signifi-
cant classification improvement of Gleason scores as compared with the
baseline models.

1 Introduction

Prostate cancer is the most common non-cutaneous malignancy and affects 1 in
7 men in the United States [1]. Gleason scores, graded from whole-slide images
(WSIs), have been shown to serve as one of the best predictors for prostate
cancer diagnosis [2]. Gleason grading is crucial for studying disease onset, pro-
gression and decision making for targeted therapy. However, Gleason grading
is a time-consuming process due to the giga-pixel size of the WSIs. Further-
more, inter- and intra-observer variability errors often arise when pathologists
make diagnosis based on WSIs. In order to provide an objective and quantita-
tive Gleason grading score, computational methods have been applied for detec-
tion, extraction, and recognition of histopathological patterns. Methods based
on convolutional neural networks (CNN) are considered state-of-the-art due to
their high classication rates [3–5]. Most of these studies focus on the supervised
c© Springer Nature Switzerland AG 2018
A. F. Frangi et al. (Eds.): MICCAI 2018, LNCS 11071, pp. 201–209, 2018.
https://doi.org/10.1007/978-3-030-00934-2_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00934-2_23&domain=pdf


202 J. Ren et al.

classification. Histopathology WSIs obtained from different institutions usually
present distinct glandular region distributions due to differences in appearance
that may be caused by using different microscope scanners and staining proce-
dures. These differences may render the supervised classification model used for
predicting the Gleason score for one annotated dataset (source domain) inef-
fective on another prostate dataset (target domain). A widely used approach
to address the challenge is to label new images on the target domain and fine-
tune the model trained on source domain [6]. Instead, methods that can learn
from existing datasets and adapt to new target domains, without the need for
additional labeling, are highly desirable.

Thus in this work, we aim to classify the newly given prostate datasets into
low and high Gleason grade through unsupervised learning. To achieve this goal,
we adopt the unsupervised domain adaptation paradigm to align the image dis-
tributions along the annotated source domain and the unlabeled target domain,
where the two domains have the same number of high-level classes [7,8]. We apply
adversarial training to minimize the distribution discrepancy at the feature space
between the domains, with the loss function adopted from the Generative Adver-
sarial Network (GAN) [9]. Furthermore, we developed a Siamese architecture for
the target network to serve as a regularization of patches within the WSIs. The
proposed method is validated on public prostate datasets and a newly collected
local dataset. The experimental results show the approach significantly improves
the classification accuracy of Gleason score as compared with the baseline model.
To the best of our knowledge, this is the first study of domain adaptation for
unsupervised prostate histopathology WSIs classification.

Fig. 1. The architecture of the networks for the unsupervised domain adaptation. The
source network and the target network map the input samples into the feature space.
The adaptation is accomplished by jointly training the discriminator and target net-
work using the GAN loss to find the domain invariant feature. A Siamese network at
target domain adds constrains for the WSIs.
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2 Method

In this section, we present our approach on the unsupervised domain adaptation
for the classification of prostate histopathology WSIs, as illustrated in Fig. 1
above.
Problem Formulation: Formally, we have a source domain distribution S
that includes Ns labeled prostate histopathology images {(xs

i ,y
s
i )}

Ns

i=1 where ys
i

is one-hot vector denoting the Gleason score, and a target domain distribution
T contains Nt unlabeled prostate histopathology images {(xt

i)}
Nt

i=1. We use the
source domain to generate a feature space through the mapping function Ms,
and seek to find the mapping Mt at the target domain to obtain a similar feature
space with the one from source domain. Thus the Gleason score prediction for
the target domain is easily achieved by using the Mt.
Learning at Source Domain: Since the Gleason scores for the prostate
images from the source domain are available, we train the network on the source
domain to get the discriminative feature space using the supervised learning. In
order to feed the WSIs into the network, we crop them into patches and adopt
the cross-entropy loss Lc to optimize the classifier C, with weights as θS , to clas-
sify the images into low-grade (score as 6 and 7) and high-grade (score higher
than 7) Gleason scores, which are highly related to clinical outcomes.

Lc = Exs∼S −
Ns∑

i=1

ys
i · logC(Ms(xs; θS)) (1)

The majority vote is applied on the cropped patches within each WSI to obtain
the final Gleason score for the WSIs.
Adversarial Adaptation for Target Domain: Due to lack of annotations
for the training set on the target domain, the Lc is only applied on the source
domain. To optimize the target network, we leverage the adversarial training
to minimize the discrepancy between the feature space of the target domain
and the one of the source domain. We perform an asymmetric adaptation where
the network at the target domain is fine-tuned from the network of the source
domain. Through optimization, the feature space of the target domain learns to
mimic the distribution of the source feature space. Thus the target network is
trained to extract the domain invariant features from input samples, which has
the same distribution as the source domain.

Adversarial training is achieved by utilizing a GAN loss [9]. Two feature
spaces generated from the source network and target network are fed into the
discriminator D. D is trained to map the input feature spaces into a binary
domain label, where the true denotes the source domain and false denotes the
target domain. Additionally, the target mapping Mt, is learned in an adversarial
manner to purposely mislead the discriminator by reversing the domain label so
that it cannot distinguish between the two feature spaces. Since the mapping
parameterization of source model is determined before the adversarial training,
we only optimize the target mapping. By using adversarial learning, we minimize
the discrepancy between the two spaces. Therefore, estimating the Gleason scores
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for the images from target domain can be implemented by Mt. More specifically,
the adversarial loss LadvD

for optimizing the discriminator and the mapping loss
LadvM

for optimizing the target mapping are represented as:

min
D

LadvD = −Exs∼S logD(Ms(xs; θ
S); θD) − Ext∼T log(1 − D(Mt(xt; θ

T ); θD) (2)

min
Mt

LadvM
= −Ext∼T log(D(Mt(xt; θT ); θD)) (3)

For the adversarial training, we optimize the La, where La = LadvD
+LadvM

.

Algorithm 1: Learning Algorithm for the Network at Target Domain
Input: Initialized target network from source network with weights θT = θS

1 for number of training iterations do
2 sample two same number of mini-batches xs ∼ S, xt ∼ T ;

3 obtain the estimation y = Ms(xs; θ
S), y′ = Mt(xt; θ

T );

4 θD ← back propagate with stochastic gradient �LadvD(y,y′);

5 θT ← back propagate with stochastic gradient �LadvM(y′);
6 sample mini-batches with paired of images x1

t ,x2
t ∼ T ;

7 obtain the estimation yf = f(x1
t ,x2

t ; θF );

8 θF ← back propagate with stochastic gradient �Ls(yf );

Siamese Architecture at Target Domain: Although there are no annota-
tions for the prostate WSIs at the target domain, the cropped patches from the
same WSI should still be predicted with the same Gleason score by the target
network. While the adversarial loss forces the distribution across two domains
to be similar, it can not constrain the target network to determine the simi-
larity of the input patches. Therefore, we introduce a Siamese architecture at
target domain to explicitly regularize patches from the same WSI to have the
same Gleason score. As shown in Fig. 1, the two identical networks share the
same weights with the input as a pair of images (x1

t , x
2
t ) ⊆ T × T . The feature

maps obtained from the second to the last layer of the two networks are concate-
nated to serve as the input for a one-layer perceptron to classify the features.
Therefore, the input samples are classified by the function f(x1

t ,x
2
t ; θ

F ), that
f : T ×T �→ 0, 1, where 1 indicates input patches belong to the same WSI while
0 denotes not. We learn the binary classifier f using cross-entropy loss Ls.

To learn the network at target domain, we adopt a two-stage training process.
For the first stage, we train the network at source domain. For the second stage,
we optimize the Siamese network at target domain by applying Lt where Lt =
La +Ls. The learning algorithm for the target network is shown in Algorithm 1.
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3 Experimental Validation and Results

Validation of the proposed method is performed in two datasets: (1) publicly
available The Cancer Genome Atlas (TCGA) dataset [10], and (2) a local data
set collected from Cancer Institute of New Jersey (CINJ) after obtaining the
institutional review board (IRB) approval.

Table 1. The number of WSIs and patches for the prostate histopathology images
from TCGA under different Gleason scores. The images from University of Pittsburgh
(UP) are shown in parentheses.

Gleason 6 Gleason 7 Gleason 8 Gleason 9 Gleason 10

# WSIs 115 (32) 395 (95) 94 (20) 128 (24) 4 (0)

# Patches 16293 (6517) 67162 (26583) 16204 (4968) 23978 (9606) 342 (0)

Dataset. In the first unsupervised domain adaptation experiment, we only use
the TCGA dataset. The TCGA prostate cancer data includes histopathology
WSIs uploaded from 32 institutions that have been acquired at 40× and 20×
magnifications. We crop the WSIs into patches by the size of 2048 × 2048. We
calculate the tissue area on the grayscale images and remove the images with
tissue area less than the half of the patch size. The dataset includes the Gleason
scores annotated by pathologists ranging from 6 to 10. As the University of
Pittsburgh (UP) has contributed more images than other institutions, we treat
the UP as the target domain where the annotations are withheld and the images
from other institutions as the source domain, which we denote it as TCGA (w/o
UP). We show the total number of WSIs and the cropped patches from TCGA
in Table 1 and UP in the parentheses. We denote the adaptation as TCGA (w/o
UP) → UP. For the second unsupervised domain adaptation experiment, we use
all the images from TCGA as the source domain, and the images from CINJ as
the target domain. The images from CINJ are acquired at 20× magnification.
More details of the CINJ dataset is shown in Table 2. The dataset is labeled by
one pathologist with the Gleason scores as 6 or 8. We denote the adaptation as
TCGA → CINJ.
Implementation Details. For the two sets of experiments, we aim to optimize
the network at target domain that could classify the WSIs into low and high
Gleason scores. Thus we divide the TCGA dataset into low Gleason grade for
the WSIs with score as 6 and 7, and high Gleason grade for the WSIs with
score as 8, 9 and 10. For the CINJ dataset, the WSIs with Gleason score of 6
belong to the low Gleason grade and Gleason score of 8 belong to high Gleason
grade. The training process is composed of two steps. We first train the binary
classification network using the data from the source domain. We use a modified
fully convolutional AlexNet [12], which only contains convolutional layers, as the
network for the classification task. All the convolutional layers are followed by the
Batch Normalization layer except the last one that gives the prediction. The data
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Table 2. The number of WSIs and
patches for the dataset from CINJ
under different Gleason grades.

Gleason 6 Gleason 8

# WSIs 57 26

# Patches 3933 666

Table 3. The network performance
at the source domain. The two source
networks both have better perfor-
mance than [11].

Accuracy (%)

Previous Study [11] 73.5

TCGA (w/o UP) 76.9

TCGA 83.0

from source domain is randomly divided into the training and the testing sets at
a ratio of 80% (validation set is selected from the training set)/20%. The patients
with more than one WSIs can only contribute the images to the training set or
the testing set. During the training process, the images are resized as 256 × 256
and randomly cropped to 224× 224 to feed into the network. And we train
the network from scratch. The second step is to optimize the Siamese network
at target domain. During the second step, we fix the parameters of the source
network, and train the target network and the discriminator network at the same
time. The feature vectors from the two domains are sent into the discriminator
network that contains three fully connected layers. And the last layer gives the
domain label estimation for the input feature samples. The prostate images at
the target domain are randomly divided into the training and the testing sets at
a ratio of 80%/20%.
Source Network Performance. As the training process contains two steps, we
first show the performance of the network at the source domain. The comparison
between the source network and the previous study [11] is shown in Table 3. From
the results, we can see both of our models have better performance than [11].
However, the study at [11] uses less WSIs than ours and the network with the best
performance reported in [11] is wider and deeper than our study. Although such
differences lead to biased comparison, it still demonstrates the source domain
network is well trained to classify the TCGA prostate images into low Gleason
score and high Gleason score.
Adaptation of TCGA (w/o UP) → UP. In order to prove the effective-
ness of the knowledge transfer from source domain to the target domain, we
show the quantitative results for TCGA (w/o UP) → UP in Table 4. We can
see that due to the different image distribution for the TCGA (w/o UP) and
UP, the network learned from TCGA (w/o UP) is not working appropriately on
UP. But through the unsupervised adaptation, we could effectively adapt the
discriminative knowledge from TCGA (w/o UP) to the UP without requiring
additional annotations. We further calculate the statistically significance of the
accuracy improvement between the adapted network and the baseline network
using McNemar Test [13] and demonstrates the improvement of classification
accuracy is statistically significant with a p-value as 0.039. In addition, we show
the result of the ablation study in Table 4 that using Lt achieves better classi-
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Table 4. The unsupervised adap-
tation of TCGA (w/o UP) → UP.

Accuracy (%)

Baseline 54.3

La only 71.4

Lt 77.1

Table 5. The unsupervised adap-
tation of TCGA → CINJ.

Accuracy (%)

Baseline 56.3

La only 62.5

Lt 75.0

fication accuracy than La only. The confusion matrices for the adaptation are
shown in Fig. 2a and b. After the adaptation, the classification accuracy for both
WSIs of low and high Gleason scores are significantly improved.
Adaptation of TCGA → CINJ. The results showing in Table 5 also proves
Lt could achieve the best adaptation performance. The confusion matrices are
shown in Fig. 2c and d. We further show the qualitative results in Fig. 3. We use
the probability predicted by the network on the patches to generate a Gaussian
heatmap and overlay the heatmap on the original image. The red color indicates
the high Gleason grade and blue color indicates the low Gleason grade. Figure 3a
shows an example prostate WSI from CINJ with the high Gleason grade (Gleason
score 8) and the ground-truth heatmap overlaid on it. The heatmap generated
from the baseline network is shown in Fig. 3b. The heatmap indicates many low
Gleason grade areas, which are misclassified. The heatmap obtained from the
target network that optimized by La is shown in Fig. 3c, which presents less low
Gleason grade areas. Using Lt, the target network could correctly classify all the
patches into high Gleason grade, as demonstrated in Fig. 3d.

Fig. 2. The confusion matrix of the target network before and after the adaptation for
TCGA (w/o UP) → UP and TCGA → CINJ.
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Fig. 3. We show an example image from CINJ with high Gleason grade and the
heatmap generated from the prediction models.

4 Conclusion

In this work, we adopt an adversarial training and Siamese architecture to
improve the classification performance of a target network in an unsupervised
manner. We show that by using the proposed domain adaptation method statis-
tically significant classification results can be achieved. Future work will include
improvement of the method by using extensive datasets and extension to a wide
range of histopathology image classification problems.
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