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Abstract. Multi-modal neuroimages (e.g., MRI and PET) have been
widely used for diagnosis of brain diseases such as Alzheimer’s disease
(AD) by providing complementary information. However, in practice, it
is unavoidable to have missing data, i.e., missing PET data for many
subjects in the ADNI dataset. A straightforward strategy to tackle this
challenge is to simply discard subjects with missing PET, but this will
significantly reduce the number of training subjects for learning reliable
diagnostic models. On the other hand, since different modalities (i.e.,
MRI and PET) were acquired from the same subject, there often exist
underlying relevance between different modalities. Accordingly, we pro-
pose a two-stage deep learning framework for AD diagnosis using both
MRI and PET data. Specifically, in the first stage, we impute missing
PET data based on their corresponding MRI data by using 3D Cycle-
consistent Generative Adversarial Networks (3D-cGAN) to capture their
underlying relationship. In the second stage, with the complete MRI and
PET (i.e., after imputation for the case of missing PET), we develop a
deep multi-instance neural network for AD diagnosis and also mild cog-
nitive impairment (MCI) conversion prediction. Experimental results on
subjects from ADNI demonstrate that our synthesized PET images with
3D-cGAN are reasonable, and also our two-stage deep learning method
outperforms the state-of-the-art methods in AD diagnosis.

1 Introduction

Structural magnetic resonance imaging (MRI) and positron emission tomogra-
phy (PET) have been widely used for diagnosis of Alzheimer’s disease (AD) as
well as prediction of mild cognitive impairment (MCI) conversion to AD. Recent
studies have shown that MRI and PET contain complementary information for
improving the performance of AD diagnosis [1,2].
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Fig. 1. Proposed two-stage deep learning framework for brain disease classification with
MRI and possibly incomplete PET data. Stage (1): MRI-based PET image synthesis via
3D-cGAN; Stage (2): Landmark-based multi-modal multi-instance learning (LM3IL).

A common challenge in multi-modal studies is the missing data problem [3,4].
For example, in clinical practice, subjects who are willing to be scanned by MRI
may reject PET scans, due to high cost of PET scanning or other issues such as
concern of radioactive exposure. In the baseline Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI-1) database, only approximately half of subjects have PET
scans, although all 821 subjects have MRI data. Previous studies usually tackle
this challenge by simply discarding subjects without PET data [5]. However,
such simple strategy will significantly reduce the number of training subjects for
learning the reliable models, thus degrading the diagnosis performance.

To fully utilize all available data, a more reasonable strategy is to impute the
missing PET data, rather than simply discarding subjects with missing PET
data. Although many data imputing methods have been proposed in the litera-
ture [3], most of them focus on imputing missing feature values that are defined
by experts for representing PET. Note that, if these hand-crafted features are
not discriminative for AD diagnosis (i.e., identifying AD patients from healthy
controls (HCs)), the effect of imputing these missing features will be very lim-
ited in promoting the learning performance. Therefore, in this work, we focus
on imputing missing PET images, rather than hand-crafted PET features.

Recently, the cycle-consistent generative adversarial network (cGAN) [6] has
been successfully applied to learning the bi-directional mappings between rele-
vant image domains. Since MR and PET images scanned from the same subjects
have underlying relevance, we resort to cGAN to learn bi-directional mappings
between MRI and PET, through which missing PET scan can be then synthe-
sized based on its corresponding MRI scan.

Specifically, we propose a two-stage deep learning framework to employ all
available MRI and PET for AD diagnosis, with the schematic illustration shown
in Fig. 1. In the first stage, we impute the missing PET images by learning
bi-directional mappings between MRI and PET via 3D-cGAN. In the second
stage, based on the complete MRI and PET (i.e., after imputation), we develop
a landmark-based multi-modal multi-instance learning method (LM3IL) for AD
diagnosis, by learning MRI and PET features automatically in a data-driven
manner. To the best of our knowledge, this is one of the first attempt to impute
3D PET images using deep learning with cycle-consistent loss in the domain of
computer-aided brain disease diagnosis.
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Fig. 2. Illustration of our proposed MRI-based PET image synthesis method, by using
3D-cGAN for learning the mappings between MRI and PET.

2 Method

Problem Formulation: Assume
{
Xi

M ,Xi
P

}N

i=1
is a set consisting of N sub-

jects, where Xi
M ∈ XM and Xi

P ∈ XP are, respectively, the MRI and PET data
for the ith subject. A multi-modal diagnosis model can then be formulated as
ŷi = F

(
Xi

M ,Xi
P

)
, where ŷi is the predicted label (e.g., AD/HC) for the ith sub-

ject. However, when the ith subject does not have PET data (i.e., Xi
P is missing),

the model F
(
Xi

M ,−)
cannot be executed. An intuitive way to address this issue

is to use data imputation, e.g., to predict a virtual X̂i
P using Xi

M , considering
their underlying relevance. Letting X̂i

P = G
(
Xi

M

)
denoting data imputation

with the mapping function G, the diagnosis model can then be formulated as

ŷi = F (Xi
M ,Xi

P ) ≈ F
(
Xi

M , G
(
Xi

M

))
. (1)

Therefore, there are two sequential tasks in the multi-modal diagnosis framework
based on incomplete data, i.e., (1) learning a reliable mapping function G for
missing data imputation, and (2) learning a classification model F to effectively
combine complementary information from multi-modal data for AD diagnosis.
To deal with the above two tasks sequentially, we propose a two-stage deep
learning framework, consisting of two cascaded networks (i.e., 3D-cGAN and
LM3IL as shown in Fig. 1), with the details given below.

Stage 1: 3D Cycle-consistence Generative Adversarial Network (3D-
cGAN). The first stage aims to synthesize missing PET by learning a mapping
function G: XM → XP . We require G to be a one-to-one mapping, i.e., there
should exist a reversed function G−1: XP → XM to keep the mapping consistent.

To this end, we propose a 3D-cGAN model, which is an extension of the
existing 2D-cGAN [6]. The architecture of our 3D-cGAN model is illustrated in
Fig. 2, which includes two generators, i.e., G1: XM → XP and G2: XP → XM
(G2 = G−1

1 ), and also two adversarial discriminators, i.e., D1 and D2. Specifi-
cally, each generator (e.g., G1) consists of three sequential (i.e., encoding, trans-
ferring and decoding) parts. The encoding part is constructed by three convo-
lutional (Conv) layers (with 8, 16, and 32 channels, respectively) for extracting
the knowledge of images in the original domain (e.g., XM). The transferring part
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Fig. 3. Architecture of our proposed landmark-based multi-modal multi-instance learn-
ing for AD diagnosis, including 2L patch-level feature extractor (i.e., {fl}2Ll=1) and a
subject-level classifier (i.e., f0).

contains 6 residual network blocks [7] for transferring the knowledge from the
original domain (e.g., XM) to the target domain (e.g., XP). Finally, the decoding
part contains 2 deconvolutional (Deconv) layers (with 8 and 16 channels, respec-
tively) and 1 Conv layer (with one channel) for constructing the images in the
target domain (e.g., XP). Besides, each discriminator (e.g., D2) contains 5 Conv
layers, with 16, 32, 64, 128, and 1 channel(s), respectively. It inputs a pair of real
image (e.g., Xi

P ) and synthetic image (e.g., G1(Xi
M )), and then outputs a binary

indicator to tell us whether the real and its corresponding synthetic images are
distinguishable (output = 0) or not (output = 1). To train our 3D-cGAN model
with respect to G1, G2, D1, and D2, a hybrid loss function is defined as:

L(G1, G2,D1,D2) = Lg(G1,D2) + Lg(G2,D1) + λLc(G1, G2), (2)

where

Lg(G1,D2) = Ex∈XP log(D2(x)) + Ex∈XM log(1 − D2(G1(x))), (3)

Lc(G1, G2) = Ex∈XM‖G2(G1(x)) − x‖1 + Ex∈XP‖G1(G2(x)) − x‖1, (4)

are the adversarial loss and cycle consistency loss [6], respectively. The former
ensures the synthetic PET images be similar to the real images, while the lat-
ter keeps each synthetic PET be consistent with the corresponding real MRI.
Parameter λ controls the importance of the consistency.

In our experiments, we empirically set λ = 10, and then trained D1, D2, G1,
and G2 alternatively by minimizing −Lg(G2,D1), −Lg(G1,D2), Lg(G1,D2) +
λLc(G1, G2) and Lg(G2,D1)+λLc(G1, G2), iteratively. The Adam solver [8] was
used with a batch size of 1. The learning rate for the first 100 epochs was kept
as 2 × 10−3, and was then linearly decayed to 0 during the next 100 epochs.

Stage 2: Landmark-based Multi-modal Multi-Instance Learning
(LM3IL) Network. In the second stage, we propose the LM3IL model to learn
and fuse discriminative features from both MRI and PET for AD diagnosis.
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Specifically, we extract L patches (with size of 24 × 24 × 24) centered at L pre-
defined disease-related landmarks [9] from each modality. Therefore, for the ith

subject, we have 2L patches denoted as
{
Pi

l

}2L

l=1
, in which the first L patches

are extracted from Xi
M , while the next L patches are extracted from Xi

P or
G1(Xi

M ) when Xi
P is missing.

By using
{
Pi

l

}2L

l=1
as the inputs, the architecture of our LM3IL model is illus-

trated in Fig. 3, which consists of 2L patch-level feature extractors (i.e., {fl}2Ll=1)
and a subject-level classifier (i.e., f0). All {fl}2Ll=1 have the same structure but
different parameters. Specifically, each of them consists of 6 Conv layers and 2
fully-connected (FC) layers, with the rectified linear unit (ReLU) used as the
activation function. The outputs of the 2nd, 4th and 6th layers are down-sampled
by the max-pooling operations. The size of the Conv kernels is 3 × 3 × 3 in the
first two Conv layers, and 2×2×2 in the remaining four Conv layers. The num-
ber of channels is 32 for the 1st, 2nd and 8th Conv layers, 64 for 3rd and 4th Conv
layers, and 128 for the 5th, 6th and 7th layers. Each patch Pi

l (l ∈ {1, . . . , 2L})
is first processed by the corresponding sub-network fl to produce a patch-level
feature vector Ol (i.e., the outputs of the last FC layer) with 32 elements. After
that, feature vectors from all landmark locations in both MRI and PET are con-
catenated, which are then fed into the subsequent subject-level classifier f0. The
subject-level classifier f0 consists of 3 FC layers and a soft-max layer, where the
first two layers (with the size of 64L and 8L, respectively) aim to learn a subject-
level feature representation to effectively integrate complementary information
from different patch locations and also different modalities, based on which the
last FC layer (followed by the soft-max operation) outputs the diagnosis label
(e.g., AD/HC). For the ith subject, the whole diagnosis procedure in our LM3IL
method can be summarized as:

ŷi = F (Xi
M ,Xi

P ) = fo
(
f1(Pi

1), . . . , f2L(Pi
2L)

)
. (5)

In our experiments, the proposed LM3IL model was trained with log loss
using the stochastic gradient descent (SGD) algorithm [10], with a momentum
coefficient of 0.9 and a learning rate of 10−2.

3 Experiments

Materials and Image Pre-processing. We evaluate the proposed method on
two subsets of ADNI database [11], including ADNI-1 and ADNI-2. Subjects
were divided into four categories: (1) AD, (2) HC, (3) progressive MCI (pMCI)
that would progress to MCI within 36 months after baseline time, and (4) static
MCI (sMCI) that would not progress to MCI. There are 821 subjects in ADNI-
1, including 199 AD, 229 HC, 167 pMCI and 226 sMCI subjects. Also, ADNI-
2 contains 636 subjects, including 159 AD, 200 HC, 38 pMCI and 239 sMCI
subjects. While all subjects in ADNI-1 and ADNI-2 have baseline MRI data,
only 395 subjects in ADNI-1 and 254 subjects in ADNI-2 have PET images.
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Fig. 4. Illustration of synthetic (Syn.) PET generated by our method for two typical
subjects (Roster IDs: 5240, 5252), as well as their corresponding real images.

All MR images were pre-processed via four steps: (1) anterior commissure
(AC)-posterior commissure (PC) alignment, (2) skull stripping, (3) intensity
correction, (4) cerebellum removal, and (5) linear alignment to a template MRI.
Each PET image was also aligned to its corresponding MRI via linear regis-
tration. Hence, there is spatial correspondence between MRI and PET for each
subject.

Experimental Settings. We performed two groups of experiments in this work.
In the first group, we aim to evaluate the quality of the synthetic images gener-
ated by 3D-cGAN. Specifically, we train the 3D-cGAN model using subjects with
complete MRI and PET scans in ADNI-1, and test this image synthesis model
on the complete subjects (with both MRI and PET) in ADNI-2. The averaged
peak signal-to-noise ratio (PSNR) is used to measure the image quality of those
synthetic PET and MR images generated by our method.

In the second group, we evaluate the proposed LM3IL method on both tasks
of AD classification (AD vs. HC) and MCI conversion prediction (pMCI vs.
sMCI) using both real multi-modal images and our synthetic PET images. Six
metrics are used for performance evaluation, including accuracy (ACC), sensitiv-
ity (SEN), specificity (SPE), F1-Score (F1S), the area under receiver operating
characteristic (AUC) and Matthews correlation coefficient (MCC) [12]. Subjects
from ADNI-1 are used as the training data, while those from ADNI-2 are treated
as independent test data. In LM3IL, 30 landmarks are detected for each MRI
via a landmark detection algorithm [9], and these landmarks in each MRI are
further located in its corresponding PET image. For each subject, we extract
30 image patches (24 × 24 × 24) centered at 30 landmarks from image of each
modality (i.e., MRI and PET) as the input of LM3IL.

Our LM3IL method is compared with five approaches: (1) gray matter
(GM) volume within 90 regions-of-interest (denoted as ROI) [5], (2) voxel-wise
GM density (denoted as VGD) [13], (3) landmark-based local energy patterns
(LLEP) [9], (4) landmark-based deep single-instance learning (LDSIL) [14],
and (5) landmark-based deep multi-instance learning (LDMIL) [14] that can
be regarded as a single-modal variant of our LM3IL method using only MRI. To
test the effect of our generated PET images, we further compare LM3IL with its
variant (denoted as LM3IL-C) that use only subjects with complete MRI and
PET data. We share the same landmarks and the same size of image patches
in LLEP, LDSIL, LDMIL, LM3IL-C and LM3IL. Note that four variants of our
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Table 1. Performance of seven different methods in both tasks of AD classification (AD
vs. HC classification) and MCI conversion prediction (pMCI vs. sMCI classification).

Method noitacifissalcICMs.svICMpnoitacifissalcCH.svDA
ACC SEN SPE F1S MCC AUC ACC SEN SPE F1S MCC AUC
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

ROI 79.17 78.62 79.60 76.92 58.00 86.73 66.06 47.37 69.04 27.69 11.98 63.77
VGD 80.50 77.35 83.00 77.84 60.44 87.62 64.26 36.84 68.62 22.05 04.02 59.29
LLEP 82.22 77.36 86.07 79.35 63.83 88.11 68.59 39.47 73.22 25.64 09.67 63.63
LDSIL 90.56 87.42 93.03 89.10 80.82 95.74 70.04 36.84 75.31 25.23 09.49 64.48
LDMIL 91.09 88.05 93.50 89.74 81.91 95.86 76.90 42.11 82.43 33.33 20.74 77.64
LM3IL-C 87.50 84.85 89.36 84.85 74.21 93.08 76.92 44.44 81.16 30.77 19.81 68.59
LM3IL 92.50 89.94 94.53 91.37 84.78 95.89 79.06 55.26 82.85 40.86 30.13 75.84

methods (i.e., LDSIL, LDMIL, LM3IL-C and LM3IL) automatically learn fea-
tures of MRI/PET via deep network, while the remaining methods (ROI, VGD
and LLEP) rely on support vector machines with default parameters.

Performance of Image Synthesis Model. To evaluate the quality of the
synthetic images generated by 3D-cGAN, we first train the 3D-cGAN model
using complete subjects (i.e., containing both PET and MRI) in ADNI-1, and
test this image synthesis model on the complete subjects in ADNI-2. Two typical
subjects with real and synthetic PET scans are shown in Fig. 4. From Fig. 4, we
can observe that our synthetic PET look very similar to their corresponding
real images. Also, the mean and standard deviation of PSNR values of synthetic
PET images in ADNI-2 are 24.49 ± 3.46. These results imply that our trained
3D-cGAN model is reasonable, and the synthetic PET scans have acceptable
image quality (in terms of PSNR).

Results of Disease Classification. We further evaluate the effectiveness of our
two-stage deep learning method in both tasks of AD classification and MCI con-
version prediction. The experimental results achieved by seven different methods
are reported in Table 1. From Table 1, we can see that the overall performance of
our LM3IL method is superior to six competing methods regarding six evaluation
metrics. Particularly, our method achieves a significantly improved sensitivity
value (i.e., nearly 8% higher than the second best sensitivity achieved by ROI)
in pMCI vs. sMCI classification. Since higher sensitivity values indicate higher
confidence in disease diagnosis, these results imply that our method is reliable
in predicting the progression of MCI patients, which is potentially very useful
in practice. Besides, as can be seen from Table 1, four methods (i.e., LDSIL,
LDMIL, LM3IL-C and LM3IL) using deep-learning-based features of MRI and
PET usually outperform the remaining three approaches (i.e., ROI, VGD and
LLEP) that use hand-crafted features in both classification tasks. This suggests
that integrating feature extraction of MRI and PET and classifier model training
into a unified framework (as we do in this work) can boost the performance of
AD diagnosis. Furthermore, we can see that our LM3IL method using both MRI
and PET generally yields better results than its two single-modal variants (i.e.,
LDSIL and LDMIL) that use only MRI data. The underlying reason could be
that our method can employ the complementary information contained in MRI
and PET data. On the other hand, our LM3IL consistently outperforms LM3IL-C
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that utilize only subjects with complete MRI and PET data. These results clearly
demonstrate that the synthetic PET images generated by our 3D-cGAN model
are useful in promoting brain disease classification performance.

4 Conclusion

In this paper, we have presented a two-stage deep learning framework for AD
diagnosis, using incomplete multi-modal imaging data (i.e., MRI and PET).
Specifically, in the first stage, to address the issue of missing PET data, we
proposed a 3D-cGAN model for imputing those missing PET data based on
their corresponding MRI data, considering the relationship between images (i.e.,
PET and MRI) scanned for the same subject. In the second stage, we developed
a landmark-based multi-modal multi-instance neural network for brain disease
classification, by using subjects with complete MRI and PET (i.e., both real
and synthetic PET). The experimental results demonstrate that the synthetic
PET images produced by our method are reasonable, and our proposed two-
stage deep learning framework outperforms conventional multi-modal methods
for AD classification. Currently, only the synthetic PET images are used for
learning the classification models. Using these synthetic MRI data could further
augment the training samples for improvement, which will be our future work.
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