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Abstract. In Alzheimer’s research, Mild Cognitive Impairment (MCI)
is an important intermediate stage between normal aging and
Alzheimer’s. How to distinguish MCI samples that finally convert to
AD from those do not is an essential problem in the prevention and
diagnosis of Alzheimer’s. Traditional methods use various classification
models to distinguish MCI converters from non-converters, while the
performance is usually limited by the small number of available data.
Moreover, previous methods only use the data at baseline time for train-
ing but ignore the longitudinal information at other time points along the
disease progression. To tackle with these problems, we propose a novel
deep learning framework that uncovers the temporal correlation struc-
ture between adjacent time points in the disease progression. We also
construct a generative framework to learn the inherent data distribution
so as to produce more reliable data to strengthen the training process.
Extensive experiments on the ADNI cohort validate the superiority of
our model.
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1 Introduction

Alzheimer’s disease (AD) is a complex chronic progressive neurodegenerative
disease that gradually affects human memory, judgment, and behavior. As an
important intermediate stage between normal aging and AD, MCI possesses an
increased risk of transiting to AD. That being the case, how to recognize the
MCI samples with high potential of switching to AD prior to dementia becomes
an essential problem in Alzheimer’s prophylaxis and early treatment.
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Neuroimaging provides an effective tool to characterize the structure and
functionality of nervous system, thus has greatly contributed to Alzheimer’s
study [22]. Extensive work has been proposed to predict MCI conversion using
neuroimaging data [6,15]. Previous methods usually formulate MCI conversion
prediction as a binary classification (distinguishing MCI converters from non-
converters) [15] or multi-class classification problem (when considering other
classes such as AD or health control (HC)) [6], where the methods take the
neuroimaging data at baseline time as the input and classify if the MCI samples
will convert to AD in years.

Despite the prosperity and progress achieved in MCI conversion prediction,
there are still several problems existing in previous methods. (1) Although we
expect the model to be capable of forecasting the MCI conversion years before
the change of disease status, the training process should not be limited to just
baseline data. In the longitudinal study of AD, usually the data at several time
points along the disease progression is available, such as baseline, month 6, month
12, etc. However, previous methods only consider the baseline data in the training
process, thus ignore the temporal correlation structure among other time points.

(2) The labeling process for Alzheimer’s is time-consuming and expensive, so
the MCI conversion prediction suffers greatly from limited training data.

To deal with these problems, we propose a novel model for MCI conversion
prediction. Firstly, we study the temporal correlation structure among the lon-
gitudinal data in Alzheimer’s progression. Since AD is a chronically progressive
disorder and the neuroimaging features are correlated [11], it can be helpful to
analyze the temporal correlation between neuroimaging data in the disease pro-
gression as in other nervous system diseases [3]. We construct a regression model
to discover such temporal correlation structure between adjacent time points.
Our model incorporates the data at all time points along the disease progression
and uncovers the variation trend that benefits MCI conversion prediction.

Secondly, we construct a classification model to predict the disease status
at each time point. Different from previous classification models that use the
baseline data to forecast the progression trend in two or three years, our classi-
fication model focuses on adjacent time points. Compared with previous models
that require a highly distinguishable conversion pattern appears several years
before dementia, our model predicts the progression trend for consecutive time
points, thus is more accurate and reliable.

Thirdly, we construct a generative model based on generative adversarial net-
work (GAN) to produce more auxiliary data to improve the training of regression
and classification model. GAN model is proposed in [5], which uses the adver-
sarial mechanism to learn the inherent data distribution and generate realistic
data. We use the generative model to learn the joint distribution of neuroimag-
ing data at consecutive time points, such that more reliable training data can
be obtained to improve the prediction of MCI conversion.
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2 Temporal Correlation Structure Learning Model

2.1 Problem Definition

In MCI conversion prediction, for a certain sample and a time point t, we use
xt ∈ R

p to denote the neuroimaging data at time t while xt+1 ∈ R
p for the

next time point, where p is the number of imaging markers. yt ∈ R is the label
showing the disease status at time t and t + 1. Here we define three different
classes for yt: yt = 1 means the sample is AD at both time t and t + 1; yt = 2
shows MCI at time t while AD at time t + 1; while yt = 3 indicates that the
sample is MCI at both time t and t+1. In the prediction, given the baseline data
of an MCI sample, the goal is to predict whether the MCI sample will finally
convert to AD or not.

2.2 Revisit GAN Model

GAN model is proposed in [5], which plays an adversarial game between the
generator G and discriminator D. The generator G takes a random variable z
as the input and outputs the generated data to approximates the inherent data
distribution. The discriminator D is proposed to distinguish the data x from
the real distribution and the data produced from the generator. Whereas the
generator G is optimized to generate data as realistic as possible to fool the
discriminator. The objective function of the GAN model has the following form.

min
G

max
D

Ex∼p(x)

[
log(D(x))

]
+ Ez∼p(z)

[
log(1 − D(G(z))

]
,

where p(z) denotes the distribution of the random variable and p(x) represents
the distribution of real data. The min-max game played between G and D
improves the learning of both the generator and discriminator, such that the
model can learn the inherent data distribution and generate realistic data.

2.3 Illustration of Our Model

Inspired by [2], we propose to approximate the joint distribution of neuroimag-
ing data at consecutive time points and data label ([xt,xt+1],yt) ∼ p(x,y) by
considering the following:

min
Gt,Gt+1

max
D

E([xt,xt+1],yt)∼p(x,y)[log(D([xt,xt+1],yt))]

+ Ez∼p(z),y∼p(y)[log(1 − D([Gt(z,y), Gt+1(z,y)],y))],

where the generators take a random variable z and a pseudo label y as the input
and output a data pair ([Gt(z,y), Gt+1(z,y)],y) that is as realistic as possible.
Still, the discriminator is optimized to distinguish real from fake data. The con-
struction of such generative model approximates the inherent joint distribution
of neuroimaging data at adjacent time points and label, which generates more
reliable samples for the training process.
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Fig. 1. Illustration of our Temporal-GAN model. xt and xt+1 are the neuroimaging
data at two adjacent time points and yt is the label (yt = 1 if both xt and xt+1

are at AD status; yt = 2 if xt is MCI while xt+1 is AD; yt = 3 if both xt and
xt+1 are MCI.). The regression network R predicts xt+1 from xt so as to uncover
the temporal correlation between adjacent time points. The classification network C
predicts the label yt from xt. We also construct a generative model with generator
G and discriminator D to approximate the joint distribution underlying data pair
([xt,xt+1],yt) to generate more reliable data for training R and C. In the prediction
process, the neuroimaging data x0 at baseline time for MCI samples is given, and we
use R and C to predict whether the MCI sample will convert to AD at time T .

To uncover the temporal correlation structure among the neuroimaging data
between consecutive time points, we construct a regression network R to predict
xt+1 from xt, such that progression trend among neuroimaging data along the
disease progression can be learned. The network R takes data from both real
distribution and the generators as the input and optimize the following:

min
R

E([xt,xt+1],yt)∼p(x,y)[‖xt+1 − R(xt)‖1]
+ λregEz∼p(z),y∼p(y)[‖Gt+1(z,y) − R(Gt(z,y))‖1],

(1)

where the hyper-parameter λreg balances the importance of real and generated
data. We consider �1-norm loss to make the model R more robust to outliers.

In addition, we construct a classification structure C to predict the label yt

given data xt. The optimization of C is based on the following:

min
C

− E([xt,xt+1],yt)∼p(x,y)[yt log(C(xt))]

− λclyEz∼p(z),y∼p(y)[y log(C(Gt(z)))],
(2)

where λcly is a hyper-parameter to balance the role of real and generated data.
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Given a set of real data {([xi
t,x

i
t+1],y

i
t)}ni=1, the above three loss terms can

be approximated by the following empirical loss:

Ladv = 1
n

n∑

i=1

log(D([xi
t,x

i
t+1],y

i
t)) +

nz∑

j=1

log(D([Gt(zj ,yj), Gt+1(zj ,yj)],yj)),

Lreg = 1
n

n∑

i=1

‖xi
t+1 − R(xi

t)‖1 + λreg

nz∑

j=1

‖Gt+1(zj ,yj) − R(Gt(zj ,yj))‖1,

Lcly = − 1
n

n∑

i=1

yi
t log(C(xi

t)) − λcly

nz∑

j=1

yj log(C(Gt(zj ,yj))).

For a clear illustration, we plot a figure in Fig. 1 to show the structure of our
Temporal-GAN model (temporal correlation structure learning for MCI conver-
sion prediction with GAN). The implement details of the networks can be found
in the experimental setting section. The optimization of our model is based on
a variant of mini-batch stochastic gradient descent method.

3 Experimental Results

3.1 Experimental Setting

To evaluate our Temporal-GAN model, we compare with the following meth-
ods: SVM-Linear (support vector machine with linear kernel), which has been
widely applied in MCI conversion prediction [6,15]; SVM-RBF (SVM with
RBF kernel), as employed in [10,21]; and SVM-Polynomial (SVM with poly-
nomial kernel) as used in [10]. Also, to validate the improvement by learning the
temporal correlation structure, we compare with the Neural Network with
exactly the same structure in our classification network (network C in Fig. 1)
that only uses baseline data. Besides, we compare with the case where we do not
use the GAN model to generate more auxiliary samples, i.e., only using network
C and R in Fig. 1, which we call Temporal-Deep.

The classification accuracy is used as the evaluation metric. We divide the
data into three sets: training data for training the models, validation data for
tuning hyper-parameters, and testing data for reporting the results. We tune the
hyper-parameter C of SVM-linear, SVM-RBF and SVM-Polynomial methods in
the range of {10−3, 10−2, . . . , 103}. We compare the methods when using
different portion of testing samples and report the average performance in five
repetitions of random data division.

In our Temporal-GAN model, we use the fully connected neural network
structure for all the networks G, D, R and C, where each hidden layer contains
100 hidden units. The implementation detail is as follows: the number of hidden
layers in structure G, D, R and C is 3, 1, 3, 2 respectively. We use leaky rectified
linear unit (LReLU) [12] with leakiness ratio 0.2 as the activation function of
all layers except the last layer and consider weight normalization [14] for layer
normalization. Also, we utilize the dropout mechanism in the regression structure
R with the dropout rate of 0.1. The weight parameters of all layers are initialized
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using the Xavier approach [4]. We use the ADAM algorithm [9] to update the
weight parameters with the hyper-parameters of ADAM algorithm set as default.
Both values of λreg in Eq. (1) and λcly in Eq. (2) are set as 0.01.

3.2 Data Description

All data were downloaded from the ADNI database (adni.loni.usc.edu). Each
MRI T1-weighted image was first anterior commissure (AC) posterior commis-
sure (PC) corrected using MIPAV2, intensity inhomogeneity corrected using
the N3 algorithm [17], skull stripped [20] with manual editing, and cerebellum-
removed [19]. We then used FAST [23] in the FSL package3 to segment the image
into gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF), and
used HAMMER [16] to register the images to a common space. GM volumes
obtained from 93 ROIs defined in [8], normalized by the total intracranial vol-
ume, were extracted as features. Out of the 93 ROIs, 24 disease-related ROIs
were involved in the MCI prediction [18]. This experiment includes data from six
different time points: baseline (BL), month 6 (M6), month 12 (M12), month 18
(M18), month 24 (M24) and month 36 (M36). All 216 samples with no missing
MRI features at BL and M36 time are used by all the comparing methods, where
there are 101 MCI converters (MCI at BL time while AD at M36) as well as 115
non-converters (MCI at both BL and M36). Since our Temporal-GAN model can
use data at time points other than BL and M36, we include a total of 1419 data
pairs with no missing neuroimaging measurement for training the classification,
regression and generative model in our Temporal-GAN model. All neuroimaging
features in the data are normalized to zero mean and unit variance.

3.3 MCI Conversion Prediction

We summarize the MCI conversion classification results in Table 1. The goal
of the experiment is to accurately distinguish converter subjects from non-
converters among the MCI samples at baseline time. From the comparison
we notice that Temporal-GAN outperforms all other methods under all set-
tings, which confirms the effectiveness of our model. Compared with SVM-
Linear, SVM-RBF, SVM-Polynomial and Neural Network, the Temporal-GAN
and Temporal-Deep model illustrates apparent superiority, which validates that
the temporal correlation structure learned in our model substantially improves
the prediction of MCI conversion. The training process of our model takes advan-
tage of all the available data along the progression of the disease, which provides
more beneficial information for the prediction of MCI conversion. By comparing
Temporal-GAN and Temporal-Deep, we can notice that Temporal-GAN always
performs better than Temporal-Deep, which indicates that the generative struc-
ture in Temporal-GAN could provide reliable auxiliary samples to strengthen the
training of regression R and classification C model, thus improves the prediction
of MCI conversion.

http://adni.loni.usc.edu/
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Table 1. MCI conversion prediction with different portion of testing data.

Methods 10% 20% 50%

SVM-Linear 0.6273± 0.0668 0.6558± 0.0648 0.6093± 0.0484

SVM-RBF 0.5818± 0.0881 0.5767± 0.0770 0.5852± 0.0381

SVM-Polynomial 0.6545± 0.0617 0.5953± 0.1253 0.5611± 0.0429

Neural Network 0.3727± 0.0340 0.4233± 0.0426 0.4685± 0.0324

Temporal-Deep 0.7455± 0.0464 0.7209± 0.0441 0.6741± 0.0451

Temporal-GAN 0.7818± 0.0445 0.7488± 0.0342 0.7000± 0.0570

3.4 Visualization of the Imaging Markers

We use feature weight visualization in Fig. 2 to validate if our Temporal-GAN
can detect disease-related features when using all 93 ROIs in the MCI conversion
prediction. We adopt the Layer-wise Relevance Propagation (LRP) [1] method to
calculate the importance of neuroimaging features in the testing data. We can
notice that our Temporal-GAN model selects several important features from
all 93 ROIs. For example, our method identifies fornix as a significant feature
in distinguishing MCI non-converters. The fornix is an integral white matter
bundle that locates inside the medial diencephalon. [13] reveals the vital role
of white matter in Alzheimer’s, such that the degradation of fornix indicates
essential predictive power in MCI conversion. Moreover, cingulate region has
been found by our model to be related with MCI converters. Previous study [7]
finds significantly decreased Regional cerebral blood flow (rCBF) measurement
in the left posterior cingulate cortex in MCI converters, which serves as an
important signal in forecasting the MCI conversion. The replication of these
findings proves the validity of our model.
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Fig. 2. Visualization figure showing the feature weights from our Temporal-GAN
model. The upper figure shows features on the left hemisphere while the lower cor-
responds to the right hemisphere.
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4 Conclusion

In this paper, we proposed a novel Temporal-GAN model for MCI conversion
prediction. Our model considered the data at all time points along the disease
progression and uncovered the temporal correlation structure among the neu-
roimaging data at adjacent time points. We also constructed a generative model
to produce more reliable data to strengthen the training process. Our model
illustrated superiority in the experiments on the ADNI data.
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