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Abstract. Machine learning-based accurate diagnosis of psychiatric dis-
orders is expected to find their biomarkers and to evaluate the treat-
ments. For this purpose, neuroimaging datasets have required special
procedures including feature-selections and dimensional-reductions since
they are still composed of a limited number of high-dimensional samples.
Recent studies reported a certain success by applying generative mod-
els to fMRI data. Generative models can classify small datasets more
accurately than discriminative models as long as their assumptions are
appropriate. Leveraging our prior knowledge of fMRI signal and the flex-
ibility of deep neural networks, we propose a structured deep generative
model, which takes into account fMRI images, disorder, and individ-
ual variability. The proposed model estimates the subjects’ conditions
more accurately than existing diagnostic procedures, general discrimina-
tive models, and recently-proposed generative models. Also, it identifies
brain regions related to the disorders.
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1 Introduction

With continuously collecting neuroimaging datasets such as functional mag-
netic resonance imaging (fMRI) [1], many studies have been conducted on
machine learning techniques to find specific biomarkers of neurological and psy-
chiatric disorders [2] such as schizophrenia [3,4]. They also provide an oppor-
tunity for appropriate treatments and potentially evaluate the effectiveness of
the treatments. Since each neuroimaging dataset is still limited in size com-
pared to datasets for other machine-learning tasks, it requires special analysis
procedures including hand-crafted features, feature-selections, and dimensional-
reductions [3–5].
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Recent studies reported a certain success by applying generative models to
fMRI images [6–8]. Generative models classify a small-sized dataset better than
discriminative models when their assumptions are appropriate [9]. We can lever-
age our prior knowledge and auxiliary information by constructing the model
structure. Suk et al. [6] used hidden Markov models (HMMs) to model the tem-
poral dynamics underlying fMRI signals. Yahata et al. [5] used the sparse canoni-
cal correlation analysis (SCCA) to remove features related to known attributes of
no interest (e.g., age and sex). Chen et al. [7] employed a linear model composed
of a subset shared by all subjects and the remaining adjusted for expressing
the functional topography of each subject. These models take into account the
individual variability but cannot generalize to an unknown attribute or subject;
the generalization is a fundamental problem for diagnosing disorders [10].

On the other hand, deep neural networks (DNNs) are attracting attention
as flexible machine-learning frameworks (see [11] for a review). DNNs learn
high-level features of a given dataset automatically. DNNs have been used as a
supervised classifier (a multilayer perceptron; MLP) [4,12] and an unsupervised
feature-extractor (an autoencoder; AE) [4,6,12]. Not limited to them, DNNs
called deep neural generative models (DGMs) build generative models describ-
ing relationships between multiple factors in their network structures [13,14].
Tashiro et al. [8] implemented relationships between fMRI images, class label,
and scan-wise variability (signals of no interest, such as something in mind) on
a DGM and achieved a better diagnostic accuracy than comparative models.

Given the above, we propose a deep generative model dedicatedly struc-
tured for fMRI data analysis called subject-wise DGM (sw-DGM). The proposed
sw-DGM takes into account individual variability (i.e., a subject-wise feature),
which is shared by and inferred from all fMRI images obtained from a subject.
Thanks to this inference, the proposed sw-DGM generalizes to an unknown sub-
ject unlike the study by Chen et al. [7] and potentially deals with unknown
attributes unlike the study by Yahata et al. [5].

We evaluate the proposed sw-DGM using resting state fMRI (rs-fMRI)
datasets of schizophrenia and bipolar disorders. Our experimental results demon-
strate that the proposed sw-DGM provides a more accurate diagnosis than the
conventional methods based on the functional connectivity extracted using the
Pearson correlation coefficients (PCC) [3,5] and comparative discriminative and
generative models; support vector machine (SVM) [15], long short-term memory
(LSTM) [16], DGM [8], and AE+HMM [6]. In addition, the proposed sw-DGM
identifies brain regions related to the disorders.

2 Subject-Wise Deep Neural Generative Model

2.1 Subject-Wise Generative Model of FMRI Images

We first propose a structured generative model of a dataset D = {xi, yi}N
i=1

composed of fMRI images xi and class labels yi of N subjects indexed by i. Each
subject i is a control subject (yi = 0) or has the disorder (yi = 1), and provides
Ti fMRI images xi = {xi,t}Ti

t=1. We assume that each subject i has its own
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Fig. 1. Our proposed generative model composed of fMRI images xi,t, a diagnosis yi,
a subject-wise feature si, and scan-wise variabilities zi,t.

feature si following a prior distribution p(s). The subject-wise feature represents
individual variability, which could be brain shape and baseline signal intensity
not removed successfully by preprocessing. We also assume that each fMRI image
xi,t is associated with the subject’s class yi, the subject-wise feature si, and a
latent variable zi,t. The latent variable zi,t follows a prior distribution p(z) and
represents a scan-wise variability, e.g., brain activity related to something in the
subject’s mind at that moment, body motion, and so on [8]. Then, we build a
generative model pθ of fMRI images xi conditioned by the class label yi and
parameterized by θ. This is depicted in Fig. 1 and expressed as

pθ(xi|yi) =
Ti∏

t=1

pθ(xi,t|yi) =
Ti∏

t=1

∫

si

∫

zi,t

pθ(xi,t|zi,t, yi, si)p(zi,t)p(si).

According to the variational method [13], the model evidence log pθ(xi|yi) is
bounded using an inference model qφ parameterized by φ as

log pθ(xi|yi) ≥ Eqφ(zi,si|xi,yi)

[
log

pθ(xi,zi, si|yi)
qφ(zi, si|xi, yi)

]

= −DKL(qφ(si|xi, yi)||p(si))
−∑Ti

t=1 Eqφ(si|xi,yi) [DKL(qφ(zi,t|xi,t, yi, si)||p(zi,t))]
+

∑Ti

t=1 Eqφ(si|xi,yi)

[
Eqφ(zi,t|xi,t,yi,si) [log pθ(xi,t|yi, zi,t, si)]

]

=: Lg(xi, yi),
(1)

where DKL(·||·) is the Kullback-Leibler divergence and Lg(xi; yi) is the evidence
lower bound (ELBO); the ELBO is the ordinary objective function of the con-
ditional generative model pθ and the inference model qφ to be maximized.

The ELBO Lg(xi; y) is considered to converge to the model evidence
log pθ(xi|y). We estimate the posterior probability p(y|xi) of the class y of a
subject i based on Bayes’ rule:
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Fig. 2. Implementation of the proposed generative model on the deep neural networks.

pθ(y|xi) =
p(y)pθ(xi|y)∑

y′∈{0,1}
p(y′)pθ(xi|y′)

≈ p(y) exp Lg(xi, y)∑

y′∈{0,1}
p(y′) expLg(xi, y

′)
=: exp Ld(xi, y).

(2)
We assume the prior probability p(y) of class y to be p(y = 0) = p(y = 1) = 0.5.
Hence, if the ELBO Lg(xi, y = 1) has a large value, the subject i is more likely
to have the disorder.

In addition, the approximation of the log-likelihood of the class label, i.e.,
Ld(xi, yi), can be an alternative objective function to be maximized, progressing
discrimination between the classes [9]. We balanced the two objective functions
using the coefficient ω ∈ [0, 1] as

L(xi, yi) = ωLg(xi, yi) + (1 − ω)Ld(xi, yi). (3)

2.2 Implementation on Deep Neural Networks

We implement the generative model pθ and inference model qφ described above
on deep neural networks, and thereby, propose a subject-wise deep genera-
tive model (sw-DGM). We assume a preprocessed fMRI signal xi,t, a subject-
wise feature si, and a scan-wise variability zi,t as vectors of nx, ns, and nz-
dimensions, respectively. The inference model qφ(zi,t|xi,t, yi, si) and generative
model pθ(xi,t|yi, si, zi,t) are expressed by multivariate Gaussian distributions
with diagonal covariance matrices; their parameters are the outputs of the cor-
responding DNNs called encoder and decoder (see the right two panels in Fig. 2
and the previous studies [8,13,14] for more detail). The implementation of the
inference model qφ(si|xi, yi) requires modification because it accepts a variable-
length sequence of fMRI images xi = {xi,t}Ti

t=1 obtained from a subject i. We
propose a neural network architecture called collection-encoder, which is com-
posed of stacked two sub-networks as depicted in the leftmost panel in Fig. 2.
The first sub-network accepts a preprocessed fMRI signal xi,t and the class label
yi, and then outputs a hidden activation hi,t. The second sub-network accepts
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the averaged hidden activation h̄i = 1
Ti

∑Ti

t=1[hi,t] and outputs the variational
posterior qφ(si|xi, yi) of the subject-wise feature si.

Note that the proposed sw-DGM is not equivalent to other structured DGMs
such as Skip Deep Generative Model [14]. They assumed that each sample is
generated with more than two latent variables. In contrast, the proposed sw-
DGM assumes that the samples xi,t obtained from the same subject i share the
subject-wise feature si as a latent variable. This assumption potentially gives a
good constraint based on a prior knowledge of the fMRI images.

We used three-layered neural networks as the encoder and decoder. We used
a two-layered and a single-layered neural networks as the first and the second
sub-networks of the collection-encoder, respectively. Each hidden layer of all the
DNNs has uh hidden units followed by the layer normalization [17] and the
ReLU activation function [18]. For approximating the expectations in Eq. (1),
the subject-wise feature si and the scan-wise variability zi,t were sampled from
the variational posteriors qφ(si|xi, yi) and qφ(zi,t|xi,t, yi, si) once per sample xi,t

in the training phase and were substituted with the MAP estimations in the
test phase following the previous work [13]. The preprocessed fMRI signals xi,t

were augmented using the dropout [19] of a ratio p. All the DNNs were jointly
trained using the Adam optimization algorithm [20] with parameters α = 10−4,
β1 = 0.9, and β2 = 0.999. We selected hyper-parameters from p ∈ {0.0, 0.5},
nh ∈ {50, 100, 200, 400}, nz = ns ∈ {5, 10, 20, 50, 100} for nh > nz = ns, and
ω ∈ {0.0, 0.9, 0.99}. We adjusted the imbalance in the classes via oversampling.

3 Experiments and Results

3.1 Data Acquisition and Comparative Models

We used datasets obtained from the OpenfMRI database. Its accession number
is ds000030 (https://openfmri.org/dataset/ds000030/). We performed a prepro-
cessing procedure for rs-fMRI using the SPM12 software package (http://www.
fil.ion.ucl.ac.uk/spm/software/spm12/). We discarded the first 10 scans of each
subject to ensure magnetization equilibrium. We performed time-slice adjust-
ment, realignment of brain positions via a rigid body rotation, and spatial nor-
malization using the MNI space with a voxel thickness of 2.0 mm. We parcel-
lated each fMRI image into 116 regions of interest (ROIs) using the automated
anatomical labeling (AAL) template [21] and averaged intensities of voxels in
each ROI region, obtaining a 116-dimensional vector as a preprocessed fMRI
signal xi,t. As scrubbing, we discarded frames with frame displacements (FD)
of more than 1.5 mm or angular rotations of more than 1.5◦ in any direction
as well as the following frames. We also discarded subjects who had less than
100 remaining frames and subjects whose fMRI images did not match the MNI
template after the spatial normalization. As a result, we obtained 113 control
subjects, 44 patients with the schizophrenia, and 45 patients with the bipolar
disorder.

As baselines, we evaluated two conventional procedures, which use Pearson’s
correlation coefficients (PCCs) between the ROIs as the functional connectivities

https://openfmri.org/dataset/ds000030/
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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Table 1. Diagnostic accuracies.

Schizophrenia Bipolar

Model BACC SPEC SEN BACC SPEC SEN

PCC+Kendall+PCA+c-means [3] 0.640 0.635 0.645 0.602 0.565 0.640

PCC+SCCA+SLR [5] 0.639 0.779 0.500 0.607 0.735 0.480

SVM [15] 0.505 0.788 0.223 0.512 0.855 0.169

LSTM [16] 0.661 0.854 0.467 0.571 0.802 0.340

DGM [8] 0.722 0.920 0.524 0.619 0.650 0.587

AE+HMM [6] 0.618 0.554 0.682 0.616 0.490 0.742

sw-DGM (proposed) 0.767 0.812 0.722 0.622 0.844 0.401

(FCs) [3,5]. Following Shen et al. [3], we selected m features in the FCs using
the Kendall τ correlation coefficient, compressed the feature vector into a d-
dimensional space using the locally linear embedding (LLE) with a parameter of
k, and clustered them into two classes using the c-means algorithm. This proce-
dure was confirmed to outperform direct classification of the PCCs by the SVM
and MLP. Following Yahata et al. [5], we selected m features in the FCs using the
SCCA and classified the features using the sparse logistic regression (SLR) with a
sparsity determined by automatic relevance determination (ARD). We selected
the hyper-parameters from m ∈ {50, 100, 200, 400, 600}, k ∈ {5, 8, 10, 12, 15},
and d ∈ {2, 5, 10, 20, 50} following the original study [3].

For comparison, we evaluated classifiers; support vector machine (SVM) [15]
and long short-term memory (LSTM) [16]. The SVM accepted a single image
xi,t and outputted a binary value representing the estimated class using linear
kernels. The diagnosis of a subject i is determined by majority voting of Ti

estimations, consistent with other comparative models. We selected the hyper-
parameter C adjusting the trade-off between classification accuracy and margin
maximization from C ∈ {. . . , 0.1, 0.2, 0.5, 1, 2, 5, 10, . . . }. The LSTM is a recur-
rently connected neural network, accepting fMRI signals xi = {xi,t}Ti

t=1 sequen-
tially and outputting the posterior probability p(y|xi) using the logistic function.
The other conditions were the same as those for the proposed sw-DGM.

We also evaluated a simpler DGM proposed in the previous study [8] and
hidden Markov model (HMM) with autoencoder (AE) [6]. The DGM modeled
relationships between the fMRI signals xi, the class label ti, and the scan-wise
variability zi,t using an encoder q(zi,t|xi,t, yi) and a decoder p(xi,t|yi, zi,t) but
does not take into account the subject-wise feature si [8]. Following Suk et al. [6],
we compressed each fMRI image into a d-dimensional space using an AE. Then,
we trained a pair of HMMs; pθ(xi,t|y = 1) for patients and pθ(xi,t|y = 0) for
control subjects. Each HMM had Gaussian distributions with full covariance
matrices and was trained using Expectation-Maximization (EM) algorithm. We
calculated the posterior probability p(y|xi) using Bayes’ rule. We selected the
number nz of units in the bottleneck layer from nz ∈ {2, 3}, the number n
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Table 2. Top 5 contribution weights for diagnosis.

Schizophrenia Bipolar

ROI Weight ROI Weight

Cerebelum 6 L 0.0555 Cingulum Ant R 0.0132

Postcentral L 0.0532 Frontal Inf Orb L 0.0121

Cingulum Mid L 0.0531 Cerebelum 7b R 0.0116

Lingual R 0.0529 ParaHippocampal L 0.0114

Lingual L 0.0526 Temproal Mid L 0.0106

of mixture components of the HMM from n ∈ {2, 3, 4, 5, 6, 7}, and the hyper-
parameters of the AE in the same ranges as the proposed sw-DGM.

3.2 Results of Diagnosis and Contribution Weights of ROIs

Since the datasets are imbalanced, we used the following measures; sensitivity
SEN = TP/(TP + FN), specificity SPEC = TN/(TN + FP), and balanced accu-
racy BACC = 0.5 × (SEN + SPEC), where TP, TN, FP, and FN denote true
positive, true negative, false positive, and false negative, respectively. We per-
formed 5 trials of 10-fold cross-validation (CV) and summarized the results in
Table 1. The proposed sw-DGM achieved the best balanced accuracies among
the competitive approaches in the both datasets. Especially, the proposed sw-
DGM outperformed or at least performed no worse than the existing DGM [8],
implying that the introduction of the subject-wise feature si (i.e., individual
variability) worked as an appropriate constraint.

As shown in Eq. 2, the diagnosis of a subject i is based on the difference in the
conditional log-likelihood log pθ(xi|y) between the class labels y = 0 and y = 1.
Since each element xi,t,r of an fMRI signal xi,t corresponds to an ROI r, we can
calculate the ROI-wise average marginal log-likelihoods Ei,t[log pθ(xi,t,r|yi)|xi,t].
An ROI with a large difference in the log-likelihoods between correct and incor-
rect labels has a large effect on the accurate diagnosis. Hence, we defined

Wr = Ei,t [log pθ(xi,t,r|yj) − log pθ(xi,t,r|1 − yj)|xi,t]

as the contribution weight Wr of the ROI r and summarized the ROIs
with the top 5 contribution wights in Table 2. Previous studies (e.g., the review
paper [22]) have discussed the relationships of some of the listed ROIs to the
disorders. The results suggest that the proposed sw-DGM identified the ROIs
related to the disorders.

4 Conclusion

This study proposed a subject-wise deep generative model (sw-DGM) of fMRI
images dedicatedly structured for diagnosing psychiatric disorders. The sw-DGM
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modeled the joint distribution of rs-fMRI images, class label, individual variabil-
ity, and scan-wise variability. The individual variability worked as an appropriate
constraint, and the sw-DGM achieved a diagnostic accuracy higher than other
conventional and comparative approaches. Also, the sw-DGM identified brain
regions related to the disorders.
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