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Abstract. Autism spectrum disorder (ASD) is a complex neurode-
velopmental disorder. Finding the biomarkers associated with ASD is
extremely helpful to understand the underlying roots of the disorder
and can lead to earlier diagnosis and more targeted treatment. Although
Deep Neural Networks (DNNs) have been applied in functional mag-
netic resonance imaging (fMRI) to identify ASD, understanding the data
driven computational decision making procedure has not been previously
explored. Therefore, in this work, we address the problem of interpret-
ing reliable biomarkers associated with identifying ASD; specifically, we
propose a 2-stage method that classifies ASD and control subjects using
fMRI images and interprets the saliency features activated by the clas-
sifier. First, we trained an accurate DNN classifier. Then, for detecting
the biomarkers, different from the DNN visualization works in computer
vision, we take advantage of the anatomical structure of brain fMRI and
develop a frequency-normalized sampling method to corrupt images. Fur-
thermore, in the ASD vs. control subjects classification scenario, we pro-
vide a new approach to detect and characterize important brain features
into three categories. The biomarkers we found by the proposed method
are robust and consistent with previous findings in the literature. We
also validate the detected biomarkers by neurological function decoding
and comparing with the DNN activation maps.

1 Introduction

Autism spectrum disorder (ASD) affects the structure and function of the brain.
To better target the underlying roots of ASD for diagnosis and treatment, efforts
to identify reliable biomarkers are growing [1]. Significant progress has been made
using functional magnetic resonance imaging (fMRI) to characterize the brain
changes that occur in ASD [2].
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Recently, many deep neural networks (DNNs) have been effective at identi-
fying ASD using fMRI [3,4]. However, these methods lack model transparency.
Despite promising results, the clinicians typically want to know if the model is
trustable and how to interpret the results. Motivated by this, here we focus on
developing the interpretation method for deciphering the regions in fMRI brain
images that can distinguish ASD vs. control by the deep neural networks.

There are three main approaches for interpreting the important features
detected by DNNs. One approach is using gradient ascent methods to gener-
ate an image that best represents the class [5]. However, this method cannot
handle nonlinear DNNs well. The second approach is to visualize how the net-
work responds to a specific corrupted input image in order to explain a particular
classification made by the network [6]. The third one uses the intermediate out-
puts of the network to visualize the feature patterns [7]. However, all of these
existing methods tend to end up with blurred and imprecise saliency maps.

The goal of our work is to identity biomarkers for ASD, defined as important
regions of interest (ROIs) in the brain that distinguish autistic and healthy con-
trols. Different from traditional brain biomarker detection methods, by utilizing
the high dimensional feature capturing ability of DNNs and brain structure, we
propose an innovative 2-stage pipeline to interpret biomarkers. Different from
above DNN visualization methods, our main contribution includes a ROI-based
image corruption and generating procedure. In addition, we analyze the feature
importance using the distribution of DNN predictions and statistical hypothesis
testing. We applied the proposed method on multiple datasets and validated our
robust findings by decoding neurological function of biomarkers, viewing DNN
intermediate outputs and comparing literature reports.

2 Method

2.1 Two-Stage Pipeline with Deep Neural Network Classifier

We propose a corrupting strategy to find the important regions activated by
a well-trained ASD classifier (Fig. 1). The first stage is to train a DNN clas-
sifier for classifying ASD vs. control subjects. The DNN we use (2CC3D) has
6 convolutional, 4 max-pooling and 2 fully connected layers, followed by a sig-
moid output layer [4] as shown in the middle of Fig. 1. The number of kernels
are denoted on each layer in Fig. 1. Dropout and l2 regularization are applied
to avoid overfitting. The study in [4] demonstrated that we can achieve higher
accuracy using the 2CC3D framework, since it integrates spatial-temporal infor-
mation of 4D fMRI. Each frame of 3D fMRI is downsampled to 32 × 32 × 32.
We use sliding-windows with size w and stride length stride to move along the
time dimension of the 4D fMRI sequence and calculate the mean and standard
deviation (std) for each voxel’s time series within the sliding window. Given T
frames in each 4D fMRI sequence, by this method, � T−w

stride�+1 2-channel images
(mean and std fMRI images) are generated for each subject. We define the orig-
inal fMRI sequence as I(x, y, z, t), the mean-channel sequence as Ĩ(x, y, z, t) and
the std-channel as Î(x, y, z, t). For any x, y, z in {0, 1, · · · , 31},
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Fig. 1. Pipeline for interpreting important features from a DNN

Algorithm 1. Important Feature Detection For Binary Classification
Input: X0, a group of images from class 0; X1, a group of images from class 1; f ,

DNN classification model.

1: P
0
o ← f(X0) and P

1
o ← f(X1)

2: JSDo
+/− ← JSD(P0

o,P
1
o) � by bootstrapping

3: for r in ROIs do
4: P

0
c ← f(X0

\r), P
1
c ← f(X1

\r) � by sampling

5: JSDc
+/− ← JSD(P0

c ,P
1
c), Shift0 ← P

0
c − P

0
o, Shift1 ← P

1
c − P

1
0

6: if JSDc
+ < JSDo

− or median(P0
c) > median(P1

c) then � fool the classifier
7: do Wilcoxon(Shift) one tailed test
8: if P

0 ⇒ 1 and P
1 ⇒ 0 then

9: r is an important feature for both classes
10: else if only P

0 ⇒ 1 then
11: r is an important feature for class 0
12: else if only P

1 ⇒ 0 then
13: r is an important feature for class 1
14: end if � ⇒ means significant shift
15: end if
16: end for

Ĩ(x, y, z, t) =

∑t
τ=t+1−w I(x, y, z, τ)

w
(1)

Î(x,y,z,t)=

√∑t
τ=t+1−w[I(x,y,z,τ)−Ĩ(x,y,z,t)]2

w − 1
. (2)

The outputs are probabilistic predictions ranging in [0, 1]. The second stage is
to interpret the output differences after corrupting the image. We corrupt a ROI
of the original image and put it in the well-trained DNN classifier to get a new
prediction (Sect. 2.2). Based on the prediction difference, we use a statistical
method to interpret the importance of the ROI (Sect. 2.3).
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2.2 Prediction Difference Analysis

We use a heuristic method to estimate the feature (an image ROI) importance by
analyzing the probability of the correct class predicted by the corrupted image.

In the DNN classifier case, the probability of the abnormal class c given the
original image X is estimated from the predictive score of the DNN model f :
f(X) = p(c|X). Denote the image corrupted at ROI r as X\r . The prediction of
the corrupted image is p(c|X\r ). To calculate p(c|X\r ), we need to marginalize
out the corrupted ROI r:

p(c|X\r ) = Exr ∼p(xr |X\r )p(c|X\r ,xr ), (3)

where xr is a sample of ROI r. Modeling p(xr |X\r ) by a generative model
can be computationally intensive and may not be feasible. We assumed that
an important ROI contains features that cannot be easily sampled from the
same ROI of other classes and is predictive for predicting its own class. Hence,
we approximated p(xr |X\r ) by sampling xr from each ROI r in the whole
sample set. In fMRI study, each brain can be registered to the same atlas, so
the same ROI in different images have the same spatial location and number
of voxels. Therefore, we can directly sample x̂r s and replace xr with them.
Then we flatten the x̂r and xr as vectors

−→̂
xr and −→xr . From the K sampled x̂k

r s,

we calculate the Pearson correlation coefficient ρk = cov(
−→̂
xk
r ,−→xr )/σ−→

x̂k
r

σ−→xr
, where

k ∈ {1, 2, . . . ,K}, ρ ∈ [−1, 1]. Because sample size of each class may be biased, we
will de-emphasize the samples that can be easily sampled, since p(c|X\r ) should
be irrelevant to the sample set. Therefore, we will do a frequency-normalized
transformation. We divide [−1,1] into N equal-length intervals. Each ρk will fall
in one of the intervals. After K samplings, we calculate Ni, the number of sample
correlations in interval i, where i ∈ {1, 2, . . . , N}. For the ρk located in interval
i, the frequency-normalized weight is wk = 1

N ·Ni
. Denote X′

k as the image X

replacing xr with x̂k
r . Hence, we approximate p(c|X\r ) as

p(c|X\r ) ≈
∑

k

wkp(c|X′
k). (4)

2.3 Important Feature Interpretation

In the binary classification scenario, we label the reference class as 0 and the
experiment class as 1. The original prediction probability of the two classes are
denoted as P

0
o and P

1
o, which are two vectors containing the prediction results

p(c|X)s for each sample in the two classes respectively. Similarly, we have P0
c and

P
1
c containing p(c|X\r)s for the corrupted images. We assume that corrupting

an important feature will make the classifier perform worse. One extreme case is
that the two distributions shift across each other, which can be approximately
measured by median(P0

c) > median(P1
c). If this is not the case, we use Jensen-

Shannon Divergence (JSD) to measure the distance of two distributions:

JSD(P0,P1) =
1
2
KL(P0 ‖ P0 + P1

2
) +

1
2
KL(P1 ‖ P0 + P1

2
) (5)
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Fig. 2. Synthetic images

Table 1. Misclassification rate when
corrupting patch B

Class 0 Class 1

Equal 0.10 ± 0.01 0.91 ± 0.03

Normalize 0.49 ± 0.02 0.50 ± 0.01

where KL(P0 ‖ P1) = −∑
i P0(i)log(P1(i)/P0(i)). Given two distributions P0

and P1, we use bootstrap method to calculate the upper bound JSD+ and the
lower bound JSD− with confidence level, 1 − αJSD. We classify the important
ROIs into different categories based on the shift of the prediction distribution
before and after corruption. The one-tailed Wilcoxon paired difference test [8]
is applied to investigate whether the shift is significant. We use false discovery
rate (FDR) controlling procedure to handle testing the large number of ROIs.
FDR adjusted q-value is used to compare with the significance level αW . The
method to evaluate the feature importance is shown in Algorithm 1.

3 Experiments and Results

3.1 Experiment 1: Synthetic Data Model

We used simulated experiments to demonstrate that our frequency-normalized
resampling algorithm recovers the ground truth patch importance. We simulated
two classes of images as shown in Fig. 2, with background = 0 and strips = 1
and Gaussian noise (μ = 0, σ = 0.01). They can be gridded into 9 patches. We
assumed that patch B of class 0 and 1 are equally important to human under-
standing. However, in our synthetic model, the sample set was biased with 900
images in class 0 and 100 images in class 1. A simple 2-layer convolutional neu-
ral network was used as the image classifier, which achieved 100% classification
accuracy. Since the shift of corrupted images was obvious, we used misclassifica-
tion rate to measure whether p(c|X\r ) was approximated reasonably by equally
weighted sampling (which means wi = 1/K) or by our frequency-normalized
sampling. In Table 1, our frequency-normalized sampling approach (‘Normalize’)
is superior to the equally weighted one (‘Equal’) in treating patch B equally in
both classes.

3.2 Experiment 2: Task-fMRI Experiment

We tested our methods on a group of 82 ASD children and 48 age and IQ-
matched healthy controls. Each subject underwent a task fMRI scan (BOLD,
TR = 2000 ms, TE = 25 ms, flip angle = 60◦, voxel size 3.44 × 3.44 × 4mm3)
acquired on a Siemens MAGNETOM Trio TIM 3T scanner.

For the fMRI scans, subjects performed the “biopoint” task, viewed point
light animations of coherent and scrambled biological motion in a block design
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[2] (24 s per block). The fMRI data was preprocessed using FSL [9] for (1) motion
correction, (2) interleaved slice timing correction, (3) BET brain extraction, (4)
spatial smoothing (FWHM = 5 mm), and (5) high-pass temporal filtering. The
functional and anatomical data were registered and parcellated by AAL atlas
[10] resulting in 116 ROIs. We applied a sliding window (w = 3) along the time
dimension of the 4D fMRI, generating 144 3D volume pairs (mean and std) for
each subject.

Fig. 3. Important biomarkers detected in biopoint dataset

Fig. 4. Important biomarkers detected in ABIDE dataset

We split 85% subjects (around 16k 3D volume pairs) as training set, 7%
as validation set for early stopping and 8% as testing set, stratified by class.
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The model achieved 87.1% accuracy when evaluated on each 3D pair input of
the testing set. Figure 3(a) and (b) give two views of the important ROIs brain
map (αJSD = 0.05, αW = 0.05). Blue ROIs are associated with identifying
both ASD and control. Red ROIs are associated with identifying ASD only
and green ROIs are associated with identifying control only. By decoding the
neurological functions of the important ROIs with Neurosynth [11], we found
(1) regions related to default mode and functional connectivity are significant in
classifying both individuals with ASD and controls, which is consistent with prior
literature related to executive functioning and problem-solving in ASD [2]; (2)
regions associated with finger movement are relevant in classifying individuals
with ASD, and (3) visual regions were involved in classifying controls, perhaps
because controls may attend to the visual features more closely, whereas ASD
subjects tend to count the dots on the video [12].

Fig. 5. Intermediate outputs (activation maps) of DNN

3.3 Experiment 3: Resting-State fMRI

We also performed experiments on data from the ABIDE I cohort UM site
[9,13].This resulted in 41 ASD subjects and 54 healthy controls. Each subject
initially had 293 frames. As in the task-fMRI experiment, we generated 2-channel
images. We used the weights of the pre-trained 2CC3D networks in experiment
2 as our initial network weights. We split 33 ASD subjects and 43 controls for
training (around 22k 3D volume pairs). 9 subjects were used as validation data
for early stopping. The classifier achieved 85.3% accuracy in identifying individ-
ual 3D volume on the 10 subjects testing set. The biomarker detection results
are shown in Fig. 4: (1) emotion related regions colored in blue are highlighted
for both groups; (2) regions colored in red (viewing and moving related) are
associated with identifying ASD; and (3) green regions (related to executive and
lingual) are associated with identifying control.

3.4 Results Analysis

In experiment 2, since the subjects were under visual task, visual patterns were
detected. Whereas in experiment 3, subjects were in resting state, so no visual
regions were detected. In addition, we found many common ROIs in both experi-
ments: frontal (motivation related), precuneus (execution related), etc. Previous
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research [2] also indicated these regions are associated with identifying ASD vs.
control. Moreover, from the sub-figure (c), (d) of Figs. 3 and 4, the groups of
detected important regions are very stable when tuning JSD confidence level (1-
αJSD) and Wilcoxon testing threshold αW , except when αJSD is very small. This
is likely because the original prediction distribution is fat tailed. Furthermore,
we validate the results with the activation maps from the 1st and 2nd layers of
the DNN. The output of each filter was averaged for 10 controls and for 10 ASD
subjects. The 1st convolutional layer captured structural information and distin-
guished gray vs. white matter (Fig. 5(a)). Its outputs are similar in both control
and ASD group. The outputs of the 2nd convolutional layer showed significant
differences between groups in Fig. 5(b). Regions darkened and highlighted in
Fig. 5(b) correspond to many regions detected by our proposed method.

4 Conclusions

We designed a 2-stage (DNN + prediction distribution analysis) pipeline to
detect brain region saliency for identifying ASD and control subjects. Our sam-
pling and significance testing scheme along with the accurate DNN classifier
ensure reliable biomarker detection results. Our method was designed for inter-
preting important ROIs for registered images, since the traditional machine
learning feature selection methods can not be directly used in interpreting DNNs.
Moreover, our proposed method can be directly used to interpret any other
machine learning classifiers. Overall, the proposed method provides an efficient
and objective way of interpreting the deep learning model applied to neuro-
images.
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