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Abstract. We describe an adversarial learning approach to constrain convolu-
tional neural network training for image registration, replacing heuristic
smoothness measures of displacement fields often used in these tasks. Using
minimally-invasive prostate cancer intervention as an example application, we
demonstrate the feasibility of utilizing biomechanical simulations to regularize a
weakly-supervised anatomical-label-driven registration network for aligning pre-
procedural magnetic resonance (MR) and 3D intra-procedural transrectal ultra-
sound (TRUS) images. A discriminator network is optimized to distinguish the
registration-predicted displacement fields from the motion data simulated by
finite element analysis. During training, the registration network simultaneously
aims to maximize similarity between anatomical labels that drives image align-
ment and to minimize an adversarial generator loss that measures divergence
between the predicted- and simulated deformation. The end-to-end trained net-
work enables efficient and fully-automated registration that only requires an MR
and TRUS image pair as input, without anatomical labels or simulated data during
inference. 108 pairs of labelled MR and TRUS images from 76 prostate cancer
patients and 71,500 nonlinear finite-element simulations from 143 different
patients were used for this study. We show that, with only gland segmentation as
training labels, the proposed method can help predict physically plausible
deformation without any other smoothness penalty. Based on cross-validation
experiments using 834 pairs of independent validation landmarks, the proposed
adversarial-regularized registration achieved a target registration error of 6.3 mm
that is significantly lower than those from several other regularization methods.

1 Introduction

The most recent image registration methods based on convolutional neural networks
employ regularization strategies that incorporate non-application-specific prior
knowledge of deformation between images to register. Unsupervised learning methods
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that maximize similarity measures between two images, e.g. [1, 2], rely on transfor-
mation parameterization via rigid or spline-based models, and/or smoothness penalty
terms, such as the norm of displacement gradients, to predict physically plausible
deformation. For supervised learning approaches, e.g. [3], deformation regularization is
embedded in surrogate ground-truth displacements, such as those obtained from
classical registration methods, to predict detailed voxel-level displacements.

For instance, anatomical labels have been proposed to drive a so-called weakly-
supervised learning method to infer dense displacements for interventional multimodal
image fusion applications [4], which commonly lack a robust intensity-based similarity
measure and ground-truth deformation. For training their network, more than 4,000
anatomical structures were manually delineated from prostate cancer patient images.
Obtaining sufficient anatomical landmarks is constrained not only by the substantial
expert effort in labelling volumetric data, but also by inherent limitations on the number
of available corresponding anatomical features from different imaging modalities (in
this case MR and TRUS). In the same clinical application, using fewer anatomical
labels for training leads to significantly larger target registration errors (TREs), whilst
we show in this paper that deformation regularization is important to avoid overfitting
to limited labels.

We further argue that application-specific biologically-plausible prior on organ
motion may lessen the quantity and/or quality of anatomical labels required for training
data-driven registration methods. Biomechanical finite-element (FE) simulations of
intraoperative prostate motion, modelling nonlinear, anisotropic and inhomogeneous
properties of soft tissue, have been applied to constrain pair-wise multimodal non-rigid
image fusion [5–7]. In particular, population-based motion models from previous
patient data that can be instantiated to provide patient-specific constraints for unseen
data, e.g. [7], have advantages in the prostate modelling: FE simulations can be gen-
erated using MR images from patients whose TRUS images are not available and the
registration network can be fine-tuned for imaging-protocol-specific data without
repeating large numbers of simulations. However, fully-unsupervised generative
modelling of complex biomechanical simulations over the entire deformation domain
(as opposed to modelling only shapes or surfaces) is non-trivial and has not been
applied to neural-network-based registration methods.

We demonstrate, to our knowledge for the first time, that it is feasible to optimize
an end-to-end registration network using an adversarial strategy that penalizes the
divergence between the registration-predicted deformation and the FE-simulated
training data. The resulting automatic registration is useful to support a wide range of
interventional real-time applications, such as focal therapy and targeted biopsy [8].

2 Method

2.1 Adversarial Deformation Regularization

During the training of a registration network, the network parameters h regð Þ are opti-
mized to predict a dense displacement field (DDF) that warps the moving image to
spatially align with the fixed image, by minimizing a registration loss L regð Þ.
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We propose a second neural network, the discriminator D with parameters h disð Þ, which
is simultaneously optimized to classify the registration-network-predicted DDF and the
FE-simulated DDF by minimizing a discriminator loss L disð Þ. Considering the regis-
tration network as a DDF generator in adversarial learning [9], the registration loss can
be regularized by an additive generator loss L genð Þ, weighted by a scalar hyper-
parameter kadv. During every gradient-descent iteration, each of the two parameter sets

h disð Þ and h regð Þ is updated once to minimize L disð Þ and L regð Þ þ kadv:L genð Þ
� �

, respec-

tively, while the other set is kept fixed. In Sect. 2.2, we describe a registration loss for a
weakly-supervised learning method (illustrated in Fig. 1 as the lighter shaded com-
ponents) for registering prostate MR- and TRUS images. In Sect. 2.3, we introduce the
discriminator- and generator losses for this application, which we show lead to stable
and effective training of the proposed adversarial regularization. Details of the network
architectures and their training are provided in Sect. 2.4.

2.2 Registration Loss for Weakly Supervised Multimodal Image Fusion

Assume N pairs of moving- and fixed images for training, xAn
� �

and xBn
� �

, respectively,
n ¼ 1; . . .; N. Further, assumeMn pairs of moving- and fixed labels, yAmn

� �
and yBmn

� �
,

Fig. 1. The lighter shaded components connected by straight lines illustrate the weakly-
supervised network training for multimodal image fusion [4]. The darker shaded components
connected by curved lines depict the added elements that enable the proposed adversarial
deformation regularization. Data flows required during inference, i.e. registration, are connected
by solid lines, while other data connected by dotted- or dashed lines are only required for
training.
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representing corresponding anatomical structures identified in the nth image pair,
m ¼ 1; . . .; Mn. The training of a registration network aims to predict inverse DDF ureg

that minimizes a negative expected label similarity over N training image pairs:

L regð Þ ¼ � 1
N

XN

n¼1

1
Mn

XMn

m¼1
Jmn T yAmn; u

reg
n

� �
; yBmn

� �
ð1Þ

where the inner summation represents the image-level label similarity, averaging a
label-level similarity measure Jmn over Mn labels associated with the nth image pair.
Given a network-predicted displacement field uregn xAn ; x

B
n ; h

reg� �
, the label-level simi-

larity is computed between the fixed label yBmn and the spatially warped moving label
T yAmn; u

reg
n

� �
. We adopt a differentiable, efficient and imaging-modality-independent

multiscale-Dice Jmn ¼ 1
Z

P
r SDice fr T yAmn; u

reg
n

� �� �
; fr yBmn

� �� �
, where fr is a 3D Gaus-

sian filter with an isotropic standard deviation r (here, r 2 0; 1; 2; 4; 8; 16; 32f g in
mm and the number of scales Z ¼ 7). fr¼0 denotes unfiltered binary labels at the
original scale included in averaging the soft probabilistic Dice values SDice. The
moving- and fixed images are the only network inputs. Therefore, the subsequent
inference, i.e. registration, does not require anatomical labels, as illustrated in Fig. 1.

Displacement fields predicted by the multimodal registration network comprise of
two combined geometric transformations: the biophysical deformation (deformation of
anatomical structures) which should be regularized by the biomechanical simulations
and the imaging-coordinate-system changes which should not. The imaging-coordinate-
system changes reflect case-specific intra-procedural state (ultrasound imaging param-
eters such as probe position, field-of-view relative to anatomy, 3D voxel calibration and
reconstruction) that is needed for intra-procedural registration and is not present in the
biomechanical simulations. Therefore, to decouple these, the proposed network gen-
erates two transformations: a local DDF ulocaln intended to model only the biophysical
deformation and an affine DDF uglobaln intended to model coordinate-system changes, as
illustrated in Fig. 1. In minimizing the registration loss L regð Þ, these are composed and
optimised jointly, i.e. T yAmn; u

reg
n

� �
¼ T T yAmn; u

local
n

� �
; uglobaln

� �
. To regularize the bio-

physical deformation alone, the network is trained such that the predicted local DDFs
ulocaln match a regularizing data distribution (the FE-simulated data distribution descri-
bed in Sect. 2.3) that has been normalized to exclude affine variation.

2.3 Adversarial Losses Based on Biomechanical Simulations

From a separate patient data set, assume a total of S FE simulations calculating the
deformed nodal positions of the prostate glands and surrounding anatomical regions,
defined on patient-specific tetrahedral meshes fitted to segmentations of the zonal
structures, bladder, rectum and pelvic bones [5, 6]. For each simulation, the nonlinear
neo-Hookean material properties of different regions and the boundary conditions,
including initial position and movement of a virtual TRUS probe with variable-sized
acoustic coupling balloon, are randomly sampled to cover the variance in intra-
procedural scenarios. Inverting simulated deformation fields vsims maps the deformed
FE nodes y1s back to the undeformed y0s , such that y0s ¼ T �1 y1s ; v

sim
s

� �
; s ¼ 1; . . .; S.
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To normalize the data distribution in deformation space, each vsims is decomposed into
a global affine transformation vglobals and an affine-removed local inverse displacement
field vlocals , such that y0s ¼ T �1 T �1 y1s ; v

global
s

� �
; vlocals

� �
. Using a linear least-squares

method, vglobals are computed to minimize T �1 y1s ; v
global
s

� �
� y0s

�� ��2 before training.
While the predicted- and simulated global transformations may have different distribu-
tions (as discussed in Sect. 2.2), the local transformations should have the same distri-
bution. Specifically, the distribution of registration-predicted local DDFs Preg,
represented by random vector ulocal �Preg with samples ulocaln

� �
, can be regularized by

comparing to the FE-simulated data distribution Psim, represented by random vector
vlocal �Psim with samples vlocals

� �
. In this work, we adopt a stable discriminator lossL disð Þ

and a non-saturating generator loss L genð Þ based on Jensen-Shannon divergence [10],

L disð Þ ¼ � 1
2
Evlocal log D vlocal

� �
� 1
2
Eulocal log 1� D ulocal

� �� �
þ c

2
X ulocal; vlocal
� �

ð2Þ

and

L genð Þ ¼ � 1
2
Eulocal log D ulocal

� �
ð3Þ

respectively, where E denotes statistical expectation. A distribution smoothing term
X ulocal; vlocal
� �

is added to stabilize adversarial training [10], weighted by an annealing
scalar c (here, exponentially decaying from 0.2 to 0.05 for the normalized data
described in Sect. 3). Importantly, this annealing regularization also has a favorable
effect on the registration network that encourages the affine branch to learn global
transformation, so that the trained local DDF contains minimum affine component. It
may be because that the smoothed distribution back-propagates stronger gradients from
the generator loss to the local-DDF branch, relatively dominating its registration loss,
especially during initial training stage when c is large.

Without loss of generality, displacement samples from MR-, TRUS- and FE
coordinates have differently truncated finite sampling domains. As TRUS images have
the most restricted fields-of-view, MR and TRUS are considered as moving- and fixed
images, respectively, when computing registration loss. To avoid sampling larger-
domain (MR and FE in this case) displacements from smaller-domain (TRUS) when
computing adversarial losses, each FE-simulated DDF vlocals is resampled from an
estimated TRUS field-of-view before removing the affine component. The resampling
coordinates are determined by matching the bounding boxes of the deformed prostate
glands in FE- and TRUS coordinates, the latter of which is randomly sampled from the
training TRUS data, i.e. the fixed labels. This estimate is also aided by data aug-
mentation described in Sect. 2.4 to represent the variation in sampling domain.

2.4 Network Architectures and Training

As shown in Fig. 2, the registration network adapts a 3D encoder-decoder architecture
taking a concatenated image pair as input, down-sampled and up-sampled by
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convolution (conv) and transpose-convolution (deconv), respectively, both with strides
of two. The encoder consists of four residual network (resnet) blocks using 3 � 3 � 3
conv kernels, with increasing numbers of feature channels n0-4 and decreasing feature
map sizes s0-4, both by a factor of two. The decoder has four reverse resnet blocks with,
additionally, four trilinear additive up-sampling layers added over the deconv layers.
Four summation skip layers shortcut the network resolution levels. Five trilinear-up-
sampled displacement summands d0-4 across levels s0-4 are summed to predict the
output local DDF. 12 output affine parameters were predicted by an additional resnet
block, branched out from the deepest encoder layer s4. The discriminator shares a
similar architecture with the registration network encoder, with first layer batch nor-
malization (BN) removed and rectified linear units (relu) replaced by leaky relu (lrelu)
[11]. It accepts input DDF x-, y- and z-channels and predicts binary classification logits
after a fully-connected projection. Both networks start with n0 = 32 initial channels.

The networks were implemented in TensorFlow™ with open-source code from
NiftyNet [12]. For data augmentation, each image-label pair was warped by a random
affine transformation and each simulated DDF was composed with a random affine for
varying the sampling domain (as discussed in Sect. 2.3), before being fed into training.
Using the Adam optimizer starting at a learning rate of 10−6 for both registration- and
discriminator networks, each model was trained for 36 h with a minibatch size of 4 on a
24 GB NVIDIA® Quadro™ P6000 GPU card. The adversarial weight kadv was set to
0.01 for the reported results.

Fig. 2. The proposed registration- and discriminator networks (see details in Sect. 2.4).
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3 Experiments and Results

For computing the registration loss, a total of 108 pairs of T2-weighted MR- and TRUS
images from 76 patients were acquired in multiple biopsy or therapy (ClinicalTrials.-
gov Identifiers: NCT02290561, NCT02341677) clinical trials. Using a clinical ultra-
sound machine with a transperineal probe, 57-112 sagittal TRUS frames were acquired
for each patient by rotating a digital brachytherapy stepper to reconstruct 3D volumes
in Cartesian coordinates. Both MR- and TRUS volumes were normalized to zero-mean
with unit-variance intensities after being resampled to 0.8 � 0.8 � 0.8 mm3 voxels.
For assessing the regularization efficacy, gland segmentations were used as the only
type of training landmarks, i.e. Mn = 1 in Eq. (1), which are arguably the most easy-to-
annotate landmarks for both imaging modalities with many automated algorithms [13].
Gland segmentations on MR were acquired as per the trial protocols and those on
TRUS were contoured on original slices. Both gland masks were then resampled to the
voxel sizes of the associated MR or TRUS. For the adversarial training, MR images for
FE meshing were acquired from an independent group of 143 patients who underwent
the same procedures, without using their TRUS data in this study. For each patient,
500 FE simulations required 3–4 GPU-hours using a nonlinear FE solver [14]. Both the
simulated- and predicted DDFs, as inputs of the discriminator, are normalized such that
the simulated data have zero-mean and unit-variance displacements.

For quantitative validation, a total of 834 pairs of corresponding anatomical
landmarks from the 108 paired images were manually labelled and further verified/
edited by second observers, including apex, base, urethra, gland zonal separations,
visible lesions, junctions between gland, vas deference and seminal vesicles, and other
ad hoc landmarks such as calcifications and cysts. The annotation process took more
than two hundred man-hours. Based on these independent validation landmarks, the
proposed adversarial regularization was compared with two widely used smoothness
regularizers, by adding a weighted L2-norm of displacement gradients or bending
energy to the registration loss in Eq. (1). For the reported results, both weights were set
to 0.5, which produced the lowest median TREs from eight cross-validation experi-
ments with four different weighting values, 0.01, 0.1, 0.5 and 1. In each fold of the 12-
fold patient-level cross-validation experiments, 6–7 test patients were held out while
the data from the remainder patients were used in training with all 71,500 FE simu-
lations. The TRE was defined as root-mean-square centroid distance between the
warped- and fixed validation labels. Dice similarity coefficient (DSC) was computed
between the binary gland masks. These two test data results reflect quantitative clinical
requirements in localizing target anatomy such as MR-visible tumors and avoiding
heathy surroundings.

Approximately four 3D automatic registrations per second can be performed on the
same GPU, which is adequate for many interventional applications. Figure 3 contains
example registered images using the proposed network. The adversarial regularization
appears more likely to preserve local details and, most interestingly, generates motion
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patterns unseen in those with other regularization, e.g. near-rigid motion around the
rectum area where the virtual ultrasound probe is placed in FE simulations. As sum-
marized in Table 1, the adversarial regularized registrations produced a significantly
lower median TRE than the networks trained with L2-norm or bending energy did (both
p-values <0.001, paired Wilcoxon signed-rank tests at a = 0.05), consistent with the
visual inspection. The higher DSCs with L2-norm, bending energy or without regu-
larization may therefore indicate overfitting to the training gland labels. The obtained
TRE results were based on 108 image pairs, compared to 8–19 patients validated in
several previous work [5–7]. These still seem to be higher than that of 4.2 mm reported
in [4], in which 4,000 training labels were required. Further comparisons, such as a
comprehensive sampling of hyper-parameter values, may conclusively quantify the
adversarial regularization, such as the trade-off of accuracy when using more training
landmarks.

Fig. 3. The first two rows show example slices from a TRUS volume and the MR volume
registered using the proposed network. The example warped MR slices (at the same slice
locations in each patient, 1–6) are also compared between the proposed adversarial regularization
(a), the bending energy (b) and registration without smoothness penalty (c).

Table 1. Medians [1st quatiles, 3rd quatiles] of TRE and DSC results from cross-validation

Adversarial Bending energy L2-norm No regularization

TRE 6.3 [3.4, 8.7] 9.5 [4.6, 13.0] 10.2 [5.1, 14.7] 16.3 [14.1, 23.8]
DSC 0.82 [0.76, 0.87] 0.90 [0.83, 0.92] 0.91 [0.84, 0.92] 0.93 [0.88, 0.95]
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4 Conclusion

In this work, we have proposed a novel adversarial deformation regularization, a
potentially versatile strategy incorporating model-based constraints to assist data-driven
image registration algorithms. We report promising results based on validation on a
substantial interventional imaging data set from prostate cancer patients. Potential for
further improving registration performance by, for instance, leveraging between the
requirements of anatomical labels, universal smoothness measures and the proposed
adversarial priors may be of interest in future research and clinical adoption.
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