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Abstract. In this paper, we propose an order-sensitive deep hashing for
scalable medical image retrieval in the scenario of coexistence of multi-
ple medical conditions. The pairwise similarity preservation in existing
hashing methods is not suitable for this multimorbidity medical image
retrieval problem. To capture the multilevel semantic similarity, we for-
mulate it as a multi-label hashing learning problem. We design a deep
hash model for powerful feature extraction and preserve the ranking list
with a triplet based ranking loss for better assessment assistance. We
further introduce the cross-entropy based multi-label classification loss
to exploit multi-label information. We solve the optimization problem
by continuation to reduce the quantization loss. We conduct extensive
experiments on a large database constructed on the NIH Chest X-ray
database to validate the efficacy of the proposed algorithm. Experi-
mental results demonstrate that our order sensitive deep hashing leads
to superior performance compared with several state-of-the-art hashing
methods.

1 Introduction

The pictures of internal body structures produced by CT and MRI scans are
important for the diagnosis and assessment of disease. The interpretation of
the imaging results is objective and with high inter-observer variability due to
the requirement of expertise accumulation and practical experience. To circum-
vent the discrepancy between expert interpretations, prior cases with similar
manifestations could be presented to form a reference based assessment by con-
tent based image retrieval. For better assistance in assessment, such retrieval
system should be with plenty cases of various disease manifestations, which in
turn requires the similar retrieval algorithm to be both scalable and accurate.
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Learning based hashing methods arise to be a promising solution for such
retrieval system by encoding images as compact binary codes with similarity
preservation in the Hamming space [1].

Learning based hashing methods leverage the statistical properties of data
samples to learn the mapping functions to generate compact binary codes. They
can be broadly categorized into shallow learning based hashing methods and
deep learning based hashing methods. The former takes handcrafted features
like SIFT and GIST as input and learns hashing functions to transform them
into compact binary codes. Representative works in this class includes Spec-
tral Hashing (SH) [2] that solves eigenvectors of the graph Laplacian with bit
balance and bit independent constraints, Iterative Quantization (ITQ) [3] that
further improves the results by reducing the quantization loss through feature
rotation, Semi-supervised Hashing (SSH) [4] that exploits both the unlabelled
and labelled data. They learn the hashing functions in a two stage manner to
optimize transformations with feature fixed, which may lead to suboptimal per-
formance. In contrast, deep learning based hashing methods are able to tailor
features for hashing through end-to-end learning on the images directly and fur-
ther enhance the performance with powerful convolutional neural network. The
seminal work includes Deep Hashing (DH) [5] that utilizes multi-layer neural
network to capture the nonlinear neighborhood relationship between samples,
Deep Supervised Hashing (DSH) [6] that introduces a regularizer to encourage
outputs of neural networks to be close to binary values, HashNet [7] that contin-
uously approximates the sign activation with smooth activations. This motivates
us to leverage the deep learning framework for hashing function learning.

For similarity preservation, the objective function of hash learning, both shal-
low and deep learning based hashing methods, is designed to align the distances
or similarities computed from the input space and the Hamming space. The
alignment is usually measured over a pair of samples with discrepancy mini-
mization [8], such as the similarity-distance production minimization in spectral
hashing. The pairwise distance in the Hamming space is desired to be smaller if
the pairwise similarity in the input space is larger. Such similarity preservation is
also used to develop the application specific hashing methods in the community
of medical image computing, such as Deep Multiple Instance Hashing for tumor
assessment [9], binary code tagging and Deep Residual Hashing for chest X-ray
images [10,11], etc. Note that such similarity preservation is suitable for samples
with single class label. However, in the scenario of medical image, multiple symp-
toms or diseases may be observed from one medical image. Multilevel semantic
structural similarity exists between samples, which the above pairwise alignment
cannot capture. To this end, it is important to design objective function with
multilevel similarity preservation in parallel to these existing methods.

In this work, we propose an order sensitive deep hashing (termed as OSDH)
method for scalable medical image retrieval with multimorbidity awareness, as
shown in Fig. 1. We formulate this multimorbidity aware retrieval as a multi-
label hash learning problem and leverage the convolutional neural network for
feature extraction. We propose to solve it by optimizing the objective of triplet
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based ranking similarity preservation over binary codes. We further narrow the
semantic gap between learned binary codes and the associated concepts with
classification supervision. We apply the proposed OSDH algorithm to clinical
chest X-ray database to validate the efficacy and demonstrate superior perfor-
mance over several state-of-the-art hashing methods.
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Fig. 1. Overview of the OSDH method. We learn to hash on multimorbidity medical
images with order preserving by deep learning model. The retrieval results with learned
binary codes are expected to preserve the multilevel similarity

2 Methodology

Mathematically, given a set of training samples X = {x1, . . . ,xN} and corre-
sponding class labels L = {1, . . . , C}, where each sample xi is associated with a
subset of labels Yi ⊆ L, our goal is to learn the hash functions to generate binary
codes B = {b1, . . . , bN} ∈ {−1, 1}k such that the multilevel semantic structural
similarity of samples is preserved by the binary codes. For scalable retrieval, the
length of binary code k is much smaller than the dimension of input sample.

2.1 Deep Hash Model

As shown in Fig. 1, we develop a deep hash model to jointly learn visual feature
extraction and the subsequent mapping to compact binary codes. The learning
procedure is applied on raw pixels of input images by using convolutional neural
network for feature extraction. Such hierarchical non-linear function exhibits
powerful learning capacity and encourages the learned feature to capture the
multilevel semantic information. The convolutional neural network could be an
off-the-shelf architecture, such as AlexNet [12] or an application specific network.
On top of the network, the output of the last fully connected layer hi is fed
into the succeeding hash layer for dimensional reduction and binarization. We
leverage a fully connected layer to map hi to a k-dimension feature vector ĥk

i .
ĥk

i is then quantized to [−1, 1] to produce the binary code bi. To reduce the
quantization loss, ĥk

i is usually passed through an activation layer to scale the
magnitude within [−1, 1] before applying the binarization. While most existing
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works use the hyperbolic tangent function tanh(ĥk
i ) in the activation layer, we

design a parameterized hyperbolic tangent function tanh(αĥk
i ) to approximate

the sgn(·) function, as will be detailed in Sect. 2.3. By denoting the mapping
from raw pixels of image xi to the output of activation tanh(αĥk

i ) as g(·) and
its parameters as Θ, we can formulate the derivation of binary code as

bi = sgn (g (xi, Θ)) (1)

2.2 Order Sensitive Supervision

To facilitate efficient multimorbidity aware retrieval, the learned binary codes are
expected to preserve the multilevel semantic similarity between samples. In the
context of multiple labels, the similarity between samples can be measured by
the ranking order of neighbors. For each query sample xq, its semantic similarity
level r with respect to a sample xi in the database can be computed by the
number of common labels shared by both |Yq ∩ Yi|. By assigning a similarity
level for each sample in the database, a ground truth ranking list for xq can be
formed by sorting samples in the decreasing order of similarity level. For each
query xq and its corresponding ranking list {xi}M

i=1, we can define a triplet based
ranking loss over binary codes,

LR(xq) =
M∑

i=1

∑

j:rj<ri

2ri − 2rj

Z
max(0,D(bq, bi) − D(bq, bj) + ρ) (2)

D(b1, b2) measures the Hamming distance between the binary codes b1 and b2. ρ
is introduced to control the minimum margin between the Hamming distances of
the two pairs. ri and rj are the ground truth similarity levels of samples xi and
xj with respect to query xq. Z is a constant related to the length of ranking list,
which will be explained in Sect. 3. The coefficient 2ri−2rj

Z assigns larger weight
for pair (xi,xj) when xi is more relevant to xq than xj . By summing over all
the samples xi in the ranking list and its pair (xi,xj), the minimization of (2) is
able to encourage the preservation of the ranking list in the Hamming space for
query xq. To preserve the semantic multilevel similarity structure, we can choose
to optimize the summation of (2) over all training samples,

∑
xq∈X LR(xq).

While the loss in (2) is related to the relative similarity level, the label infor-
mation is not fully exploited to learn hash functions. Previous works on single
label data further take advantage of the label information by directly applying
it to train the network [13,14]. The training procedure is performed either in the
framework of two-stream multi-task learning including classification and hash
or by classification over the binary codes directly. The basic assumption of such
algorithm is that the binary codes should be ideal for classification. In order to
further exploit the multi-label information, we choose to expect the activation
output g(xi, Θ) optimal for classification and jointly learn both the network and
the classifier. Specifically, we design the loss of multi-label classification in the
form of cross entropy,
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LC(yi, ŷi) = −
C∑

c=1

(yic ln ŷic + (1 − yic) ln (1 − ŷic))) (3)

The ground truth label yic ∈ {0, 1} indicates whether sample xi is with the
c-th label. For sample xi, the probability belonging to the c-th class inferred
by a linear classifier. By accumulating the cross-entropy loss of each class, (3)
presents the multi-label classification loss for sample xi. The summation of this
loss over all training samples

∑N
i=1 LC(yi, ŷi) could be used for optimization.

2.3 Optimization with Continuation

With the ranking preserving loss in (2) and the semantic classification loss in
(3), we derive the overall objective for hash learning as

arg minΘL = λR

∑

xq∈X

LR(xq) + λC

N∑

i=1

LC(yi, ŷi) + λpLp (4)

where λR, λC and λp are hyper-parameters to balance the effects of the three
terms. The third term is the regularizer term over parameters of the mapping g.
This objective is non-differentiable due to the binary constraint of bi ∈ {−1, 1}
in (2), which makes the standard back-propagation method infeasible to train
the deep model. With the activation of tanh(·) being within [−1, 1], most exist-
ing works circumvent the non-smooth problem with the error-prone relaxation
to approximate sgn function with tanh function. In contrast, we leverage the
continuation method [7] to gradually smoothing the objective with parameter-
ized hyperbolic tangent functions with enlarging scale parameter α. The sgn
function can be regarded as the parameterized tanh function with infinity scale
parameter

lim
α→∞ tanh(αĥk

i ) = sgn
(
ĥk

i

)
(5)

Thus, we train the network with the initial value of scale parameter α0 as 1
and increase it according to the predefined sequence. For each scale parameter
αi, after the network converges, we use the converged network parameters to
initialize the training over next scale parameter αi+1.

3 Experiments and Results

Database: Our database builds on the NIH Chest X-ray database [15], which is
currently the largest public chest X-ray database. The NIH Chest X-ray database
comprises of 112,120 frontal-view X-ray images from 30,805 unique patients.
Each image is with multiple labels, attached with one or more of fourteen com-
mon thoracic pathologies mined from the associated radiological reports. To
build our database, we selected 13,000 images of 13 most frequent patholo-
gies, which are Atelectasis, Consolidation, Infiltration, Pneumothorax, Edema,
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Fig. 2. Comparison of ranking performance of OSDH and other hashing methods

Emphysema, Fibrosis, Effusion, Pneumonia, Pleural thickening, Cardiomegaly,
Nodule and Mass. We constitute the training (80%) and testing (20%) sets with
both patient and pathology-level non-overlapping splits to avoid positive bias.

Evaluation Settings: We compare our method with shallow learning based
method: ITQ [3] and SSH [4], and deep learning based method: DH [5], SDH [5]
and DSH [6]. We report their results by running the source codes provided by
their respective authors to train the models by ourselves. We directly use the raw
pixels as input for the convolutional neural network and 1024-D GIST feature
otherwise.

In our implementation, we utilize the AlexNet network structure [12] and
implement it in the Caffe [16] framework. We train the network from scratch by
setting the batch size as 256, momentum as 0.9, and weight decay as 0.005. The
learning rate is set to an initial value of 10−4 with 40% decrease every 10,000
iterations. We set the length of the ranking list M as 3 to include the samples
those share all, at least one and none of the labels with the query sample. For
parameter tuning, we evenly split the training set into ten parts to cross validate
the parameters. We set ρ as 5, α as a sequence of 10 values from 1 to infinity,
λR as 10−1, λC as 1 and λp as 10−4.

We evaluate the retrieval performance of generated binary codes with three
main metrics: Normalized Discounted Cumulative Gain (NDCG) [17], Average
Cumulative Gain (ACG) [17] and weighted mean Average Precision (mAPw).
NDCG for the truncated ranking list with p results is computed as NDCG@p =
1
Z

∑p
i=1

2ri−1
log (1+i) where Z is a constant related to p to ensure the NDCG score for

the correct order as 1. ACG is computed by ACG@p = 1
p

∑p
i=1 ri. And mAPw

is computed by mAPw = 1
Q

∑Q
q=1

∑M
p=1 δ(rp>0)ACG@p

Mr>0
with indicator function

δ(·) ∈ {0, 1} and Mr>0 being the number of relevant samples. We evaluate the
performance over binary codes with lengths of 16, 32, 48, and 64 bits.



626 Z. Chen et al.

Table 1. Performance in terms of
NDCG@100 of different hashing methods

Methods 16 bits 32 bits 48 bits 64 bits

DH 0.1233 0.1364 0.1384 0.1374

ITQ 0.1545 0.1568 0.1569 0.1565

SSH 0.1337 0.1403 0.1472 0.1495

SDH 0.1868 0.1874 0.1923 0.1937

DSH 0.1701 0.1645 0.1624 0.1670

OSDH 0.2366 0.2396 0.2390 0.2422

Table 2. Performance in terms of
NDCG@100, ACG@100 and mAPw

for variants of the proposed OSDH
method with the length of binary
code as 32 bits

Methods NDCG ACG mAPw

OSDH-R 0.2145 0.3937 0.3645

OSDH-C 0.2091 0.3709 0.3313

OSDH 0.2396 0.4163 0.3826

Query Retrieval Results

A/Co/Ed
Ef/I/Pn

A/Ef/I/Pn A/Ef/I/Pn A/I A/I A/Ef/I

A/Em/Pt A/Em/Pt A/Pt Pt Pt Pt

Ca Ca Ca Ca Ca Ca/I

Ed/I Ed/I I Ed/I/N Ed/I/Pn Ed
A: Atelectasis, Co: Consolidation, I: Infiltration, Pt: Pneumothorax, Ed: Edema, Em: Emphysema, Ef: Effusion, 
Pn: Pneumonia, Ca: Cardiomegaly, N: Nodule

(1) (2) (3) (4) (5)

Fig. 3. Qualitative results for OSDH

Results and Analysis: Table 1 demon-
strates the retrieval performance of dif-
ferent hashing methods in terms of
NDCG@100 for different lengths of
binary codes. We can observe that
OSDH consistently outperforms both
deep learning based hashing methods
and shallow hashing methods by 5%–
11%. While the deep learning based
hashing methods present higher per-
formance than the shallow ones, our
OSDH further improves the results
by order sensitive loss and continu-
ation optimization. The ranking per-
formances of all evaluated metrics are
shown in Fig. 2.
Significant gaps between our OSDH and state-of-the-art methods are observed
for all ranking metrics over various lengths of binary codes. The effects of ranking
preservation and multi-label classification are validated. In Fig. 3, we show some
retrieved results for our OSDH. Images sharing more pathologies with the query
image are preferred to be ranked at top. This indicates our OSDH is able to
preserve the multilevel similarity and return images with high similarity level
for better assessment assistance.

To study the effects of different terms in the objective, we perform ablative
testing by setting λR as 0 (OSDH-R) or λC as 0 (OSDH-C). The performance
results are listed in Table 2 for 32-bit binary codes. From the table, we can
find that the multi-label classification term contributes more to the performance
improvement compared against the ranking list preservation. Note that the per-
formances of both OSDH-R and OSDH-C are higher than the performances of
state-of-the-art hashing methods as reported in Table 1. Combining these two
loss terms, the performance is higher than individual baselines. This implies the
label information is not fully exploit by the triplet based ranking loss and the
ranking list information is important to capture the multilevel similarity.
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4 Conclusion

In this paper, we have proposed a learning-based hashing method for scal-
able multimorbidity medical image retrieval for better assessment assistance.
By formulating the retrieval problem as a multi-label hash learning problem,
we develop an order sensitive deep hashing method to capture the multilevel
semantic similarity by both ranking list preservation and multi-label classifica-
tion. We propose to optimize the learning problem with continuation to reduce
the quantization loss. We conduct extensive experiments to validate the superi-
ority of the proposed OSDH in comparison with several state-of-the-art hashing
methods.
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