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Abstract. This paper discusses how distribution matching losses, such
as those used in CycleGAN, when used to synthesize medical images can
lead to mis-diagnosis of medical conditions. It seems appealing to use
these new image synthesis methods for translating images from a source
to a target domain because they can produce high quality images and
some even do not require paired data. However, the basis of how these
image translation models work is through matching the translation out-
put to the distribution of the target domain. This can cause an issue
when the data provided in the target domain has an over or under rep-
resentation of some classes (e.g. healthy or sick). When the output of
an algorithm is a transformed image there are uncertainties whether all
known and unknown class labels have been preserved or changed. There-
fore, we recommend that these translated images should not be used for
direct interpretation (e.g. by doctors) because they may lead to misdiag-
nosis of patients based on hallucinated image features by an algorithm
that matches a distribution. However there are many recent papers that
seem as though this is the goal.
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1 Introduction

The introduction of adversarial losses [1] made it possible to train new kinds of
models based on implicit distribution matching. Recently, adversarial approaches
such as CycleGAN [2], pix2pix [3], UNIT [4], Adversarially Learned Inference
(ALI) [5], and GibbsNet [6] have been proposed for un-paired and paired image
translation between two domains. These approaches have been used recently
in medical imaging research for translating images between domains such as
MRI and CT. However, there is a bias when the output of these models are
used for interpretation. When translating images from a source domain to a tar-
get domain, these models are trained to match the target domain distribution,
where they may hallucinate images by adding or removing image features. This
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(a) A translation removing tumors (b) A translation adding tumors

Fig. 1. Examples of two CycleGANs trained to transform MRI images from Flair to
T1 types. We show healthy images in green and tumor images in red. In (a) the model
was trained with a bias to remove tumors because the target distribution did not have
any tumor examples so the transformation was forced to remove tumors in order to
match the target distribution. Conversely in (b) the tumors were added to the image to
match the distribution which was composed of only tumor examples during training.

can cause a problem when the target distribution during training has over or
under representation of known or unknown labels compared to the test time
distribution. Due to such a bias, we recommend until better solutions are pro-
posed that maintain the vital information, such translated images should not be
used for medical diagnosis, since they can lead to mis-diagnosis of medical con-
ditions. This issue should be discussed because recently several papers have been
published performing image translation using distribution matching. The main
motivation for many of these approaches was to translate images from a source
domain to a target domain such that they could be later used for interpretation
(e.g. by doctors). Applications include MR to CT [7,8], CS-MRI [9,10], CT to
PET [11], and automatic H&E staining [12].

We demonstrate the problem with a caricature example in Fig. 1 where we
cure cancer (in images) and cause cancer (in images) using a CycleGAN that
translates between Flair and T1 MRI samples. In Fig. 1(a) the model has been
trained only on healthy T1 samples which causes it to remove cancer from the
image. This model has learned to match the target distribution regardless of
maintaining features that are present in the image. In the following sections, we
demonstrate how these methods introduce a bias in image translation due to
matching the target distribution.

We draw attention to this issue in the specific use case where the images are
presented for interpretation. However, we do not aim to discourage work using
these losses for data augmentation to improve the performance of a classification,
segmentation, or other model.

2 Problem Statement

Our argument is that the composition of the source and target domains can bias
the image transformation to cause an unwanted feature hallucination. We sys-
tematically review the objective functions used for image translation in Table 1
and discuss how they each exhibit this bias.
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Let’s first consider a standard GAN model [1] where the generator is a trans-
formation function fa,b(a) which maps samples from the source domain Da to
samples from the target domain Db. The discriminator is trained given samples
from Db through which the transformation function can match the distribution
of Db.

GAN Disc: max E
b∼Db

[logD(b)] + E
a∼Da

[log(1 −D(fa,b(a)))]

In order to minimize this objective the transformation function will need to
produce images that match real images from the distribution Db. Here there are
no constraints to force a correct mapping between Da and Db, so for a non-finite
Da we can consider it to be equal to a Gaussian noise N typically used in a
GAN.

In order to better enforce the mapping between the domains CycleGAN [2]
extends the generator loss to include cycle consistency terms:

Cycle Consistency: |fb,a(fa,b(a)) − a|

Here the function fa,b is composed of the inverse transformation fb,a to create
a reconstruction loss that will regularize both transformations to not ignore the
source image. However, this process does not provide a guarantee that a correct
mapping will be made. In order to match the target distribution, image features
can be hallucinated and information to reconstruct an image in the other domain
can be encoded [13]. Moreover, due to having un-paired source and target data,
the target distribution that the generator is trained on may be even distinct
from the target distribution that corresponds to the data in the source domain
(e.g. having only tumor targets while the source is all healthy). This makes the
models such as CycleGAN even more prone to hallucinate features due to the
way the data in the target domain is gathered.

Another approach to solve this problem is using a conditional discriminator
[3,14]. The intuition here is that giving the discriminator the source image a as
well as the transformed image fa,b(a), we can model the joint distribution. This
approach requires paired examples in order to provide real source and target
pairs to the discriminator. The dataset Db still plays a role in determining what
the discriminator learns and therefore how the transformation function operates.
The discriminator is trained by:

max E
(a,b)∼(Da,Db)

[logD(b, a)] + E
a∼Da

[log(1 −D(fa,b(a), a))]

Even in the case of CondGAN that the source and target domain distributions
correspond to each other due to having paired data, the discriminator can assign
more/less capacity to a feature (e.g. tumors), due to having over/under repre-
sentation of those features in the target distribution. This can be a source of
bias in how those features are translated.
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Table 1. Loss formulations divided into two phases of training. On the left the discrim-
inator loss is shown (when applicable) and on the right the transformation/generator
loss is shown. Note that for GAN losses the generator matches the target distribution
indirectly through gradients it receives from the discriminator.

Discriminator Loss (max) Domain Transformer/Generator Loss
(min)

GAN E
b∼Db

[logD(b)] + E
a∼Da

[log(1−
D(fa,b(a)))]

E
a∼Da

[−log(D(fa,b(a)))]

CycleGAN E
b∼Db

[logD(b)] + E
a∼Da

[log(1−
D(fa,b(a)))]

E
a∼Da

[−log(D(fa,b(a))) +

|fb,a(fa,b(a))− a|]
CondGAN E

(a,b)∼(Da,Db)
[logD(b, a)] +

E
a∼Da

[log(1−D(fa,b(a), a))]

E
a∼Da

[−log(D(fa,b(a), a))]

L1 - E
(a,b)∼(Da,Db)

||fa,b(a)− b||1

Finally, we look at how to train a transformation using only a L1 loss with-
out any adversarial distribution matching term. With this classic approach we
consider transformations based on minimizing the pixel wise error:

E
(a,b)∼(Da,Db)

||fa,b(a) − b||1

Unlike GAN models that match the target distribution over the entire image, L1
predicts each pixel locally given its receptive field without the need to account
for global consistency. As long as some pixels present the category of interest in
the image (e.g. tumor), L1 can learn a mapping. However, L1 still can suffer from
a bias when the train and test distributions are different, e.g. when no tumor
pixels are provided during training, which can be caused by having new known
or unknown labels at test time.

With all these approaches to domain translation we find there is the potential
for bias in the training data (specifically Db for our experiments below).

3 Bias Impact

We use the BRATS2013 [15] synthetic MRI dataset because we can visually
inspect the presence of a tumor, it is freely available to the public, and we have
paired data to inspect results. Our task for analysis is to transform Flair MRI
images (source domain) into T1-weighted images (target domain). We start with
1700 image slices where 50% are healthy and 50% have tumors. We use 1400 to
construct training sets for the models and 300 as a holdout test set used to test
if the transformation added or removed tumors.

In this section, we construct two training scenarios: unpaired and paired.
For the CycleGAN we use an unpaired training scenario which keeps the distri-
bution fixed in the source domain (with 50% healthy and 50% tumor samples)
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(a) CycleGAN (b) CondGAN (c) L1

Fig. 2. We plot the classifier’s prediction on 300 (53% tumor) unseen samples (holdout
test set) as we vary the distribution of tumor samples in the target domain from 0%
to 100% of three models (CycleGAN, CondGAN, L1). This corresponds to 33 trained
models. We split the source domain samples of the holdout test set into healthy (top
row) and tumor (bottom row) and apply a classifier on the translated images. Green
represents translated samples predicted by the classifier as healthy and red represents
samples predicted with tumors. If the translation was without bias the percentage of
healthy to tumor images should not change across the 11 models trained for each loss.
For CycleGAN, we observe that the percentage of the images diagnosed with tumors
increases as the percentage of tumor images in the target distribution increases. The
black line represents the mean absolute pixel error between translated and ground truth
target samples. While CondGAN seems to have a more stable classification results
compared to CycleGAN, the pixel error indicates how much the translated images
are away from ground truth samples and subject to change for different percentage of
tumor composition in the target domain. L1 loss seem to suffer the least from target
distribution matching and produces high error only when the target distribution has
0% of tumors (during training) and is asked to translate tumor samples. This case
corresponds to 0% L1 on the bottom row.

and changes the ratio of healthy to cancer samples in the target domain Db to
simulate how the distribution matching works when the target distribution is
irrelevant to the source distribution. For the CondGAN and L1 models we use
a paired training scenario where both the source and target domains have the
same proportion of healthy to tumor examples because they have to be presented
as pairs to the model.

We train 3 models under 11 different percentages of tumor examples in the
target distribution, which vary from 0% to 100% with tumors. In place of a
doctor to classify the transformed samples we use an impartial CNN classifier
(4 convolutional layers with ReLU and Stride-2 convolutions, 1 fully connected
layer with no non-linearity, and a two-way softmax output layer) which obtains
80% accuracy on the test set. The results of using this classifier on the generated
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(a) An example with a tumor from the holdout test set
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(b) A healthy example from the holdout test set
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Fig. 3. Illustration of tumor (a) and healthy (b) class change through domain trans-
lation while changing the ratio of the healthy to tumor samples in the target domain
Db for all three models (CycleGAN, CondGAN, L1). We vary the distribution of Db

from 0% tumor to 100% examples to train 33 different models. We show images of
the source domain (Flair) on the left and the corresponding ground truth image in the
target domain (T1) on the right. We can observe visually the magnitude of the changes
introduced.
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T1 samples with different target domain composition is shown in Fig. 2. As we
change the composition of the target domain we can observe the bias impact
on the class of the transformed examples from the holdout test set. If there
was no bias in matching the target distribution due to the composition of the
samples in the target domain, there would be no difference in the percentage of
the images diagnosed with a tumor as we change the target domain composition
in Fig. 2. We also compute the mean absolute pixel reconstruction error between
the ground truth image in the target domain and the translated image. If a
large feature is added or removed it should produce a large pixel error. If the
translation was doing a perfect job, the pixel error should have been 0 for all
cases.

We draw the readers attention to CycleGAN which produces the most dra-
matic change in class labels, since the model learns to map a balanced (tumor
to healthy) source domain to an unbalanced composition in the target domain,
which encourages the model to add or remove features. This indicates such mod-
els are subject to even more bias due to the composition of the features in the
target domain that can be different from the ones in the source domain.

For CondGAN, the pixel error changes across as the composition of
tumor/healthy changes, indicating there is a bias due to the training data com-
position. Perceptually the L1 loss appears the most consistent producing the
least bias. However, it has error when it is trained on 0% tumor and the model
is asked to translate tumor samples at test time (0% for L1 in Fig. 2 bottom row
and Fig. 3(a)), which is due to a mis-match between train and test distributions.
It indicates that if at test time images with new known or unknown labels (e.g.
a new disease) are presented to the model, it cannot transform them properly.
In Fig. 3 we show examples of the translated images between the models. Note
how for GAN based models the cancer tumor gradually appears and gets bigger
from left to right. L1 mostly suffers in Fig. 3(a) for 0%. Interestingly, in the case
of 100% tumor it can translate healthy images even though it was not trained
with healthy images. We believe this is due to having both healthy and tumor
regions in each image which allows the network to see healthy sub-regions and
learn to translate both categories.

4 Conclusion

In this work we discussed concerns about how distribution matching losses, such
as those used in CycleGAN, can lead to mis-diagnosis of medical conditions.
We have presented experimental evidence that when the output of an algorithm
matches a distribution, for unpaired or paired data translation, all known and
unknown class labels might not be preserved. Therefore, these translated images
should not be used for interpretation (e.g. by doctors) without proper tools to
verify the translation process. We illustrate this problem using dramatic exam-
ples of tumors being added and removed from MRI images. We hope that future
methods will take steps to ensure that this bias does not influence the outcome
of a medical diagnosis.
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