
Subject2Vec: Generative-Discriminative
Approach from a Set of Image Patches

to a Vector

Sumedha Singla1, Mingming Gong2, Siamak Ravanbakhsh3, Frank Sciurba4,
Barnabas Poczos5, and Kayhan N. Batmanghelich1,2,5(B)

1 Computer Science Department, University of Pittsburgh, Pittsburgh, PA, USA
kayhan@pitt.edu

2 Department of Biomedical Informatics, University of Pittsburgh,
Pittsburgh, PA, USA

3 Computer Science Department, University of British Columbia, Vancouver, Canada
4 University of Pittsburgh School of Medicine, University of Pittsburgh,

Pittsburgh, PA, USA
5 Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA, USA

Abstract. We propose an attention-based method that aggregates local
image features to a subject-level representation for predicting disease
severity. In contrast to classical deep learning that requires a fixed dimen-
sional input, our method operates on a set of image patches; hence it can
accommodate variable length input image without image resizing. The
model learns a clinically interpretable subject-level representation that
is reflective of the disease severity. Our model consists of three mutu-
ally dependent modules which regulate each other: (1) a discriminative
network that learns a fixed-length representation from local features and
maps them to disease severity; (2) an attention mechanism that pro-
vides interpretability by focusing on the areas of the anatomy that con-
tribute the most to the prediction task; and (3) a generative network that
encourages the diversity of the local latent features. The generative term
ensures that the attention weights are non-degenerate while maintaining
the relevance of the local regions to the disease severity. We train our
model end-to-end in the context of a large-scale lung CT study of Chronic
Obstructive Pulmonary Disease (COPD). Our model gives state-of-the
art performance in predicting clinical measures of severity for COPD.
The distribution of the attention provides the regional relevance of lung
tissue to the clinical measurements.

1 Introduction

We propose a deep learning model that learns subject-level representation from
a set of local features. Our model represents the image volume as a bag (or set) of
local features (or patches) and can accommodate input images of variable sizes.
We target diseases where the pathology is diffused and is not always located
in the same anatomical region. The model learns by optimizing the objective
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function that balances two goals: (1) to build a fixed length subject-level feature
that is predictive of the disease severity, (2) to extract interpretable local features
that identify regions of anatomy that contribute the most to the disease. Our
motivation comes from the study of COPD, but the proposed model is applicable
to a wide range of heterogeneous disorders.

Many diseases such as emphysema are highly heterogeneous [15] and show
diffuse pattern in computed tomographic (CT) images of the lung. Having an
objective way to characterize local patterns of the disease is important in diag-
nosis, risk prediction, and sub-typing [4,6,12,17]. Although various intensity
and texture based feature descriptors are proposed to characterize the visual
appearance of the disease [1,18,20], most image features are generic and are not
necessarily optimized for the disease. Recent advances in deep learning enable
researchers going directly from raw image to clinical outcome without speci-
fying radiological features [3,5]. However, the classical deep learning methods,
that operate on entire volume or slices [5], are challenging to interpret and they
require resizing the input images to a fixed dimension. Reshaping voxels in a
CT image without adjusting for the density, changes the interpretation of the
intensity values.

In this paper, we view each subject as a set of image patches from the lung
region. Previously, [1,16] viewed the subjects as sets and used handcrafted image
features. In contrast, the discriminative part of our model uses deep learning
approach and directly extracts features from the volumetric patches. Next, we
use an attention mechanism [19] to adaptively weight local features and build
the subject level representation, which is predictive of the disease severity. Our
model is inspired by the Deep Set [21]. We extend it by adapting generative reg-
ularization, which prevents the redundancy of the hidden features. Furthermore,
the attention mechanism provides interpretability by quantifying the relevance
of a region to the disease. We evaluate the performance of our method on a
simulated dataset and a COPD lung CT dataset where our method gives state-
of-the-art performance in predicting the clinical measurements.

2 Method

We represent each subject as a set (bag) of volumetric image patches extracted
from the lung region Xi = {xij}Ni

j=1, where Ni is the number of patches for subject
i, which varies with subject. Our method maps xij to a low-dimensional latent
space. It then aggregates the latent features to form a fix-length representation,
by adaptively weighting the patches based on their contribution in prediction of
disease severity (yi). The general idea of our approach is shown in Fig. 1.

The method consists of three networks that are trained jointly: (1) a discrim-
inative network, that aggregates the local information from patches in the set
Xi to predict the disease severity yi, (2) an attention mechanism, that helps dis-
criminative network to selectively focus on patch-features by assigning weights
to the patches in Xi, and (3) a generative network, that regularizes the discrimi-
native network to avoid redundant representation of patches in the latent space.
The model is trained end to end, by minimizing the below objective function:
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Fig. 1. (a) A subject is represented as a set of 3d image patches, (b) Discriminative
Network: aggregates local features to form a fixed length representation for the subject
and predicts the disease severity, (c) Attention Network: focuses attention on criti-
cal patches to provide interpretability, (d) Convolutional Auto Encoder (Generative
Network): prevents redundancy of latent features.

min
ω,θe,θd,θa

∑

i

Ld (yi, ŷi(Xi); θe, ω) + λ1Lg

(
Xi, X̂i; θe, θd

)
+ λ2R (Xi; θe, θa) , (1)

where Ld(·, ·) and Lg(·, ·) are the discriminative and generative loss functions
respectively and R(·) is a regularization over the attention. The θe, θd, θa and ω
are the parameters of each term. λ1, λ2 controls the balance between the terms.
The sum is over number of subjects. Next, we discuss each term in more detail.

2.1 Discriminative Network

The discriminative network transforms the input set of image patches and esti-
mates the disease severity ŷi(Xi) as

ŷi(Xi) = f (ρ (φe (Xi, θe)) , ω) . (2)

The transformation is composed of three functions: (1) φe(·; θe) is an encoder
function parameterized by θe. It extracts features from patches in the set
Xi and outputs a set of features. (2) The ρ(·) function operates on the ele-
ments of the set and converts the variable length set φe(Xi; θe) into a fixed
length vector. It is a permutation invariant function such as, maximum function
ρ(·) = max(φe(xi,1), · · · , φe(xi,Ni

)) or mean function ρ(·) = 1
Ni

∑Ni

j=1 φe(xij).
This formulation ensures that, ŷi(Xi) is invariant to the order of patches in Xi.
We tried different ρ’s and the mean function works well for our task. The mean
function assumes all the instances within the set are contributing equally to the
set-level feature vector. We extended it further to perform weighted mean, where
weights are learned using the attention network in Sect. 2.2. (3) f(·;ω) is a predic-
tion function, parameterized by ω. It takes the set-level feature vector extracted
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by ρ(·) as input, and estimates the disease severity. Finally, Ld (yi, ŷi(Xi); θe, ω)
is a �2 loss function between predicted and true value.

2.2 Attention Mechanism

The goal of our proposed model is twofold: first to provide a prediction of the dis-
ease severity and secondly, to provide a qualitative assessment of our prediction.
Here, it is reasonable to assume that different regions in the lung contribute dif-
ferently to the disease severity. We model this contribution by adaptively weight-
ing the patches. The weight indicates the importance of a patch in predicting the
overall disease severity of the lung. This idea is similar to attention mechanism
in Computer Vision [19] and Natural Language Processing [9] communities.

We estimate the attention weights for the subject i (αi = {αi1, · · · , αi,Ni
})

by the attention network as

αi = A (φe (Xi; θe) ; θa) . (3)

Unlike the ρ(·) function, A(·; θa) maps a set to another set. Permuting the order
of elements in the set Xi, should equivariantly permute the output set αi . To
ensure A(·) is a permutation equivariant function, we construct it as a neural
network with equivariant layer (EL) [21]. Assuming Hi ∈ IRNi,d where kth row
is φ(xik; θe) ∈ IRd, one possible way of modeling the equivariant layer is

[Hi]k = W ([Hi]k − max(Hi, 1)) + b, (4)

where [Hi]k denotes kth row of Hi and max(Hi, 1) is the max over rows. W ∈
IRL×d, b ∈ IRL are the parameters of the EL. To ensure A(·; θa) is permutation
equivariant we construct it by composing few EL’s. Also, we assume that the
weights (αi) are non-negative numbers that sums to 1. The output of the EL is
passed to a softmax to obtain a distribution of weights over the patches. Finally,
to ensure the weights are sparsely distributed, we added a regularization term
R (Xi; θe, θa) =

∑Ni

j=1 log(αij + ε) to the loss function in Eq. 1

2.3 Generative Network

The encoder function φe projects the raw patch xij to a d-dimensional latent rep-

resentation
(
i .e.,φe(xij ; θe) ∈ IRd

)
. Without extra regularization, the loss func-

tion focuses only on the prediction task, forcing φe to extract information that
is only relevant to y. If y is low dimensional, φe learns a highly redundant latent
space representation for each patch. Since αij is a function of φe(xij , θe), redun-
dant features result in uniform weights i.e., (αij = 1

|Xi| ). This phenomenon
makes interpretability difficult. We demonstrated this effect in our experiments.

To discourage loss of information, we added a convolutional auto-encoder
(CAE) [11] to reconstruct patch as x̂ij = φd(φe(xij ; θe); θd). A generative loss
Lg(Xi, X̂i; θe, θd) = 1

|Xi|
∑

xij∈Xi
||xij − x̂ij ||2 is added to the final loss function.
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Table 1. Clinical measurement regression and GOLD stage classification accuracy by
different methods on the COPDGene dataset.

Method FEV1 FEV1/FVC GOLD exact GOLD one-off

Our method (λ1 = 0) 0.68 0.71 61.17 % 87.64 %

Our method (λ1 = 10) 0.64 0.70 55.60 % 84.57%

CNN [5] 0.53 — 51.1 % 74.9 %

Non-Parametric [16] 0.58 0.70 50.47 % —

K-Means [16] 0.54 0.67 48.23 % —

Baseline 0.52 0.69 49.06 % —

2.4 Architecture Details

The f(·;ω) is a linear function predicting the disease severity yi. The architecture
of generative network is elaborated in Fig. 1. The convolutional layer employs
batch-normalization for regularization, followed by an exponential linear unit
(ELU) [2] for non-linearity. The attention network A(·; θa) has 2 equivalence
layers with sigmoid activation function, followed by a softmax layer. The model
is trained using Adam optimizer [7] with a fixed learning rate of 0.001.

3 Experiments

We evaluate the prediction and interpretation of our method on synthetic and
real datasets. To evaluate the interpretability of our method quantitatively, we
synthesize a dataset where the set-level target (y) are simulated from a subset of
instances. Hence by viewing the attention weights as a detector of the relevant
instances, we are able to evaluate the interpretability of our approach.

3.1 Synthetic Data

In this experiment, we build 10,000 training and 8,000 testing sets. The instances
in the set are randomly drawn images from MNIST [8] dataset. The size of the
sets varies between 20 to 100 instances. Each image is a 28×28 pixel monochrome
image of a handwritten digit between 0−9. The set-label (y) is the sum of prime
numbers (2, 3, 5, 7) in that set. Our method predicts the set-label with a high
accuracy (R2 = 0.99 on held-out data). We view the attention weights as detec-
tors of prime numbers. Note that no instance level supervision is used. We make
an ROC (Receiver Operating Characteristic) curve per set, and compute one
average ROC curve across the held-out dataset. Figure 2(a) shows the average
and error bar for all the sets. The figure compares our method (blue) with equal
weights (red) (i.e., αij = 1/|Xi|) and uniform random weights (green). Our
method can detect correct instances in the set, with only weak supervision over
the set (i.e., set-level label y). Here we used λ1 = 100 and λ2 = 0.01.
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Fig. 2. (a) ROC curve of detecting true relevant instances on synthetic dataset using
attention weights, (b) Spectral properties of patch-level features for different values
of λ1. (c) The trade-off between rank of latent space (red, y-axis on left) and pre-
dictive power (blue, y-axis on right) for different values of λ1. Left represents fully
discriminative and right represents fully generative models.

3.2 COPD

We evaluate our model on 6,400 subjects with different degrees of severity of the
COPD from the COPDGene dataset [13]. As clinical measures, we use the Forced
Expiratory Volume in one second (FEV1), the ratio of FEV1 and Forced Vital
Capacity (FVC), and discrete score (between 0–4) called the Global Initiative
for Chronic Obstructive Lung Disease (GOLD). We first segment the lung area
on the inspiratory images using CIP library [14]. Each subject is represented as a
bag of equal size 3D patches, with some overlap. Large patch size and percentage
overlap leads to GPU memory issues. We experimented with different values and
finally used patch-size of 32 × 32 × 32 with 40% overlap in our experiments.

We perform three experiments: (1) Prediction: we compare the performance
of our method against the sate-of-art for predicting the clinical measurements,
(2) Generative regularizer (λ1): we study the effect of the generative regularizer
(i.e., λ1) in terms of prediction accuracy and information preserved in latent
space, (3) Visualization: we visualize the interpretation of the model on the sub-
ject and population level. Unlike λ1, the choice of λ2 don’t have any significant
effect on the prediction accuracy. The value of λ2 influences the sparsity and
diversity of the attention weights. In the experiments, we fixed λ2 to 0.0001.

Prediction: We compare to several baselines: (a) Baseline: Two threshold-
based features measuring the percentage of voxels with intensity less than −950
Hounsfield Unit (HU) for the inspiratory and −856 HU for expiratory images.
These measurements reflect the clinical measure to quantify emphysema and the
degree of gas trapping. (b) Non-parametric: Schabdach et al. [16] view each
subject as a set of hand-crafted histogram and texture features from supervoxels.
They represent each subject in an embedding space using a non-parametric dis-
tance between sets. (c) CNN: Gonzalez et al. [5] use deep features learned from
a composite image of four canonical views of a CT scan to quantify FEV1 and
stage COPD. (d) BOW: It extracts features similar to [16] from supervoxels,
but applies k−means to extract the subject-level representation. We perform
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Fig. 3. (a) Embedding the subjects in 2D using tSNE. The dots represents one subject
colored by the GOLD score. (b) An axial view of the attention map on a subject. Red
color indicate higher relevance to the disease severity.

10-fold cross-validation and report R2 for the continuous measurements (i.e.,
FEV1 and FEV/FVC) and accuracy for the GOLD score. For GOLD score we
also report the percentage of cases whose classification lays within one class of
the true value (one-off ). The Table 1 summarizes the results of the experiments.
Our method outperforms the state-of-the-art on predicting FEV1 and GOLD
score. Adding the generative regularization (λ1 = 10) reduces the accuracy but
provides better interpretability. In the following, we study the effect of λ1.

Generative regularizer (λ1): The Fig. 2(b) reports the spectral behaviors of the
latent features (i.e., φe(Xi)) for varying λ1. For small λ1 the loss function
doesn’t optimize for the generative loss. Hence, the latent space representation
becomes highly redundant, and all the attention weights αij converges to 1

|Xi| .
The Fig. 2(c) shows the trade-off between effective rank of the latent feature and
R2 for predicting FEV1. Although, the R2 drops a little, the rank, which repre-
sents the diversity of the latent features, improves drastically. The gap between
accuracies of λ1 = 0 and λ1 > 0 is the price we pay for the interpretability. Fully
generative model (λ1 → ∞) does not produce good prediction.

Visualization: We use tSNE [10] to visualize subject-level features in two dimen-
sion. In Fig. 3(a), each dot represents a subject colored by the GOLD score. Even
in two dimension, subjects with GOLD score of (0,1) and (3,4) are quite sepa-
rable and 2’s are in between. The bimodal distribution of GOLD stages 3 and
4, is sensitive to t-SNE parameterization and requires further investigation. 3(b)
visualizes the attention weights on one subject. The dark area on the left lung,
which is severely damaged, received hight attention.

4 Conclusion

We developed a novel attention-based model that achieves high prediction while
maintaining interpretability. The method outperforms state-of-art and detects
correct instances on the simulated data. Our current model does not account
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for spatial locations of the patches. As a future direction, we plan to extend the
model to accommodate relationship between patches.
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