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Abstract. 2D ultrasound (US) is the primary imaging modality in ante-
natal healthcare. Despite the limitations of traditional 2D biometrics to
characterize the true 3D anatomy of the fetus, the adoption of 3DUS is
still very limited. This is particularly significant in developing countries
and remote areas, due to the lack of experienced sonographers and the
limited access to 3D technology. In this paper, we present a new deep
conditional generative network for the 3D reconstruction of the fetal skull
from 2DUS standard planes of the head routinely acquired during the
fetal screening process. Based on the generative properties of conditional
variational autoencoders (CVAE), our reconstruction architecture (REC-
CVAE) directly integrates the three US standard planes as conditional
variables to generate a unified latent space of the skull. Additionally,
we propose HiREC-CVAE, a hierarchical generative network based on
the different clinical relevance of each predictive view. The hierarchi-
cal structure of HiREC-CVAE allows the network to learn a sequence
of nested latent spaces, providing superior predictive capabilities even in
the absence of some of the 2DUS scans. The performance of the proposed
architectures was evaluated on a dataset of 72 cases, showing accurate
reconstruction capabilities from standard non-registered 2DUS images.
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1 Introduction

Ultrasound (US) screening is the primary imaging modality for the prenatal
evaluation of growth, gestational age estimation, and early structural abnormal-
ities detection. Thanks to its non-ionizing nature, relative low-cost, and real-
time visualization, a detailed mid-trimester morphology US scan is routinely
performed at 18–22 weeks of gestation in most countries. As part of the exam-
ination, the quantification of 2D biometrics is extensively used to evaluate the
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Fig. 1. Fetal standard US scans of the head. Example of the axial (green), sagit-
tal (blue), and coronal (red) standard planes of three patients acquired in freeheand
2DUS during the routine mid-trimester US examination. The image also shows a 3D
representation of the skull manually segmented from the corresponding 3DUS volume.

growth and well-being of the fetus. However, the detection rates of fetal abnor-
malities often remain below the recommended values [1], showing significant
differences between industrialized and developing countries. Recently, new tech-
nological solutions have been proposed to assist in the acquisition of standard
views in freehand 2DUS scans [2], improving reproducibility and reducing oper-
ator bias. However, the screening process is still constrained by the inherent
limitation of 2D-based biometry to accurately characterize the true 3D anatomy
of the fetus. Recent studies have reported on the advantages of 3DUS in the eval-
uation of fetal anatomy [3], and the superior diagnostic potential of 3D shape
analysis over traditional 2D biometrics for the early detection and characteriza-
tion of cranial deformations [4] (e.g., dolichocephaly, or craniosynostosis). More-
over, studies on 3DUS perception by medical professionals showed their interest
in having access to 3D-based information during prenatal screening [5]. However,
despite the reported advantages, there are three main factors that have notably
hampered the adoption of 3D-based biometry by the obstetric community: (1)
the lack of experience with 3DUS often slows down the acquisition process as
compared to traditional 2DUS; (2) the need for new image processing solutions
that enable efficient real-time analysis, visualization and reconstruction of volu-
metric information [6]; and (3) the limited access to 3D transducers, especially
in developing countries [7]. Aware of these limitations, this paper presents a new
practical approach for 3D head biometry, the 3D reconstruction of the fetal skull
from standard planes in 2DUS, the current gold standard in obstetric radiology
(see Fig. 1).

The reconstruction of 3D anatomical structures from a limited number of 2D
views was previously studied as a strategy to reduce cost and radiation expo-
sure to patients: e.g. reconstruction of the femur, pelvic bone, or vertebrae from
X-ray images as alternative to 3D computed tomography [8,9]. Typically, these
methods rely on deformable statistical models to incorporate a priori anatom-
ical constraints to the generation process. Using contour- or registration-based
strategies, these approaches often require complex density models of the bones
to create virtual X-ray images that guide the generation process [8]. However,
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these simulation-based strategies are impractical in the less controlled environ-
ment of fetal sonography. Fetal US is arguably one of the most challenging imag-
ing modalities, suffering from low signal-to-noise ratio, signal attenuation and
dropout, as well as random shadows and occlusions frequently caused by unpre-
dictable movements of the fetus.

With the advent of deep learning-based techniques, convolutional neural net-
works (CNNs) have become the current state-of-the-art for many medical imag-
ing tasks, including semantic segmentation, and object recognition [2]. However,
the prediction of 3D structures remains a relatively unexplored area, with only
a few works using deep networks to address the mapping from 2D images to 3D
volumes. Of special interest to our work is the TL-embedding network (TL-net)
[10]. In this architecture, the authors use a 3D convolutional autoencoder (Con-
vAE) to generate a latent space of the 3D structures, using a second CNN to
map 2D images to the corresponding coordinates in the latent space. Similarly,
Wang and Fang [11] also used a common latent vector space between the 2D and
the 3D image domains, combining ConvAE with adversarial learning to control
the matching process in an unsupervised manner. Alternatively, Choy et al. [12]
proposed a recurrent network to incrementally refine the reconstruction as more
views of the object are provided. However, the proposed architectures normally
rely on the availability of large-scale datasets, and/or the artificial generation
of realistic 2D images from 3D synthetic models, both an important limitation
when working with medical images.

In this paper, we present a new architecture to address the problem of fetal
skull reconstruction from multiple 2DUS standard views of the head. First we
propose a deep generative network using the conditional variational autoencoder
(CVAE) formulation. Additionally, we present an alternative hierarchical frame-
work, based on the different clinical relevance of each view. Imposing a specific
hierarchy on the 2DUS standard views, the model learns a sequence of nested
latent spaces, which allows the network to operate effectively even in the absence
of any of the predictive views.

2 Method

In this paper, we formulate the 3D reconstruction problem in the form of a
conditional manifold learning task. We use the CVAE framework [13] to create
deep generative networks able to reconstruct the fetal skull, using freehand 2DUS
standard views as predictive variables. These predictors are incorporated in the
optimization model in the form of conditional variables, thus modulating the
latent space of 3D skulls learned by the network.

Suppose Y represents a 3D parameterization of the fetal skull (e.g., a binary
voxel map of the skull), with X1, X2 and X3 representing the correspond-
ing 2DUS standard views acquired in the coronal, sagittal, and axial plane,
respectively (see Fig. 1). For simplicity of notation we denote {X1,X2,X3}
as X1,2,3. We seek a generative model that learns the conditional distribution
P (Y|X1,2,3), so it produces a close approximation of Yi, for a given observa-
tion Xi

1,2,3. In the context of variational autoencoders, the generative process



386 J. J. Cerrolaza et al.

is modeled by means of a latent d-dimensional variable, z, with some known
simple distribution (typically z ∼ N(0, I)). Thanks to this latent variable, the
model can generate new instances of the target structure (i.e., the fetal skull)
by randomly sampling values of z. However, it would be very difficult in prac-
tice to directly infer P (Y|X1,2,3) without sampling a large number of z val-
ues. Alternatively, we introduce a new function Q (e.g., a high-capacity func-
tion here parameterized in the form of a CNN), which can generate values of
z likely to produce Ys. Using Bayes’ rule, we have Ez∼Q [logP (Y|z,X1,2,3)]
= Ez∼Q[logP (z|Y,X1,2,3) − logP (z|X1,2,3) + logP (Y|X1,2,3)]. Rearranging and
subtracting Ez∼Q[logQ(z)] from both sides yields

logP (Y|X1,2,3) − DKL[Q(z)‖P (z|Y,X1,2,3)] =
Ez∼Q[logP (Y|z,X1,2,3)] − DKL[Q(z)‖P (z|X1,2,3)],

(1)

where DKL[a‖b] = Ez∼Q[log(a) − log(b)] represents the Kullback-Leibler
(KL) divergence. Typically, the function Q is defined as Q(z|Y,X1,2,3) =
N(z|μ(Y,X1,2,3), Σ(Y,X1,2,3)) where μ and Σ are arbitrary, deterministic func-
tions learned from the data, and parameterized in the form of CNNs (Σ is con-
strained to be a diagonal matrix). Since P (z|X1,2,3) is still ∼ N(0, I) (i.e., assum-
ing z is sampled independently of X1,2,3 at test time), this choice of Q allows us to
compute DKL[Q(z)‖P (z|X1,2,3)] as the KL-divergence between two Gaussians,
which has a closed-form solution [13]. Optimizing the right hand side via stochas-
tic gradient descent, and assuming Q is a high-capacity function which can
approximate P (z|Y,X1,2,3), the KL-term on the left hand side of (1) will tend to
0. That is, we will be directly optimizing P (Y|X1,2,3). At training time, we make
the sampling of z differentiable with respect to μ and Σ by using the “reparam-
eterization trick” [13], and defining zi = μ(Yi,Xi

1,2,3)+ η ∗Σ(Yi,Xi
1,2,3), where

η ∼ N(0, I).
Based on equation (1), the reconstruction network can be implemented using

CNNs, whose structure, at training time, resembles a traditional ConvAE. The
function Q takes the form of the encoder, “encoding” Y and X1,2,3 into a d-
dimensional latent space z, via μ and Σ. In the proposed architecture, we use a
multi-branch CNN to model Q, using 3D convolutional filters for Y, and a sepa-
rate view-specific bank of 2D filters for each standard view. The outputs of each
branch are concatenated and mapped to two separate fully-connected layers to
generate μ(Y,X1,2,3) and Σ(Y,X1,2,3), which will be combined with η to create
z. Finally, the decoder of the network, modeled also as a CNN, reconstructs Y
given z and X1,2,3. The conditional dependency on X1,2,3 is explicitly modeled
by the concatenation of z with the vector representation of X1,2,3 (see Fig. 2(a)).
At test time, the decoder operates as a generative reconstruction network given
the coronal, X1, sagittal, X2, and axial, X3 2DUS views, generating valid 3D
skulls by sampling z ∼ N(0, I). In particular, we generate the highest-confidence
prediction with z = 0.

With this configuration, the reconstruction network requires the three stan-
dard views to approximate the 3D fetal skull. However, it is common in clinical
practice that not all the standard views of the head are routinely acquired,
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Fig. 2. Deep generative networks for the reconstruction of the fetal skull. (a) REC-
CVAE: Reconstruction network based on the conditional variational autoencoder
framework. (b) HiREC-CVAE: Hierarchical reconstruction network.

thus limiting the potential utility of our model in retrospective studies. Dur-
ing the mid-trimester examination, axial views of the head (i.e., X3) are rou-
tinely acquired and used for 2D biometrics measurements (e.g., head circum-
ference and biparietal diameter). Additionally, a sagittal view (X2) is also nor-
mally acquired to ensure there is a normal face/head shape. However, coro-
nal planes (X1) are usually only included as part of a dedicated scan, used
to clarify suspicious findings. To make the reconstruction network more flex-
ible and operative in the absence of some of the standard views, we pro-
pose two alternative architectures. In the first model, we define the condi-
tional variables as three multidimensional Gaussians N(0, I), z1, z2, and z3.
Thus, if X1, or X2 are missing at test time, we still can approximate Y with
the same network, by sampling z1, or z2. The resulting objective function is
CE(Y, ̂Y)−ν(DKL[z‖N(0, I)]+

∑

i=i,2,3 DKL[zi‖N(0, I)]), where the first term
represents the cross-entropy (CE) between Y and the reconstructed ̂Y, and ν
is a constant set to 0.01. See Fig. 2(a) for a detailed description of the pro-
posed reconstruction network using CVAE (REC-CVAE). While REC-CVAE
represents a more direct implementation of the CVAE formulation, we propose
a second configuration that explicitly incorporates the predefined hierarchy of
the conditional variables as a cascade of conditional blocks, HiREC-CVAE (see
Fig. 2(b)). In the first block, only X1 is used as conditional variable for Y, thus
defining a latent space, z1, for Y|X1. The sagittal and axial planes are incorpo-
rated in the second and third blocks, producing z2, and z3, respectively. Unlike
REC-CVAE, where a single generative latent space is defined, z1, z2, z3 can be
interpreted as a set of nested latent spaces. Now, in the absence of one of the
views, we are sampling from the corresponding latent-spaces, that effectively
integrate the missing components into a manifold of fetal skulls. The resulting
objective function is CE(Y, ̂Y) − ν(

∑

i=i,2,3 DKL[zi‖N(0, I)]).
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3 Results

Both approaches for fetal skull reconstruction were evaluated on a dataset of 72
cases. For each case, one 3DUS volume of the head, and at least one image from
each of the standard views in the coronal, sagittal, and transventricular axial
planes were acquired by an experienced obstetric sonographer during routine
mid-trimester examination (i.e., more than one image per standard view were
available for some cases). The mean gestational age was 24.7 weeks, ranging from
20 to 36 weeks. The images were acquired using a Philips Epiq7G US system,
with a X6-1 xMatrix array transducer. The data were preprocessed using non-
local means filtering, and resampled to isotropic size of 0.50 mm per dimension;
the 3D volumes and the 2D standard planes were resized to 96 × 96 × 96 voxels,
and to 96 × 96 pixels, respectively, using cropping and zero-padding if needed.
For each volume, the skull was manually delineated under the supervision of
an expert radiologist. In this study, we consider a smooth reconstruction of the
cranial region located above the transthalamic plane, including the parietal and
frontal bones, and excluding the facial bones, sutures and fontanels. The set of
manual segmentations were aligned and used as ground-truth for skull recon-
struction. No registration was used for the standard planes, using only flipping
or mirroring to provide orientation consistency (e.g., the fetus is approximately
looking up in the sagittal views as shown in Fig. 1). The patients were randomly
divided in two groups, using 58 cases for training and 14 for testing. This pro-
cess was repeated three times, always using a different subset for testing. During
training, data augmentation was applied to the ground-truth volumes, applying
random anisotropic scaling in the three orthogonal axes. This strategy allowed
us, not only to expand the training set, but also to replicate potential fetal skull
anomalies, such as dolichocephaly or trigonocephaly. One image for each stan-
dard view was randomly selected, if more than one scan were available, and
deformed independently using the corresponding anisotropic scaling, and ran-
dom translation and rotation. The reconstruction capability of REC-CVAE and
HiREC-CVAE was compared with the TL-net, a CNNs-based state-of-the-art
architecture for 2D-to-3D reconstruction [10] (see Sect. 1). The TL-net configu-
ration is depicted in Fig. 3(a). All the networks were trained for 1000 epochs on
an NVIDIA® GeForce® 1080 Ti (approx. 12 hours per network), using stochastic
gradient descent with momentum (Adam with learning rate = 0.001, β1 = 0.9,
and β2 = 0.995) in Theano, using a small batch size of 1.

Table 1. The table presents the average and standard deviation for the Dice’s coeffi-
cient (DC), sensitivity (SEN.), and precision (PPV) of the reconstruction of the fetal
skull, and the effect of using three, two, or one standard US views as predictors.
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Fig. 3. (a) TL-net architecture (see Fig. 2 for a description of the constituent blocks).
The network assumes the three views are used for the reconstruction. A separate net-
work with two (X2, X3) or one (X3) predictors is defined if any of the views are missing.
(b) Prediction uncertainty in HiREC-CVAE for a varying number of predictors. The
images represent the standard deviation of N = 50 different predictions randomly
generated from the latent spaces.

Table 1 shows the reconstruction accuracy for the three architectures when
using three (coronal, sagittal, and axial), two (sagittal and axial) or one (axial)
US standard views as predictors. During testing, the 3D encoder branch was
disabled, setting the latent variables z and z1 to 0, in REC-CVAE and HiREC-
CVAE, respectively. In the absence of the coronal or also the sagittal view,
the corresponding latent variables, z1 and z2 in REC-CVAE, and z2 and z3
in HiREC-CVAE, were also set to 0 (see Fig. 2). For TL-net, three different
case-specific configurations of the network were trained in order to deal with
a varying number of available standard views. When using the three planes,
REC-CVAE and HiREC-CVAE showed slightly higher (although not statistically
significant) performance than the TL-net (e.g., DCREC−CV AE = 0.91 ± 0.02,
DCHiREC−CV AE = 0.91 ± 0.04, and DCTL−net = 0.89 ± 0.03). However, the
performance of REC-CVAE was significantly affected when one or two of the
views were missing (DCREC−CV AE = 0.86 ± 0.05, and 0.83 ± 0.06, respec-
tively). One important limitation in REC-CVAE is the independent Gaus-
sian encoding of the predictors. While this allows the network to operate in
the absence of any of the views by automatically generating a valid input
from the predefined distributions, the resulting semi-optimal code passed to
the decoder (e.g., (0,0,0, z3)) can produce an inaccurate reconstruction of the
skull. In HiREC-CAE, the potential correlation between the predictors is effec-
tively encoded through a three-level nested space of latent variables, showing
good reconstruction capabilities even when the coronal, or also the sagittal
planes are absent (DCHiREC−CV AE = 0.89 ± 0.05, and 0.86 ± 0.05, respec-
tively). Similar performance was obtained with the dedicated case-specific TL-
nets (DCTL−net = 0.89±0.05 and 0.85±0.04), although a separate case-specific
network is needed for each scenario. Moreover, the TL-nets require a three-stage
training process [10], instead of the end-to-end approach used in REC-CVAE
and HiREC-CVAE.

Finally, the generative capability of HiREC-CVAE can be exploited to gen-
erate a confidence map of the reconstructed skull. Here, we define the confidence
maps as the standard deviation of N (N = 50 in Fig. 3(b)) different predic-
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tions, randomly generated by sampling z1, z2, or z3 from N(0, I). These maps
can be generated in real-time (each prediction is generated in ∼ 0.04 sec.), and
used as an indirect indicator of the reconstruction accuracy, thus informing the
sonographer about the need of additional views for a more accurate result.

4 Discussion and Conclusion

This paper presents the first deep conditional generative network for the 3D
reconstruction of the fetal skull from freehand non-aligned 2D scans of the head.
We propose two different models, REC-CVAE, based on the CVAE formulation,
and HiREC-CVAE, an alternative configuration that effectively encodes a prede-
fined hierarchy of the predictive variables. Both networks learn a low-dimensional
embedding representation of the skull, which guarantees the anatomical consis-
tency of the reconstructions. Moreover, the use of a predefined distribution model
for the latent space allows the networks to operate even when some of the 2DUS
images are missing. The results demonstrate the potential of the networks for
the 3D reconstruction and characterization of the fetal skull from 2DUS stan-
dard planes. This framework can contribute significantly to the popularization
of 3D-based fetal screening, allowing for large-scale 3D-based biometrics stud-
ies that include a wide and varied demographic representation, including cases
from developing countries with limited access to 3D transducer technology. In
the near future, we will continue exploring the clinical value of the proposed
framework and its potential for the early detection and characterization of con-
genital deformations. We also plan to explore the potential of deep conditional
generative networks for 3D cardiac reconstruction from cardiac cine MRI.
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