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Abstract. Understanding the structure of the heart at the microscopic
scale of cardiomyocytes and their aggregates provides new insights into
the mechanisms of heart disease and enables the investigation of effec-
tive therapeutics. Diffusion Tensor Cardiac Magnetic Resonance (DT-
CMR) is a unique non-invasive technique that can resolve the micro-
scopic structure, organisation, and integrity of the myocardium without
the need for exogenous contrast agents. However, this technique suffers
from relatively low signal-to-noise ratio (SNR) and frequent signal loss
due to respiratory and cardiac motion. Current DT-CMR techniques rely
on acquiring and averaging multiple signal acquisitions to improve the
SNR. Moreover, in order to mitigate the influence of respiratory move-
ment, patients are required to perform many breath holds which results
in prolonged acquisition durations (e.g., ∼30 min using the existing tech-
nology). In this study, we propose a novel cascaded Convolutional Neural
Networks (CNN) based compressive sensing (CS) technique and explore
its applicability to improve DT-CMR acquisitions. Our simulation based
studies have achieved high reconstruction fidelity and good agreement
between DT-CMR parameters obtained with the proposed reconstruc-
tion and fully sampled ground truth. When compared to other state-
of-the-art methods, our proposed deep cascaded CNN method and its
stochastic variation demonstrated significant improvements. To the best
of our knowledge, this is the first study using deep CNN based CS for
the DT-CMR reconstruction. In addition, with relatively straightforward
modifications to the acquisition scheme, our method can easily be trans-
lated into a method for online, at-the-scanner reconstruction enabling
the deployment of accelerated DT-CMR in various clinical applications.
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1 Introduction

Diffusion Tensor Cardiovascular Magnetic Resonance (DT-CMR) is a unique
non-invasive technique, which provides rich structural and functional information
on the myocardium at a microscopic scale, including parameters relating to the
alignment and integrity of cardiomyocytes and aggregates of cardiomyocytes,
known as sheetlets. Despite a long history of in vivo DT-CMR and great efforts
to drive the method towards a clinically usable technique [15], its clinical use
remains limited to research studies in a few specialist centres. These limited
studies have produced a number of interesting findings in detection and diagnosis
of ischemic heart disease, hypertrophic and dilated cardiomyopathies [2,3,14].

In comparison to the well established application of diffusion tensor imaging
(DTI) in the brain, DT-CMR faces a number of additional challenges, includ-
ing: (1) the intrinsically low signal-to-noise ratio (SNR) of typical acquisition
methods, which means that multiple signal acquisitions must be acquired and
averaged to improve the net SNR; (2) signal loss caused by respiratory and car-
diac motion during the application of diffusion sensitising gradients, means that
these gradients must be short with respect to the motion and strong gradients
must be used to provide sufficient sensitivity to the small diffusive movement
of water molecules (on the order of microns) [1]; (3) the transverse relaxation
time (T2) is substantially shorter in the myocardium than in the brain (∼40 ms
for the myocardium vs. ∼80 ms for the white matter of the brain). In contrast
to neurological DTI, this dramatically limits the possible echo time (TE) that
can be used in DT-CMR [13]; (4) the increased B0 inhomogeneity in the tho-
rax may also result in more susceptibility-related distortions in the echo planar
imaging (EPI) technique typically used for the DT-CMR [13], which also lim-
its spatial resolution. Some of these challenges have been partially addressed or
have benefited from parallel imaging techniques for the in-plane acceleration,
e.g., using SENSE (sensitivity encoding) and GRAPPA (generalized autocali-
brating partially parallel acquisitions), or simultaneous multislice imaging [9].
However, typical acceleration factors are normally limited to 2–3 [13].

Compressive sensing (CS) is a promising technique for fast MRI [11] that cir-
cumvents the Nyquist-Shannon sampling criteria and can achieve a more aggres-
sive acceleration. Comprehensive reviews of CS based fast MRI (CS-MRI) can
be found elsewhere [6]. Essentially, CS-MRI can obtain a perfect reconstruction
by using a nonlinear optimisation on randomly undersampled raw data, assum-
ing the data or its transformation is compressible. Although CS-MRI have been
widely investigated [6], most previous studies have focused on the acceleration
of the structural MRI, and only very few research studies have been conducted
on DT-CMR [8,12,22]. These CS based fast DT-CMR methods demonstrated
promising reconstruction results; however, the iterative nonlinear optimisation
used in these methods requires a lengthy reconstruction procedure that could
prevent their widespread usage, where there is a clinical need to view images
immediately at the scanner. Therefore, a CS-based on-the-fly reconstruction of
DT-CMR data would be highly desirable.
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More recently, deep learning approaches have shown intriguing results in solv-
ing various medical image segmentation, registration and reconstruction prob-
lems. In particular, there are several deep learning based architectures that have
been proposed for reconstruction of MRI data. The most widely used archi-
tecture is named U-Net [18], which is used to perform an end-to-end recon-
struction [5,10], and often combined with a residual learning [10,23] or genera-
tive adversarial networks [23]. Alternative approaches have also been proposed,
which modified the deep network architectures to embed traditional optimisation
algorithms. These include gradient descent [4], alternating direction method of
multipliers (ADMM) [21] or optimisation algorithms inspired by variable split-
ting techniques [16]. In addition, various clinical applications have been explored
including knee imaging [4], brain imaging [23], and dynamic cardiac imaging [19].

In this study, a novel cascaded Convolutional Neural Networks (CNN) based
CS technique has been proposed to simulate an efficient reconstruction of highly
undersampled DT-CMR data. The proposed architecture improves upon the pre-
viously proposed networks by introducing dilated convolution instead of pool-
ing to efficiently increase the receptive field. In addition, we introduce a novel
stochastic architecture, which is formulated by dropping the subnetworks at
training. We show that this approach provides multifold benefits, including accel-
erated learning, improved robustness and an additional uncertainty estimate
of the prediction. The following sections present the details of the proposed
methodology, experimental set-up, achieved results and followed by discussions
and conclusion.

2 Method

Let x ∈ CN denote a complex-valued MR image to be reconstructed, represented
as a vector with N = NxNy where Nx and Ny are width and height of the image.
Let y ∈ CM (M << N) represent the undersampled k-space measurements. Our
problem is to reconstruct x from y, formulated as an unconstrained optimisation:

argmin
x

R(x) + λ‖y − Fux‖22 (1)

Here Fu is an undersampling Fourier encoding matrix, R expresses regularisation
terms on x and λ is a hyper-parameter often associated to the noise level.

Deep Cascaded CNN. In general, the regularisation terms R in Eq. 1 can be
non-convex (such as �0 in the sparsifying domain). Therefore, traditionally, one
introduces an auxiliary variable z as variable splitting technique and solves the
following penalty functional:

argmin
x,z

R(z) + λ‖y − Fux‖22 + μ‖x − z‖22 (2)
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where μ is a penalty parameter. By applying alternating minimisation over x
and z, Eq. 2 can be solved via the following iterative procedures:

z(i) = argmin
z

R(z) + μ‖x(i) − z‖22 (3a)

x(i+1) = argmin
x

λ‖y − Fux‖22 + μ‖x − z(i)‖22 (3b)

where x(0) = xu = FH
u y is the zero-filled (ZF) reconstruction taken as an initial-

isation and z can be seen as an intermediate state of the optimisation process.
For MRI reconstruction, Eq. 3b is often regarded as a data consistency (DC)
step where we could obtain the following closed-form solution [20]:

x(i+1) = DC(z(i);y, λ0, Ω) = FHΛFz(i) + λ0
1+λ0

FH
u y,Λkk =

{
1 if k �∈ Ω

1
1+λ0

if k ∈ Ω

(4)
which F is the full Fourier encoding matrix (a discrete Fourier transform in this
case), λ0 = λ/μ is a ratio of regularization parameters from Eq. 4, Ω is an index
set of the acquired k-space samples and Λ is a diagonal matrix. Equation 3a is
the proximal operator of the prior R, and instead of explicitly determining the
form of the regularisation term, one can learn the proximal operator by using
the CNN directly. In so doing, iterative reconstruction with a cascaded CNN
and DC steps is performed. The whole framework can be optimized end-to-end,
yielding one cascaded deep network. This network is referred to as DC-CNN.

Stochastic DC-CNN. Inspired by [7], we extend the DC-CNN framework into
a stochastic DC-CNN (s-DC-CNN)—during the training, the i-th subnetwork is
dropped with a probability of p = (i−1)/2nc, where nc is the total number of the
cascaded CNN. During the testing (inference), we can use all of the subnetworks
to perform the reconstruction, which is expected to provide the best performance
as the most depths are used. Alternatively, we could sample the network configu-
rations θ using the distribution P from the above strategy, and then reconstruct
the image as an ensemble of the sampled model x̄ = Eθ∼P (f(xu|θ)). In so doing,
the variance of the predicted value can be used as an uncertainty estimate given
the ensemble. This alternative approach provides several benefits: (1) it accel-
erates the learning because the expected depth of the network is much shorter;
(2) this simultaneously helps the error terms to be backpropagated better as the
depth is shortened, allowing us to train deeper networks if desired; (3) due to
the stochastic connection, each subnetwork can see different levels of residual
noise that help the network learn better and become more robust.

In addition, we used dilated convolution to efficiently increase the receptive
field. In the original DC-CNN framework, each denoising subnetwork only con-
sists of 5 layers of 3 × 3 2D convolution layers, which has a limited receptive
field of size 11. In our new s-DC-CNN framework, we employed the dilated con-
volution except for the first and the last convolution that has a receptive field
of size 23. It is of note that compared to pooling operation, the dilated convolu-
tion can avoid the needs of upsampling, and subsequently prevents information
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loss and interpolation artefacts, and also keeps the network more compact. Fur-
thermore, we employed batch-normalisation to improve the training and applied
leaky rectified linear unit with α = 0.01.

3 Results

Experimental Settings. In order to test the efficacy of our proposed DC-CNN
method for the DT-CMR reconstruction, we performed the following simulation
based studies. First, we simulated undersampled DT-CMR datasets using in vivo
DT-CMR data acquired at peak-systole or in diastasis in healthy volunteers. The
data were acquired using a breath hold stimulated echo acquisition mode EPI
sequence [15], with diffusion encoded over 1 complete cardiac cycle (detailed
scanning parameters in Supplementary Materials). Evaluation has been carried
out using 178 DT-CMR scans.

The image data were firstly converted into k-space data using an inverse
Fourier transform and undersampled by a pseudo-random 1D undersampling
mask. Each line was sampled from a Gaussian distribution with mean centred
at the origin of k-space and variance proportional to the extent of k-space. We
applied various random undersampling patterns to the data acquired for different
diffusion weighting directions and different signal averages in order to make the
trained network generalise better on various aliasing artefacts. Note that in this
work, the magnitude images were used. However, the effectiveness of the method
to complex-valued data has been previously verified in [20].

The studied scans were split into independent training, validation and test
sets containing 142, 17 and 19 cases, respectively. In the training stage, both
information from fully-sampled data and undersampled data were used. In the
testing (inference) stage, the zero-filled undersampled data were input to the
trained network to yield a reconstruction.

Comparison Studies. To compare with other state-of-the-art conventional CS-
MRI and recently proposed deep learning based methods, we re-implemented the
following methods for the DT-CMR reconstruction, including a dictionary learn-
ing based CS-MRI (i.e., DLMRI [17]) and a U-Net based method (UNET-CS ).
For the proposed approach, we selected to use 6-layer subnetwork with nc = 15
that yields a 105-layer network including the DC layers. Note that the hyper-
parameters were chosen from a grid search at a coarse scale but is by no means
optimal. We performed an ablation study to test the benefits of the proposed
improvements. The original network without and with dilated convolution are
denoted as DC-CNN [19] and DC-CNN-d. The proposed stochastic version with-
out and with dilated convolution are referred as s-DC-CNN and s-DC-CNN-d
(the detailed network architectures are described in the supplementary mate-
rials). For the stochastic networks, we used all subnetworks for reconstruction
except for when generating the uncertainty map.



300 J. Schlemper et al.

Training Settings. Each network was trained for 100 epochs using mean
squared error loss between the network reconstruction and the ground truth.
In the first 50 epochs, the network was trained on various undersampling factors
(UF) of (0–12×). For the last 50 epochs, the network was fine-tuned for the UF
of {2×, 5×, 8×} individually for each experiment. We used the Adam optimiser
with a learning rate of 10−4, that was subsequently reduced by a factor of 10 for
every 20 epochs during the fine-tuning.

Results. Table 1 tabulates mean and standard deviation (std) of the peak
signal-to-noise ratio (PSNR) we obtained by various CS-MRI methods. For the
three different UF we tested, the proposed s-DC-CNN-d obtained the best per-
formance, and all our DC-CNN variations outperformed the DLMRI and the
UNET-CS. This has been further confirmed by the root mean-squared-error
(RMSE) calculated from the computed fractional anisotropy (FA), mean diffu-
sivity (MD) and helix angle (HA) of the 5× undersampling cases.

Table 1. Quantitative results [mean (std)] of the 19 independent testing subjects.

UFModel s-DC-CNN-d s-DC-CNN DC-CNN-d DC-CNN UNET-CS DLMRI Zero-Filled

2× PSNR 37.747 (2.41) 37.667 (2.35) 37.64 (2.33) 37.73 (2.36) 33.16 (2.14) 33.62 (2.26) 27.89 (2.08)

5× PSNR 30.96 (2.10) 30.85 (2.13) 30.88 (2.08) 30.8 (2.1) 28.40 (2.44) 28.40 (2.44) 23.71 (1.72)

8× PSNR 28.81 (2.00) 28.50 (2.01) 28.79 (1.97) 28.62 (2.00) 27.35 (2.00) 25.88 (2.36) 22.71 (1.64)

5× FA RMSE 0.08 (0.03) 0.08 (0.03) 0.09 (0.03) 0.09 (0.03) 0.11 (0.05) 0.11 (0.04) 0.18 (0.04)

MD RMSE 0.11 (0.05) 0.12 (0.05) 0.11 (0.05) 0.12 (0.05) 0.16 (0.08) 0.15 (0.07) 0.19 (0.10)

HA RMSE 13.34 (2.93) 13.97 (3.11) 13.68 (2.91) 14.04 (3.04) 16.29 (3.27) 17.88 (2.9) 26.87 (3.31)

Fig. 1. Convergence analysis of the s-DC-CNN-d compared to the DC-CNN and the
UNET-CS.

Convergence analysis (Fig. 1) shows that the proposed s-DC-CNN-d learned
slower, but eventually generalised better. The fact that UNET-CS was quickly
overfitted may be due to low SNR in the original images that hamper the net-
work to learn a meaningful end-to-end mapping. Compared to the DC-CNN,
the proposed s-DC-CNN-d obtained a better PSNR with less epochs during the
validation that can be attributed to the fact that the proposed s-DC-CNN-d has
an accelerated learning.

Qualitative visualisation (Fig. 2) demonstrates that perceptually both
DLMRI and the UNET-CS are over-smoothed in their reconstructed results with
clearly larger errors, and the textural details were better preserved in the results
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Fig. 2. Qualitative comparison of the reconstructions and error maps for the 5×
undersampling.

Fig. 3. Comparison of the diffusion tensor parameters and error maps. From top to
bottom: fractional anisotropy (FA), mean diffusivity (MD) (10−3mm2s−1) and Helix-
angle (HA) (degrees).

obtained by the proposed s-DC-CNN-d. From a qualitative analysis, we found
that the generated uncertainty estimate using our s-DC-CNN-d highlighted the
most challenging area for our algorithms to reconstruct, e.g., the edges of the
ventricle and the highly blurred areas in the undersampled input.

Figure 3 shows the computed FA, MD and HA for the 5× undersampling.
Overall, our proposed s-DC-CNN-d achieved better calculated diffusion tensor
parameters compared to the ones obtained by other methods. In particular,
results obtained by the s-DC-CNN-d have a more smooth transition of the HA
from epicardial to endocardial surface in the normal left ventricular free wall
that resembles the HA calculated by the fully sampled ground truth data.

Finally, we timed the reconstruction of each algorithm (on a GeForce GTX
1080 GPU) and obtained (1) s-DC-CNN-d: 0.065 ± 0.03 s per frame, (2)
s-DC-CNN: 0.04 ± 0.02 s per frame, (3) DC-CNN-d: 0.052 ± 0.02 s per frame,
(4) DC-CNN: 0.04 ± 0.02 s per frame and (5) UNET-CS: 0.003 ± 0.04 s per
frame. The DLMRI method has only a CPU implementation and takes ≈60 s
per iteration, and we used 400 iterations per image (>6 h).
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4 Discussion and Conclusion

In this study, we proposed a novel deep cascaded CNN based CS-MRI and its
stochastic variation for the DT-CMR reconstruction. To the best of our knowl-
edge, it is the first work to consider such application to DT-CMR although the
current study is nevertheless simulation based. In addition, we are the first to
consider such a stochastic formulation to take the variance of the reconstruction
models into account that can be visualised via an uncertainty map. Compared
to other state-of-the-art methods using dictionary learning or U-Net based deep
learning architecture, our proposed method incorporated dilated convolution and
achieved significantly superior reconstruction fidelity with very efficient compu-
tation that can be translated into a real-time reconstruction scheme working
directly on the scanner. As a future direction, we will carry on further develop-
ment from on our current simulation based study to accelerate DT-CMR recon-
struction and improve its spatial resolution and we can envisage its deployment
in various clinical applications.
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