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Abstract. Deep learning approaches have shown promising perfor-
mance for compressed sensing-based Magnetic Resonance Imaging.
While deep neural networks trained with mean squared error (MSE)
loss functions can achieve high peak signal to noise ratio, the recon-
structed images are often blurry and lack sharp details, especially for
higher undersampling rates. Recently, adversarial and perceptual loss
functions have been shown to achieve more visually appealing results.
However, it remains an open question how to (1) optimally combine
these loss functions with the MSE loss function and (2) evaluate such a
perceptual enhancement. In this work, we propose a hybrid method, in
which a visual refinement component is learnt on top of an MSE loss-
based reconstruction network. In addition, we introduce a semantic inter-
pretability score, measuring the visibility of the region of interest in both
ground truth and reconstructed images, which allows us to objectively
quantify the usefulness of the image quality for image post-processing
and analysis. Applied on a large cardiac MRI dataset simulated with 8-
fold undersampling, we demonstrate significant improvements (p < 0.01)
over the state-of-the-art in both a human observer study and the seman-
tic interpretability score.
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Compressed sensing-based Magnetic Resonance Imaging (CS-MRI) is a promis-
ing paradigm allowing to accelerate MRI acquisition by reconstructing images
from only a fraction of the normally required k-space measurements. Tradition-
ally, sparsity-based methods and their data-driven variants such as dictionary
learning [9] have been popular due to their mathematically robust formulation
for perfect reconstruction. However, these methods are limited in acceleration
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factor and also suffer from high computational complexity. More recently, several
deep learning-based architectures have been proposed as an attractive alterna-
tive for CS-MRI. The advantages of these techniques are their computational
efficiency, which enables real-time application, and that they can learn power-
ful priors directly from the data, which allows higher acceleration rates. The
most widely adopted deep learning approach is to perform an end-to-end recon-
struction using multi-scale encoding-decoding architectures [7,14]. Alternative
approaches carry out the reconstruction in an iterative manner [15], conceptu-
ally extending traditional optimization algorithms. Most previous studies focus
on exploring the network architecture; however, the optimal loss function to
train the network remains an open question.

Recently, as an alternative to the commonly used MSE loss, adversarial [2]
and perceptual losses [5] have been proposed for CS-MRI [14]. As these loss func-
tions are designed to improve the visual quality of the reconstructed images, we
refer to them as wisual loss functions in the following. So far, approaches using
visual loss functions still rely on an additional MSE loss for successful training of
the network. Directly combining all these losses in a joint optimization leads to
a suboptimal training process resulting in reconstructions with lower peak signal
to noise ratio (PSNR) values. In this work, we propose a two-stage architecture
that avoids this problem by separating the reconstruction task from the task of
refining the visual quality. Our contributions are the following: (1) we show that
the proposed refinement architecture improves visual quality of reconstructions
without compromising PSNR much, and (2) we introduce the semantic inter-
pretability score as a new metric to evaluate reconstruction performance, and
show that our approach outperforms competing methods on it.

2 Background

Deep Learning-Based CS-MRI Reconstruction. Let = € CV denote a
complex-valued MR image of size N to be reconstructed, and let y € CM
(M << N) represent undersampled k-space measurements obtained by y =
F,x + ¢, where F, is the undersampling Fourier encoding operator and ¢ is
complex Gaussian noise. The linear inversion z, = Fl{{ y, also called zero-filled
reconstruction, is fundamentally ill-posed and generates an aliased image due to
violation of the Nyquist-Shannon sampling theorem. Therefore, it is necessary
to add prior knowledge into the reconstruction to constrain the solution space,
traditionally formulated as the following optimization problem:

arg min R(z) + A|ly — F,z|)3 (1)

Here, R expresses a regularization term on z (e. g. {y/¢;-norm for CS-MRI), and
A is a hyper-parameter reflecting the noise level. In deep learning approaches,
one learns the inversion mapping directly from the data. However, rather than
learning the mapping from Fourier directly to image domain, it is common to
formulate this problem as de-aliasing the zero-filled reconstructions x, in the
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image domain [12,14]. Let D be our training dataset of pairs (z,z,) and & =
R(x,) be the image generated by the reconstruction network R. Given D, the
network is trained by minimizing the empirical risk L(R) = E(, 4,)~p d(2, ),
where d is a distance function measuring the dissimilarities between the reference
fully-sampled image and the reconstruction.

For the choice of the reconstruction network R, most previous approaches [7,
14] relied on an encoder-decoder structure (e.g. U-Net [10]), but our prelimi-
nary experiments showed that these architectures performed subpar in terms of
PSNR. Instead, we use the architecture proposed in [12], as it performed well
even for high undersampling rates. This network consists of n. consecutive de-
aliasing blocks, each containing ng convolutional layers. Each de-aliasing block
takes an aliased image (Y € R2V as the input and outputs the de-aliased image
20D € RN with i € {0,...n. — 1} and 2° = z,, = Ffy being the zero-filled
reconstruction. Interleaved between the de-aliasing blocks are data consistency
(DC) layers, which enforce that the reconstruction is consistent with the acquired
k-space measurements by replacing frequencies of the intermediate image with
frequencies retained from the sampling process. This process can be seen as an
unrolled iterative reconstruction where de-aliasing blocks and DC layers perform
the role of the regularization step and data fidelity step, respectively [12].

Loss Functions for Reconstruction. In deep learning-based approaches to
inverse problems, such as MR reconstruction and single image super-
resolution, a frequently used loss function [7,15] is the MSE loss Lyse(R) =
Ezz )~z — §c||§ Though networks trained with MSE criterion can achieve
high PSNR, the results often lack high frequency image details [1]. Perceptual
loss functions [5] are an alternative to the MSE loss. They minimize the distance
to the target image in some feature space. A common perceptual loss is the
VGG loss Lvaa(R) = Eay~pllfvea(z) — fvgg(i')ng, where fygg denotes
VGG feature maps [13].

Another choice is an adversarial loss based on Generative Adversarial Net-
works (GANSs) [2,3]. A discriminator and a generator network are setup to com-
pete against each other such that the discriminator is trained to differentiate
between real and generated samples, whereas the generator is encouraged to
deceive the discriminator by producing more realistic samples. For us, the dis-
criminator D learns to differentiate between fully-sampled and reconstructed
images, and the reconstruction network, playing the role of the generator, reacts
by changing the reconstructions to be more similar to the fully-sampled images.
The discriminator loss is then given by Loan(D) = —E(; 4, )~plog(D(z)) +
log(1 — D(R(z,))). During training, the reconstruction network minimizes
Laav(R) = —E(g,2,)~p log(D(R(x,))), which has the effect of pulling the recon-
structed images closer towards the distribution of the training data.

Perceptual losses are known to increase textural details [6], but also to
introduce high frequency artifacts [2], whereas adversarial losses can produce
realistic, high frequency details [6]. As perceptual and adversarial losses com-
plement each other, it is sensible to combine them into a single visual loss
Lyis(R) = Laav(R) + Lyaa(R). For MR reconstruction, previous attempts [14]
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further combined adversarial and/or perceptual loss with the MSE loss to sta-
bilize the training. This simultaneous optimization yields acceptable solutions,
typically however with low PSNR. We argue this is because the different training
objectives compete with each other, leading to the network ultimately converging
to a suboptimal local maximum.
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(a) Stage 1: training of reconstruction network using Lyse(R).
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(b) Stage 2: training of visual refinement network using Lyis(V).

Fig. 1. Overview of proposed method.

3 Method

The observation above motivates our approach: instead of directly training a
reconstruction network with all loss functions jointly, we use a two-stage proce-
dure, detailed in Fig. 1. In the first stage, the reconstruction network R is trained
with Lyse(R). In the second stage, we fix the reconstruction network and train
a visual refinement network V on top of R by optimizing Lyis(V). The final
reconstruction is then given by & = R(z,,) + V(R(xy)), i.e. V learns an additive
mapping which refines the base reconstruction. In this setup, discriminator and
VGG network still receive the full reconstruction & as input.

The decoupling of the refinement step from the reconstruction task has sev-
eral benefits. The discriminator begins training by seeing reasonably good recon-
structions, which avoids overfitting it to suboptimal solutions during the train-
ing process. Furthermore, compared to training from scratch, the optimization
is easier as it starts closer to the global optimum. Finally, the visual refinement
step always starts out from the best possible MSE solution achievable with R,
whereas this guarantee is not given when jointly training R with Lysg and Lyis.

The choice of the architecture for the visual refinement network is flexible,
and in this work we use a U-Net architecture. Within V| we gate the output
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of the network by a trainable scalar A, which improves the adversarial training
dynamics during the early stages of training. If we initialize A = 0, the discrim-
inator receives & = R(x, ), and the gradient signal to V is forced to zero. This
allows the discriminator to initially only learn on clean reconstructions from R,
untainted by the randomly initialized output of V. For the refinement network,
the impact of less useful gradients is reduced while the discriminator has not yet
learned to correctly differentiate between the ground truth (i.e. fully-sampled
data) and the reconstructions. We also scale R(z,,) to the range of (—1, 1) before
using it as Vs input and then scale & back to the original range after adding the
refinement. In accordance to our goal of reaching high PSNR values, we constrain
the output z of V (before gating with \) with an ¢!-penalty Lpen(V) = |2y 1.
This guides V to learn the minimal sparse transformation needed to fulfill the
visual loss, i.e. to change the MSE-optimal solution only in areas important for
visual quality. In practice, this means that our approach yields higher PSNR
values compared to joint training, as we show in Sect. 4.

We also utilize a couple of techniques known to stabilize the adversarial learn-
ing process. For the discriminator network, we use one-sided label smoothing [11]
of 0.1, and an experience replay buffer [8] of size 80 with probability p = 0.5 to
draw from it. For the refinement network, we add a feature matching loss [11]
Lieat(V) =Eo)p v Zfileg)(x) — fg')(;%)Hl, where fg') denotes the i’th of
N feature maps of the discriminator. The total loss for V is given by

1(£adv(v) + £feat<v>> + EVGG(V)

L(V) = + aLpen (V) (2)

2 M N 0]

with « being the penalty strength, and M, N, O constants set such that % =
% = ﬁ"% = 1 in the first iteration of training, which amounts to assigning
the two adversarial loss terms the same initial importance as Lygg. The penalty
strength « is important for training speed and stability. Choosing a such that
Lpen = 0.1 in the first training iteration gave us sufficiently good results.

Semantic Interpretability Score. The most commonly used metrics to evalu-
ate reconstruction quality are PSNR and the structural similarity index (SSIM).
It has been shown that those two metrics do not necessarily correspond to visual
quality for human observers, as e.g. demonstrated by human observer studies
in [1,6]. Therefore, PSNR and SSIM alone are not sufficient in the evaluation of
image reconstructions. This poses the question on how to evaluate reconstruction
quality taking human perception into account. One possibility is to let domain
experts (e.g. clinicians and MRI physicists) rate the reconstructions and average
the results to form a mean opinion score (MOS). Obtaining opinion scores from
expert observers is costly, hence cannot be used during the development of new
models. However, if expert-provided segmentation labels are available, we can
design a metric indicating how visible the segmented objects are in the recon-
structed images, in the following referred to as semantic interpretability score
(SIS). This metric is motivated by Inception scores [11] in GANs, which tells
how well an Inception network can identify objects in generated images.
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SIS is defined as the mean Dice overlap between the ground truth segmen-
tation and the segmentation predicted by a pre-trained segmentation network
from the reconstructed images. The scores are normalized by the average Dice
score on the ground-truth images to obtain a measure of segmentation perfor-
mance relative to the lower error-bound. We only consider images in which at
least one instance of the object class is present, and ignore the background class.
We argue that if a pre-trained network is able to produce better segmentations,
the regions of interest are better visible (e.g. have clearly defined boundaries)
in the images. Implementing SIS requires a segmentation network trained on
the same distribution of images as the reconstruction dataset. In practice, the
segmentation network is trained on the fully-sampled images used for training
the reconstruction method. We trained an off-the-shelf U-Net architecture to
segment the left atrium, achieving a Dice score of 0.796 on the ground truth
images.

4 Experiments

Datasets. We evaluated our method on 3D late gadolinium enhanced cardiac
MRI datasets acquired in 37 patients. We split the 2D axial slices of the 3D
volumes into 1248 training images, 312 validation images, and 364 testing images
of size 512 x 512 pixels. For training, we generated random 1D-Gaussian masks
keeping 12.5% of raw k-space data, which corresponded to an 8x speed-up.
During testing, we randomly generated a mask for each slice, which we kept the
same for all evaluated methods.

Training Details and Parameters. For the reconstruction network, we used
n. = 3 de-aliasing blocks, and ng = 3 convolutional layers with 32 filters of size
3 x 3. For the refinement network, we used a U-Net with 32, 64, 128 encoding
filters and 64, 32 decoding filters of size 4 x 4, batch normalization and leaky
ReLU with slope 0.1. The discriminator used a PatchGAN [4] architecture with
64, 128, 256, 512, 1024, 1024 filters of size 4 x 4, and channelwise dropout after
the last 3 layers. The VGG loss used the final convolutional feature maps of
a VGG-19 network pre-trained on ImageNet. The reconstruction network was
trained for 1500 epochs with batch size 20, the refinement network for 200 epochs
with batch size 5, both using the Adam optimizer with learning rate 0.0002,
61 = 0.5, B3 = 0.999. We found that the training is sensitive to the network’s
initialization. Thus, we chose orthogonal initialization for the refinement network
and Gaussian initialization from N(0,0.02) for the discriminator.

Evaluation Metrics. We use PSNR and SIS as evaluation metrics. To further
evaluate our approach and assess how useful SIS is as a proxy for visual quality,
we also asked a domain expert to rate all reconstructed images in which the left
atrium anatomy and the atrial scars are visible. The rating ranges from 1 (poor)
to 4 (very good), and is based on the overall image quality, the visibility of the
atrial scar and occurrence of artifacts. To obtain an unbiased rating, the expert
was shown all images from all methods in randomized order.
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Results. We compared our approach against three other reconstruction
methods: RecNet [12] (i.e. the proposed approach without refinement step),
DAGAN! [14] using both adversarial and perceptual loss, and DLMRI? [9], a
dictionary learning based method. No data augmentation was used for any of
the methods.

Table 1. Quantitative results for 8-fold undersampling. Highest measures in bold.

Method PSNR (dB) |MOS SIS
Ground truth 0 3.78+0.45 |1
RecNet [12] 32.46 £2.26 | 2.75+ 0.78 | 0.801
DLMRI [9] 31.45+2.40 |1.09 +0.29 | 0.842
DAGAN [14] 28.41+1.91 |2.61+0.83 |0.812
Proposed method | 31.89 +2.18 | 3.24 + 0.63 | 0.941

We show the results of our evaluation in Table 1, and a sample reconstruc-
tion in Fig.2. RecNet performed best in terms of PSNR, which is expected as
its training objective directly corresponds to this metric, but its reconstructions
were over-smoothed. DLMRI had the lowest MOS, with its reconstructions show-
ing heavy oil paint artifacts. DAGAN, combining MSE loss with a visual loss
function without any further precautions, suffered from low PSNR. While its
reconstructions also looked sharp, they were noisy and often displayed aliasing
artifacts, which was reflected in a lower MOS compared to our method. Our pro-
posed approach achieved significantly® higher mean opinion score than all other
methods, while still maintaining high PSNR. Reconstructions obtained by our
method appeared sharper with better contrast. Moreover, our method achieved
the highest SIS close to segmentation performance on the ground truth data,
which indicated that the segmented objects were clearly visible in the recon-
structed images.

These results further demonstrate that PSNR alone is a subpar indicator for
reconstruction quality, making our SIS a useful supplement to those metrics.
For our method, SIS agreed with the quality score given by the expert user.
Somewhat surprising is that the SIS of DLMRI is slightly higher than RecNet and
DAGAN although DLMRI has the worst MOS. We conjecture this is because,
although DLMRI reconstructed images lack textural details, areas belonging to
the same organ have similar intensity values, which helps the segmentation task.
While scoring through an expert user is thus still the safest way to evaluate
reconstructions, we believe that in conjunction with PSNR, SIS is a helpful tool
to quickly judge image quality during the development of new models.

! https://github.com/nebulaV/DAGAN.
2 http://www.ifp.illinois.edu/~yoram/DLMRI-Lab/DLMRIhtml.
3 Significance determined by a two-sided paired Wilcoxon signed-rank test at p < 0.01.
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(d) RecNet (e) Proposed Method (f) Ground Truth

Fig. 2. Qualitative visualization for 8-fold undersampling. Contour of predicted seg-
mentation of left atrium in yellow, contour of ground truth segmentation in red.

5 Conclusion

In this work, we highlighted the inadequacy of previously proposed deep learn-
ing based CS-MRI methods using MSE loss functions in direct combination with
visual loss functions. We improved on them by proposing a new refinement app-
roach, which incorporates both loss functions in a harmonious way to improve the
training stability. We demonstrated that our method can produce high quality
reconstructions with large undersampling factors, while keeping higher PSNR
values compared to other state-of-the-art methods. We also showed that the
reconstruction obtained by our method can provide the best segmentation of
the ROIs among all compared methods.
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