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Abstract. This paper presents a method to generate a volumetric phan-
tom with internal anatomical structures from the patient’s skin surface
geometry, and studies the potential impact of this technology on planning
medical scans and procedures such as patient positioning. Existing scan
planning for imaging is either done by visual inspection of the patient or
based on an ionizing scan obtained prior to the full scan. These methods
are either limited in accuracy or result in additional radiation dose to the
patient. Our approach generates a “CT”-like phantom, with lungs and
bone structures, from the patient’s skin surface. The skin surface can be
estimated from a 2.5D depth sensor and thus, the proposed method offers
a novel solution to reduce the radiation dose. We present quantitative
experiments on a dataset of 2045 whole body CT scans and report mea-
surements relevant to the potential clinical use of such phantoms. (This
feature is based on research, and is not commercially available. Due to
regulatory reasons its future availability cannot be guaranteed.)

1 Introduction

Medical imaging technologies such as Computed Tomography (CT) plays a piv-
otal role in clinical diagnosis and therapy planning. However, acquisition of CT
data exposes patients to potentially harmful ionizing radiation. Several planning
methodologies to reduce the radiation dose have been developed [7,13]. However,
existing CT scan planning is often performed based on coarse patient measure-
ment estimates from visual inspection by the technician or using scouting scans
(topograms). For certain other imaging methods such as emission based tomog-
raphy (PET/SPECT), a CT scan is obtained prior to the procedure, to be used
for attenuation correction [14]. Both these methods expose patients to additional
radiation. In this paper, we present an approach to generate a volumetric phan-
tom with density estimates of lungs and bone structures, from the patient’s body
surface mesh.

With the recent developments in human body shape modeling and simula-
tion, accurate and detailed body models are achievable for a wide range of appli-
cations in multimedia, safety, as well as diagnostic and therapeutic healthcare
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Fig. 1. Illustration of data. From left to right we show the patient’s body surface
mask, lungs mask, bone mask and phantom respectively, for 2 different patients. All
masks and phantoms are volumetric, images displayed here are orthographic projections
(averaged along the AP axis).

domains [10,11]. However, existing statistical body shape modeling approaches
mainly focus on the skin surface, while the healthcare domain pays more atten-
tion to the internal anatomical structures such as organs [5]. Several compu-
tational phantoms with internal anatomy have been developed over the years,
particularly for the purpose of radiation dosimetry analysis [8]. Attempts have
also been made to generate personalized phantoms based on patient’s physical
attributes, such as body size (height, width), weight, BMI and/or gender [2,14],
which reportedly offer benefits over universal phantoms. However, these attribute
measurements are often approximate, which limits the degree of personalization,
thus, in turn limiting the potential clinical impact.

We present a learning-based framework to generate a volumetric phantom
from a detailed mesh representation of the patient’s body surface; such body
surface representation can be obtained using range sensors [10]. The generated
phantom is a 3D volumetric image where the voxel intensity provides an esti-
mate of the physical density based on the statistical distribution over a large
dataset of patient scans. Figure 1 illustrates “ground truth” phantoms of differ-
ent patients which are computed from their whole body CT scans. In this study,
we focus on a phantom with lungs and bone structures, which allows evaluating
our framework on its ability to generate finer details (on bones structures), while
simultaneously attempting to capture the correlation between the body geom-
etry and size/shape of lungs. During the training phase, we utilize the whole
body CT scans to obtain the volumetric masks for skin, lungs, and bones, and
then train a conditional deep generative network [3,4] to learn a mapping from
skin mask to a phantom with lungs and bones. Training is performed using more
than 1500 whole body CT scans. Quantitative evaluations are conducted on 133
unseen patients by comparing the generated and ground truth phantoms. We
also report several clinically relevant quantitative measures on phantoms which
clearly demonstrates the benefits of generating phantoms from the skin surface.

2 Methods

Given the whole body CT scan of a given subject in the training dataset, we
obtain the skin surface mask ms, lungs mask ml and bone mask mb using existing
CT segmentation algorithms [1], followed by a visual validation. We define the
phantom volume p as a weighted combination of these binary masks,
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p = α · ms + β · ml + δ · mb (1)

where α, β, δ are weights for phantom synthesis. For intensity value of the
phantom voxels to be comparable to the radiodensity of the respective regions,
we set these weights to be proportional to the average Hounsfield units (HU)
in those regions relative to the HU of air (=−1000). In our experiments, we set
α = 1000, β = −800, δ = 500. Figure 1 shows phantoms for different patients.

To model the compositional nature of the phantom, we propose to use a deep
network architecture that first estimates the masks for key anatomical regions
(in our case, lungs, and bones) from the skin surface and then combines them
into the phantom using Eq. 1. While predicting the separate masks for different
regions offers the advantage of computing the losses independently and back-
propagating them, it suffers from the risk that the masks may not be correlated
with each other and result in physically implausible phantoms (e.g. with ribs
of spine penetrating the lungs). Thus, the network architecture and training
procedure must be appropriately designed to ensure that the generated phantoms
are predicted with sufficiently high accuracy while ensuring physical consistency.

To achieve physical consistency, we propose to use Generative Adversarial
Networks (GANs) [3]. More specifically, we employ conditional adversarial net-
works (cGANs) [4] which allows enforcing physical consistency without sacrific-
ing the input output correlation (in our case, the correlation between the skin
surface volume and predicted phantom). Figure 2 shows the overview of the pro-
posed framework. In the following sections, we first introduce cGANs and then
describe the details on how to adapt them to the phantom generation task.

2.1 Conditional GAN

The cGAN learns a mapping G : {x, z} → y from an observed image x with
additional random noise z to a synthesized image y, where x is referred as a
‘real’ sample or the condition from the original dataset, y is referred as a ‘fake’
sample generated by the trained generator G, and z is the random noise to
ensure the image variability. The adversarial procedure trains a generator to
produce outputs that can hardly be distinguished as a ‘fake’ by the co-trained
discriminator D. Unlike GAN, the discriminator in cGAN utilizes both input x
and output y of the generator to determine the ‘fake’ label based on the joint
distribution. The objective function of cGAN is formulated as:

LcGAN(G,D) = Ex,y∼Pdata(x,y)[log D(x, y)]
+ Ex∼Pdata(x),z∼Pz(z)[log(1 − D(x,G(x, z))],

(2)

where G is the generator and D is the discriminator. The optimal G∗ minimizes
this objective against an adversarial D that maximizes it, and it can be solved
via a min-max procedure.

2.2 Phantom Generation

The phantom generation is done at two scales. At the coarser scale, the
task is formulated as a segmentation task, where network generates a body
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segmentation into two components - lungs mask and bone mask. At the finer
scale within each mask, the network generates as many details as possible. Com-
bining the losses of these two scales, the overall loss function of phantom gener-
ation is then defined as the combination of the cGAN loss and the segmentation
loss:

Fig. 2. Overview of the proposed framework for phantom generation. Images
displayed here are orthographic projections (averaged along the AP axis).

Lphantom(G,D) = LcGAN(G,D) + Lseg(G) (3)

where G is the generator from surface mask to the phantom, and D is the
corresponding discriminator to determine whether a pair of skin and phantom
are from the ground truth or the synthesis of generated masks. The cGAN loss
is adapted as:

LcGAN (G,D) = Ems,pgt∼Pdata(ms,pgt)[log D(ms, p
gt)]

+ Ems∼Pdata(ms),z∼Pz(z)[log(1 − D(ms, p
G)]

(4)

where z is the random noise, ms is skin mask, pgt is the ground truth phantom
and pG is the phantom synthesized from the masks mG

l , mG
b generated by G

using Eq. 1. The segmentation loss that quantifies the similarity between the
generated and ground truth segmentation is formulated as:

Lseg(G) = Es,mgt∼Pdata(ms,mgt)H(mgt,mG) (5)

where mgt = mgt
l ,mgt

b is the ground truth mask, mG = mG
l ,mG

b is the generated
mask from G, and H is the cross entropy function.

This objective function is optimized via the cGAN adversarial procedure to
obtain an optimal generator G∗,

G∗ = arg min
G

max
D

Lphantom(G,D) (6)



Towards Generating Personalized Volumetric Phantom 175

2.3 Architecture

We adapt our generator and discriminator network architectures from the Image-
to-Image translation [4]. Both networks use modules consisting of Convolution-
InstanceNorm-ReLU. The generator is a “U-Net” [9] with a stride of 2. The size
of the embedding layer is 1 × 1 × 1. Two drop-out layers serve as the random
noise z. We employ a patch-based discriminator which outputs an N × N × N
matrix. We set N to 30 with a receptive field of size 34 × 34 × 34.

3 Experiments

3.1 Experimental Setup

To evaluate our approach, we collected 2045 whole body Computed Tomography
(CT) scans from patients at several different hospital sites in North America and
Europe. Our dataset contains adults with age between 20 and 87, of which 45%
are female. The neck to abdomen length varies from 1243 ± 135 mm. We ran-
domly select 133 patients for testing, and use the rest for training and validation.
We present a thorough analysis on phantom prediction from ground truth skin
surface masks, which serves as an upper bound to what may be achievable with
estimated skin surfaces using range sensors [10].

Given the skin masks and phantoms, we normalize all images to a single scale
using the neck and pubic symphysis body markers (since these can be estimated
from the body surface data with high accuracy <2 cm) and scaled to 128.

We compare the proposed method (referred as skin2masks+GAN ) with 2
baseline approaches: (i) Use voxelwise L1-loss, to regress the phantom from skin
mask (referred as skin2phantom); (ii) Use binary cross entropy loss to generate
the lungs and bone masks from the skin mask, and then obtain the phantom
using Eq. 1 (referred as skin2masks). For all the experiments, we employ the same
“U-Net” architecture and train using Adam [6] with mini-batch SGD. Learning
rate was set to 10−5.

3.2 Phantom Generation from Skin Surface

Quantitative Analysis. For a quantitative comparison between the proposed
methods and baselines, we report the mean MS-SSIM [12] and mean L1-error
in Table 1. The MS-SSIM score, which measures the visual similarity with the
ground truth phantom, is much higher for skin2masks+GAN (0.9866) compared
to 0.9516 for skin2phantom and 0.9533 for skin2masks. In addition, the proposed
method gains the lowest L1-loss among the three strategies as well. We attribute
the improvement in performance to the conditional adversarial training. Our
understanding here is that although the two masks are spatially non-overlapping
and linearly composed in the phantom, there are contextually correlated. This
not only makes it possible to predict organs from surfaces but also indicates the
necessity of co-optimization among parts to achieve global consistency.
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Table 1. Comparison between different approaches for phantom generation

skin2phantom skin2masks skin2masks+GAN

L1-loss 17.3549 17.0599 16.0404

MS-SSIM (along SI axis) 0.9516 0.9533 0.9866

MS-SSIM (along AP axis) 0.9514 0.9525 0.9752

Qualitative Analysis. Figure 4 show images of phantoms, predicted using the
3 methods, for several different patients. Observe that the generated phantoms
from the proposed pipeline (in column 3) look visually plausible with excellent
details in lungs and bone structures, indicating that the trained model reasonably
maintains the underlined structures. In addition, the predicted lungs and bones
mostly display adaptive variation in sizes with the ground truth. We can also see
that visually neither of the two baseline methods engenders comparable quality
of phantoms with the proposed method (column 3). The skin2phantom produce
less details especially over the bone regions. A closer, more detailed look also
reveals several issues. For patient in row 1, spinal curvature is not predicted from
his skin surface, which is expected; in general, the predicted spinal columns
appear more straight than the real cases. Also, the predictions for relatively
larger patients (row 3–4) are not as detailed, especially in the hip region. For
patient in row 4, notice that the shape of the right lung in underestimated; we
guess that the thicker fat layer increases the difficulty of prediction, thereby,
suggesting potential limits of the approach.

3.3 Studying Clinical Relevance of the Synthesized Phantoms

Density Estimation. To study the accuracy of the predicted density estimates,
we computed the maximum deviation between the mean slice density profiles
(mean intensity for every slice along SI axis) of predicted and ground truth
phantoms. Such profile for a patient in testing set is shown in Fig. 3(a). The
maximum deviation over testing set has a mean error of 35.73 ± 19.01, which
is promising. However, the histogram of the maximum deviations (see Fig. 3(b))
suggests that for 3–4% cases, error may be too high (above 80).

Lungs Estimation. Over the testing data, the distance between lung top and
liver top varies between 123 and 195 mm. The lung volume varies significantly
with ratio between the smallest to the largest lungs at about 3.2. We obtain
the left and right lung masks from the generated phantoms and measure the
volume. For volume estimation, the mean percentage error is 21.37 ± 13.24 and
18.75±14.29 for left and right lung respectively. In comparison, the error reported
by attribute based phantom [14] is 28 ± 8 and 30 ± 15. We attribute this
improvement to using a detailed patient surface.

For potential use in patient positioning for lung scans, we measure the error
in estimating the position of the slice that marks the lung bottom. Our method
achieves a remarkably low mean error of 17.16 ± 12.81 mm (with max : 51,
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Fig. 3. Density estimation analysis (a) predicted and ground truth phantoms with
their corresponding density profiles shown in red and blue respectively, (b) histogram
of maximum deviation in mean slice density (MMSD) profile.

Fig. 4. Phantom generation results. Images displayed here are orthographic pro-
jections. Each row shows a different patient from the unseen test dataset; each column
is a different method and last column is the ground truth.
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90%: 33) and 15.55 ± 11.21 mm (with max : 30, 90%: 54) for left and right lung
respectively. Although the error is large for 5% of patients, the overall low mean
and 90-percentile errors clearly demonstrate the potential for clinical use.

Evaluation from Estimated Skin Surface. We use [10] to estimate complete
3D skin surface mesh and provide results for the cases for which we have both
depth and full body CT data (15 cases). The mean surface distance between
estimated and CT skin surface is 13.64±4.21 mm. The MS-SSIM of the predicted
phantom CT is 0.96 and average L1 loss is 17.28. The mean percentage error
for lung volume estimation increases from 21% to 27% with estimated surface
instead of CT surface, which is still better than using patient meta-data [14].

4 Conclusion

In this paper, we present a method to generate a volumetric phantom from
the patient’s skin surface, and report various quantitative measurements that
are achievable with deep learning based methods. While the generated patient
specific phantom is still likely to be limited in its ability to predict the internal
anatomy, but it may still be clinically more reliable for scan planning compared
to technician’s visual estimates and have the potential to be used for attenuation
correction in emission tomography.
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