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Abstract. Automatically detecting acoustic shadows is of great impor-
tance for automatic 2D ultrasound analysis ranging from anatomy seg-
mentation to landmark detection. However, variation in shape and sim-
ilarity in intensity to other structures make shadow detection a very
challenging task. In this paper, we propose an automatic shadow detec-
tion method to generate a pixel-wise, shadow-focused confidence map
from weakly labelled, anatomically-focused images. Our method: (1) ini-
tializes potential shadow areas based on a classification task. (2) extends
potential shadow areas using a GAN model. (3) adds intensity informa-
tion to generate the final confidence map using a distance matrix. The
proposed method accurately highlights the shadow areas in 2D ultra-
sound datasets comprising standard view planes as acquired during fetal
screening. Moreover, the proposed method outperforms the state-of-the-
art quantitatively and improves failure cases for automatic biometric
measurement.

1 Introduction

2D Ultrasound (US) imaging is a popular medical imaging modality based on
reflection and scattering of high frequency sound in tissue, well known for its
portability, low cost, and high temporal resolution. However, this modality is
inherently prone to artefacts in clinical practice due to low energies used and
the physical nature of sound waves propagation in tissue. Artefacts such as noise,
distortions and acoustic shadows are unavoidable, and have a significant impact
on the achievable image quality. Noise can be handled through better hardware
and advanced image reconstruction algorithms [7], while distortions can be tack-
led by operator training and knowledge of the underlying anatomy [15]. However,
acoustic shadows are more challenging to resolve.

Acoustic shadows are caused by sound-opaque occluders, which can poten-
tially conceal vital anatomical information. Shadow regions have low signal
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intensity with very high acoustic impedance differences at the boundaries. Sono-
graphers are trained to avoid acoustic shadows by using real-time acquisition
devices. Shadows are either avoided by moving to a more preferable viewing
direction or, if no shadow-free viewing direction can be found, a mental map
is compounded with iterative acquisitions from different orientations. Although
acoustic shadows may be useful for practitioners to determine the anatomical
properties of occluders, images containing strong shadows can be problematic for
automatic real-time image analysis methods which, such as; provide directional
guidance; perform biometric measurements; or automatic evaluate biomarkers,
etc. Therefore shadow-aware US image analysis would beneficial for many of
these applications, as well as clinical practice.

Contribution: (1) We propose a novel method that uses weak annotations
(shadow/shadow-free images) to generate an anatomically agnostic shadow con-
fidence map in 2D ultrasound images; (2) The proposed method achieves accu-
rate shadow detection visually and quantitatively for different fetal anatomies;
(3) To our knowledge, this is the first shadow detection model for ultrasound
images that generates a dense, shadow-focused confidence map; (4) The proposed
shadow detection method can be used in real-time automatic US image analy-
sis, such as anatomical segmentation and registration. In our experiments, the
obtained shadow confidence map greatly improves segmentation performance of
failure cases in automatic biometric measurement.

Related Work: US artefacts have been well studied in clinical literature,
e.g. [5,13] provide an overview. However, anatomically agnostic acoustic shadow
detection has rarely been the focus within the medical image analysis commu-
nity. [10] developed a shadow detection method based on geometrical modelling
of the US B-Mode cone with statistical tests. This is an anatomical-specific
technique designed to detect only a subset of ‘deep’ acoustic shadows, which has
shown improvements in 3D reconstruction/registration/tracking. [11] proposed
a more general solution using the Random Walks (RW) algorithm for US atten-
uation estimation and shadow detection. In their work, ultrasound confidence
maps are obtained to classify the reliability of US intensity information, and
thus, to detect regions of acoustic shadow. Their approach yields good results
for 3D US compounding but is sensitive to US transducer settings. [12] further
extended the RW method to generate distribution-based confidence maps for a
specific Radio Frequency (RF) US data. Other applications, such as [4,6], use
acoustic shadow detection as additional information in their pipeline. In both
works, acoustic shadow detection functions as task-specific components, and is
mainly based on image intensity features and the special anatomical constraints.

Advances in weakly supervised deep learning methods have drastically
improved fully automatic semantic real-time image understanding [14,17,21].
However, most of these methods require pixel-wise labels for the training data,
which is infeasible for acoustic shadows.

Unsupervised deep learning methods, showing visual attribution of differ-
ent classes, have recently been developed in the context of Alzheimer’s disease
classification from MRI brain scans [3].
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Inspired by these works, we develop a method to identify potential shadow
areas based on supervised classification of weakly labelled, anatomically-focused
US images, and further extend the detection of potential shadow areas using
the visual attribution from an unsupervised model. We then combine intensity
features, extracted by a graph-cut model, with potential shadow areas to pro-
vide a pixel-wise, shadow-focused confidence map. The overview of the proposed
method is shown in Fig. 1.

Input US
Image

FCN Model
(Supervised)

GAN Model
(Unsupervised)

Distance
Matrix (Γ )

Dense Shadow
Confidence Map

Graph-
cut Model

(I) (II) (IV)

(III)

Fig. 1. Pipeline of the proposed method. (I) Identify potential shadow areas by a FCN
model; (II) Extend obtained potential shadow areas using a GAN model; (III) Graph-
cut is used to extract intensity features; (IV) The proposed distance matrix is designed
to generate dense shadow confidence map from potential shadow areas and intensity
features.

2 Method

Figure 2 shows an detailed inference flowchart over our method, which consists
of four steps: (I) and (II) are used to highlight potential shadow areas, while step
(III) selects coarse shadow areas based on intensity information. (IV) combines
detection results from (II) and (III) to achieve the final shadow confidence map.

Fig. 2. Inference of our anatomy agnostic shadow detection approach.
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(I) Saliency Map Generation: Saliency maps are generated by finding dis-
criminative features from a trained classifier, using a gradient based back-
propagation method, and thus, highlight distinct areas among different classes.
Based on this property, it is a näıve approach to use saliency maps generated by
shadow/shadow-free classifier for shadow detection.

We use a Fully Convolutional Neural-Network (FCN) to discern images con-
taining shadows from shadow-free images. Here, we denote the has-shadow class
with label l = 1 and the shadow-free class with label l = 0. Image set X =
{x1, x2, ..., xK} and their corresponding labels L = {l1, l2, ..., lK} s.t. li ∈ {0, 1}
are used to train the FCN. The classifier provides predictions p(xi|l = 1) for
image xi during testing. We build the classifier model using SonoNet-32 [2], as it
has shown promising results for 2D ultrasound fetal standard view classification.
The training of the classifier is shown in Fig. 3.

Based on the trained shadow/shadow-free classifier, corresponding saliency
maps Sm = [sm1, sm2, ..., smN ] are generated by guided back-propagation [19] for
N testing samples. Shadows typically have features such as directional occlusion
with relatively low intensity. These features, highlighted in Sm, are potential
shadow candidates on a per-pixel basis.

However, by using gradient based back-propagation, saliency maps may
ignore some areas which are evidence of a class but may have no ultimate effect
on the classification result. In the shadow detection task, obtained saliency maps
focus mainly on the edge of shadow areas but may ignore the homogeneous centre
of shadow areas.

Fig. 3. Training FCN model for saliency map (Sm) generation

(II) Potential Shadow Areas Detection: Saliency maps heavily favour edges
of the largest shadow region, especially when the image has multiple shadows,
because these areas are the main difference between shadow and shadow-free
images. In order to detect more shadows and inspired by VA-GAN [3], we develop
a GAN model (shown in Fig. 4) that utilizes Sm to generate a Shadow Attribu-
tion Map (SAm). Sm is used to inpaint the corresponding shadow image before
passing the shadow image into the GAN model, so that the GAN model is forced
to focus on other distinct areas between shadow and shadow-free images. Com-
pared to Sm alone, this GAN model allows detection of more edges of relatively
weak shadow areas as well as central areas of shadows.
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Fig. 4. Training GAN model for Feature Attribution map (FAm) Generation.

The generator of the GAN model, G, produces a fake clear image from a
shadow image xi that has been inpainted with a binary mask of its corresponding
saliency map. G has a U-Net structure with all its convolution layers being
replaced by residual-units [9]. We optimize G by the Wasserstein distance [1],
as it simplifies the optimization process and makes training more stable. The
discriminator of the GAN model, D, is used to discern fake clear images from
real clear images, and is trained with unpaired data. In the proposed method,
the discriminator is a FCN without dense layers.

The inpainting function, used for the GAN input, is defined as ψ := ψ(xi|li =
1, T (smi)). Here, T a

b (·) produces a pixel-wise binary mask to identify pixels that
lie in the top a and bottom b percentile of the input’s intensity histogram dis-
tribution. In our experiments, we take the 2nd and 98th percentile respectively
of the saliency map, s.t. T 98

2 (smi) = {0 : P2 ≤ smi ≤ P98, 1 : otherwise}.
ψ then replaces pixels in xi(T 98

2 (smi) = 1) with the mean intensity value of
xi(T 98

2 (smi) = 0). The generator therefore focuses on more ambiguous shadow
areas, as well as the central areas of shadows, to generate the fake clear image.

The overall cost function (shown in Eq. 1) consists of the GAN model loss
LGAN (G,D), a L1-loss L1 and a L2-loss L2. The LGAN (G,D) is defined in Eq. 2.
L1 is defined as in Eq. 3 to guarantee small changes in the output, while L2 is
defined as Eq. 4 to encourage changes to happen only in potential shadow areas.

L = LGAN (G,D) + λ1L1 + λ2L2 (1)

LGAN (G,D) = Eψ(·)∼p(ψ(·)|l=0)[D(xi)] − Eψ(·)∼p(ψ(·)|l=1)[D(G(ψ(·)))] (2)

L1 = ||G(ψ(·)) − ψ(·)||1 (3)

L2 = ||G(ψ(·)B − ψ(·)B ||2 (4)

We train the networks using the optimisation method from [8] and set the
gradient penalty as 10. The parameters for the optimiser are β1 = 0, β2 =
0.9, with the learning rate 10−3. In the first 30 iterations and every hundredth
iteration, the discriminator updates 100 times for every update of the generator.
In other iterations, the discriminator updates five times for every single update of
the generator. We set the weights of the combined loss function to λ1 = 0, λ2 =
0.1 for the first 20 epochs and λ1 = 104, λ2 = 0 for the remaining epochs.
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The Feature Attribution map, FAm, defined in Eq. 5, is obtained by sub-
tracting the generated fake clear image from the original shadow image. The
Shadow Attribution map is then SAm = FAm + Sm.

FAm = |G(ψ(xi|li = 1, T (smi))) − xi| (5)

(III) Graph Cut Model: Another feature of shadows is their relatively low
intensity. To integrate this feature, we build a graph cut model using intensity
information as weights to connect each pixel in the image to shadow class and
background class. After using the Min-Cut/Max-Flow algorithm [20] to cut the
graph, the model shows pixels belonging to the shadow class. The weights that
connect pixels to the shadow class give an intensity saliency map ICm.

Since shadow ground truth is not available for every image, we randomly
select ten shadow images from training data for manual segmentation to compute
the shadow mean intensity IS . Background mean intensity IB is computed by
thresholding these ten images using the top 80th percentile.

For a pixel xij with intensity Iij , the score of being a shadow pixel Fij

is given by Eq. 6 while the score of being a background pixel Bij is given by
Eq. 7. The weight from xij to source (shadow class) is set as WFij

= Fij

Fij+Bij

and the weight from xij to sink (background) is WBij
= Bij

Fij+Bij
. We use a

4-connected neighbourhood to set weights between pixels and all the weights
between neighbourhood pixels are set to 0.5.

Fij = − |Iij − IS |
|Iij − IS | + |Iij − IB | (6)

Bij = − |Iij − IB|
|Iij − IS | + |Iij − IB | (7)

(IV) Distance Matrix: Since the intensity distribution of shadow areas are
homogeneous, potential shadow areas detected in SAm from (II) are mainly edges
of shadows. Meanwhile, ICm from (III) shows all pixels with a similar intensity
to shadow areas. In this step, we propose a distance matrix D combining ICm

with SAm to produce a Shadow Confidence Map (SCm). In SCm, pixels with a
similar intensity to shadow areas and spatially closer to potential shadow areas
achieves higher confidence of being part of shadow areas.

Γ (ICm, SAm) = 1 − Dis

max(Dis)
(8)

SCm = Γ (ICm, SAm) · ICm (9)

The distance matrix is defined in Eq. 8. Dis is the set of the spatial distances
that each pixel ICmij to potential shadow areas in SAm. Each element Disij

in Dis refers to the smallest distance of ICmij to all connected components in
SAm. SCm is obtained by multiplying the distance matrix Γ to ICm (shown in
Eq. 9) which leads to pixels with similar shadow area intensity and closer to the
potential shadow areas achieve a higher score in SCm.
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3 Evaluation and Results

US Image Data: The data set used in our experiments consists of ∼8.5k 2D
fetal ultrasound images sampled from 14 different anatomical standard plane
locations as they are defined in the UK FASP handbook [16]. These images have
been sampled from 2694 2D ultrasound examinations from volunteers with gesta-
tional ages between 18–22 weeks. Eight different ultrasound systems of identical
make and model (GE Voluson E8) were used for the acquisitions. The images
have been classified by expert observers as containing strong shadow, being clear,
or being corrupted, e.g. lacking acoustic impedance gel. Corrupted images (<3%)
have been excluded.

3448 shadow images and 3842 clear images have been randomly selected for
data set A, which is used for training. The remaining 491 shadow images and 502
clear images are used for validation. Data set B, a subset from the 491 shadow
validation images, comprises of 48 randomly selected non-brain images, where
shadows have been manually segmented to provide ground truth.

An additional data set C, which has no overlap with the ∼8.5k fetal images,
comprises of 643 fetal brain images. The entire data set C has been used for
validation and shadows in this data set have been coarsely segmented by bio-
engineering students.

We apply image flipping as data augmentation. Our models are trained on a
Nvidia Titan X GPU with 12 GB of memory.

Table 1. Threshold ranges and DICE scores of different shadow detection methods:
RW [11] vs. intermediate results from our approach and the final shadow confidence
map.

RW Sm FAm SAm SCm

Dataset B T 100
3 (Sm) T 99

1 (Sm) T 85
1 (FAm) T 96

1 (SAm) T 80
0 (SCm)

0.06 0.25 0.06 0.27 0.55

Dataset C T 100
3 (Sm) T 99

1 (Sm) T 80
1 (FAm) T 90

0 (SAm) T 70
0 (SCm)

0.11 0.28 0.08 0.31 0.36

Experiment Results: The classification accuracy of the FCN classifier on the
validation data set C is 94%. The FCN classifier’s saliency maps are shown in
Fig. 5 column (b) for three examples from data set B and C.

To provide quantitative evaluation (Table 1), we chose the percentile range
used by T for SCm as well as other intermediate maps (Sm, FAm, SAm). These
percentile ranges for different maps are chosen heuristically through experimen-
tations on validation data set B and C, so that these thresholded segmentation
of data set B and C contains the most shadow areas and the least noise. We com-
pare these thresholded segmentation with manual segmentation in data set B
and C using the DICE score. Additionally, we compare the thresholded versions
of the confidence map derived from the RW method [11]. The parameters for RW
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(a) Image (b) T (Sm) (c) T (SAm) (d) T (SCm) (e) Overlap (f) weak GT

Fig. 5. Rows 1–3 show examples for shadow detection; Right Ventricular Outflow Tract
(top), Kidney (middle), and an axial view through the brain (bottom). The key steps
from Fig. 2 are illustrated from (a) the input image to (f) the coarse ground truth (GT)
from manual segmentation.

in our experiments are: α = 1; β = 90; γ = 0.3, which reach the highest DICE
score on our validation data sets. Qualitative results are shown in Fig. 5. The
GAN model in our approach is essential as it picks up less prominent shadows
as shown in Fig. 6.

Application: We integrate SCm as an additional channel in a clinical system
that automatically measures cranial and abdominal circumferences [18]. This
system is based on FCNs and works well for images without shadows but fails

(a) Dataset B: Abdominal (b) Dataset C: Brain

(c) w/o SCm (d) with SCm (e) w/o SCm (f) with SCm

Fig. 6. (a–b) Two examples for the importance of the GAN model (input image –
w/o GAN – with GAN). (c–f) Improving automatic biometric measurements through
applying SCm as additional channel to a FCN [18] (yellow = GT, red = prediction,
green = segmentation boundary). (Color figure online)
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for about 5–10% of abdominal test images which show strong shadows. By adding
SCm as an additional input channel, segmentation performance is boosted by
up to 10% for individual failure cases, when measuring the DICE overlap between
automatically generated circumferences and manual ground truth. Figure 5c–f
show examples for these cases.

Runtime: ICm, SAm and SCm are computed on the CPU (Xeon E5-2643) and
the average runtimes are 1.86 s, 0.09 s and 7.4 s respectively. Sm and FAm are
computed on the GPU and the average inference times are 1.11 s and 0.89 s.

Discussion: Because shadow areas have no solid edges and can be harder to
annotated consistently than anatomy, manual segmentation can be ambiguous.
Additionally, thresholding the shadow confidence map to generate a binary
shadow segmentation reduces information provided by the confidence map.
These two facts lead to a seemingly low DICE score when compared to current
object segmentation frameworks. However, shadows are image properties rather
than objects, and our final aim is to provide a confidence map, which cannot
be compared quantitatively to a ground truth. The quantitative measurement
in Table 1 indicates the effectiveness of the proposed method compared with the
state-of-the-art method when handling complex shadow images. The qualitative
results in Fig. 5 show accurate shadow detection of the proposed method and
Fig. 6 demonstrate the importance of shadow detection in automatic medical
image analysis.

4 Conclusion

We have presented a novel method to generate pixel-wise, shadow-focused con-
fidence maps for 2D ultrasound. Such confidence maps can be used to identify
less certain regions in images, which is important for fully automatic segmenta-
tion tasks or automatic image-based biometric measurements. We show shadow
detection results of our method qualitatively and compare our method with the
state-of-the-art method quantitatively. We also show the advantage of shadow
confidence maps via integration into an automatic biometrics FCN. In the future
we explore ways to convert our pipeline into a learn-able end-to-end approach.

Acknowledgments. Supported by the Wellcome Trust IEH Award [102431] and
Nvidia Corporation.
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