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Abstract. Ultrasound (US) is the most widely used fetal imaging tech-
nique. However, US images have limited capture range, and suffer from
view dependent artefacts such as acoustic shadows. Compounding of
overlapping 3D US acquisitions into a high-resolution volume can extend
the field of view and remove image artefacts, which is useful for ret-
rospective analysis including population based studies. However, such
volume reconstructions require information about relative transforma-
tions between probe positions from which the individual volumes were
acquired. In prenatal US scans, the fetus can move independently from
the mother, making external trackers such as electromagnetic or opti-
cal tracking unable to track the motion between probe position and the
moving fetus. We provide a novel methodology for image-based track-
ing and volume reconstruction by combining recent advances in deep
learning and simultaneous localisation and mapping (SLAM). Tracking
semantics are established through the use of a Residual 3D U-Net and
the output is fed to the SLAM algorithm. As a proof of concept, exper-
iments are conducted on US volumes taken from a whole body fetal
phantom, and from the heads of real fetuses. For the fetal head segmen-
tation, we also introduce a novel weak annotation approach to minimise
the required manual effort for ground truth annotation. We evaluate our
method qualitatively, and quantitatively with respect to tissue discrimi-
nation accuracy and tracking robustness.

1 Introduction

Ultrasound (US) is a very widely used medical imaging modality, well known
for its portability, low cost, and high temporal resolution. Although the most
popular US imaging is 2D B-mode, 3D mode has become an attractive addition
providing a larger field of view at an increased frame rate. There is also growing
interest in developing low cost 3D US probes [1]. While 2D mode images are
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usually of higher resolution, 3D mode has the ability to provide better context of
the anatomy with smaller number of images. Thus, 3D images could allow easier
compounding and field of view extension to capture all the desired anatomy in
a single compounded volume.

Volumetric compounding requires the relative transformation between indi-
vidual volumes. This can be achieved using image registration if the offset is small
and assumptions about the spatial arrangement of the volumes hold, e.g., when
performing an imaging sweep at constant speed. For large offsets, or random
views of a target volume, image registration alone is insufficient and external
tracking such as electromagnetic or optical tracking has to be used to estab-
lish localisation coherence. External tracking measures absolute transformations
between a fiducial marker on the ultrasound probe and a calibrated world coor-
dinate system. Moving targets within a patient cannot be tracked with fiducial
markers, computer vision methods that rely on a direct line of sight, or by track-
ing the probe via external trackers.

An ability to generate high quality compounded volumes of individual fetuses
can be useful for retrospective analysis by experts who might not be available,
e.g. in rural areas where the live scanning may be performed by non-experts.
High quality compounded volumes can also be important in creating US atlases
of different fetal organs. For example, it would be desirable to combine all pos-
sible views of the brain of single fetus to maximise the information obtained
from individual fetal brains. In fetuses of late Gestational ages (GAs), acquir-
ing images from all possible directions requires probe manipulation, incurring
large rotation and translational motion. Registration and tracking of images
resulting from such constraint-free probe motions is typically highly challenging.
A motion-robust and hardware-lean image-based method to compound a large
anatomical Rol in real-time is thus highly desired.

Contribution: We propose a novel approach to tackle the tracking problem
during 3D fetal US examinations where an application-focused tissue discrimi-
nator, based on convolutional neural networks, is integrated into a simultane-
ous localisation and mapping (SLAM) formulation named EchoFusion. The pro-
posed method yields relative transformations between subsequent volumes, sur-
face reconstruction of the target anatomy, and reconstruction of a compounded
volume at the same time. We demonstrate the potential of the proposed app-
roach with experiments for rigid whole body fetal phantom, and for free-hand 4D
US covering the head region in real fetuses, without external tracking or a highly
restrictive scanning protocol. EchoFusion requires the fetal tissue discriminator
to be accurate only in the fetal surface closest to the US probe, allowing the use
of: (i) challenging 4D fetal screening US images coming from a very wide range
of views, and (ii) weak annotations, enabling large training data at low cost.

Related Work: Extending the FOV by compounding multiple 3D images has
been in focus since a wide range of freehand ultrasound probes support 3D images
with either matrix array transducers [19] or mechanically steered linear arrays
in plane fan mode [5]. Tracking-based methods [3,15] provide good initialisa-
tion for a variety of subsequent and task-specific registration methods but often
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need additional calibration to establish the transformation between object and
tracking coordinate system [2]. For rigid non-moving targets, advanced registra-
tion strategies can yield good compounding results, given that the acquisition
protocol is well defined. For example, [16] uses defined sweeps and multivariate
similarity measures in a maximum likelihood framework to mitigate the problem
of registration drift observed in earlier, pair-wise registration methods [6]. How-
ever, algorithms requiring all the available images simultaneously to estimate
transformations cannot be used in real-time applications such as a visual guid-
ance system for non-expert sonographers to receive feedback, during scanning,
of the regions already captured.

Recent advances in the robustness of semantic discrimination of tissues in
medical images largely enabled by the advent of deep learning, and in SLAM
algorithms, provide potential to combine these processes in a reliable fashion.
SLAM is known from natural image processing as a powerful tool for indoor
[17] and outdoor [8] mapping, location awareness of robots [4] and real-time
3D mesh reconstruction from a stream of RGB images that additionally provide
depth information [12]. These techniques have been applied in the medical image
analysis community to laparoscopy [19] and movement-based diagnosis [10], but
never went beyond RGB (+depth) imaging.

Traditional SLAM methods assume a clear line of sight to map the depth of a
scene. However, US images require preprocessing such as segmentation to extract
depth of the desired target objects. Convolutional neural networks constitute the
state of the art for solving (medical) image segmentation tasks e.g. [9] and have
recently shown to be robust for the use in, e.g., fetal screening examinations
[20], however only at very young GA when the fetus is fully visible in 3D US
volumes. Our work combines fast automatic tissue segmentation that works also
on partially visible tissue in later gestation with modern SLAM algorithms. To
the best of our knowledge, this is the first time such an approach is proposed.

2 Method

Our approach consists of three main components: (1) semantic tissue segmen-
tation, (2) transducer to object depth map generation, and (3) simultaneous
localisation and mapping algorithm. An overview of our approach is shown in
Fig. 1.

(1) Semantic tissue discrimination: The objective is to produce a binary
segmentation of the target object. For example, for fetal head tracking and
reconstruction, the foreground is the fetal head and the remaining structures
such as fetal limbs and maternal tissues are background. Fetal segmentation
from freehand 4D US can be quite challenging because of the diversity in the
image appearance of the same anatomy, cropping due to limited field of view,
and the relatively low quality of 4D images compared to 2D images or static 3D
volumes. As the images are often corrupted by shadows, fetal body surface at
distances far from the transducer cannot be delineated as accurately as surfaces
physically nearer to the probe. Thus, in the present work, expert sonographers
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Fig. 1. Overview: Residual 3D U-Net segments each incoming 3D US from which target
fetal organ’s surface depth is extracted by a virtual camera located at the ultrasound
probe. EchoFusion estimates the camera transformation w.r.t previous frame using the
incoming depth image and updates the dense surface model.

Fig. 2. Four US volumes with input, GT, and predicted volumes (left to right) of
two central orthogonal slices. This shows the typical diversity of the input sizes, view
direction, partial head views, shadows and US artifacts in the dataset used in our
experiments.

delineated the closest surface accurately but approximated the shape of the Rol
in the surface further from the probe as shown in Fig. 2.

For semantic segmentation, we use a Residual 3D U-Net architecture which
has U-Net structure [13] and is similar to V-net [11] with all convolution layers
being replaced by residual-units [7] known to make training more stable. We
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follow the common strategy whereby skip connections are implemented via con-
catenation in the up-sampling component of the network and down-sampling is
performed with strided convolution (¢f. max pooling). Each convolutional layer
of the original architecture is additionally augmented by a residual block con-
taining two convolutions in a similar fashion to [9]. We employ [16, 32, 64, 128]
feature maps per layer and all kernels and feature maps are 3D. Each layer
additionally utilizes batch normalization, ReLLUs and zero-padding.

For training we draw input training patches of size 64 x 64 x 64 voxels with an
equal probability of patches being centered around a voxel from the foreground
or background label class. We train to minimize a standard cross-entropy loss
using Adam optimization with learning rate of 0.001 and Iy regularization. Our
training imagery is augmented via Gaussian additive noise (o = 0.02) with image
flipping in each axis.

(2) Transducer distance field generation: Depth images can be generated
using a virtual pinhole camera that looks into the 3D segmented model from
the same direction as the US probe. All voxels in the output segmentation have
known physical co-ordinates with respect to an arbitrary reference point, set
as the origin of the world co-ordinate. In the input image volumes, the origin
was set to a central point in xz-plane at y = 0 making the US probe directed
towards positive y-direction and placed y < 0. We set a virtual camera that looks
towards positive y-axis and along the line z = z = 0. The exact position and the
view angle of the camera depends on the sector width and sector height of the
input 3D US volume. If the camera is too far away, it sees the flat surface at the
edge of the US sector. Similarly, if the camera is too close, the FoV is not wide
enough and some parts of the tissue region may be missed. In order to estimate
an optimal camera position, first we separately compute the intersection and
angle between sector lines for the central slices in yz-plane and the central slices
in xy-plane as follows:

1. Extract sector mask using thresholding, morphological closing to remove
holes.

2. Extract edges using Canny edge detection on the sector mask.

3. Use Hough transform to detect the two sector lines.

4. Compute intersection and angle between the lines found in 3.

Then, the camera distance is set to be the minimum of the two intersection
points, and the view angle is chosen to be the wider of the two angles.

(3) Tracking and Reconstruction with EchoFusion: In SLAM [12], a
sequence of partial views of a 3D scene captured as 2D RGB images and/or
depth images is used to estimate all the relative poses of the camera and recon-
struct the 3D scene. Like all SLAM algorithms, we also use only the frontal
surface of the 3D scene that are not occluded from the camera view to track and
build the 3D scene incrementally. Thus, we use a volumetric surface represen-
tation to store global 3D scene as a truncated signed distance function (TSDF)
[12] in a predetermined 3D voxel grid. This 3D model is updated with each new
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incoming depth image by estimating the camera transformation with respect to
the previous frame. The algorithm can be outlined as follows:

1. From the generated depth image compute the 3D vertex and normals in
camera co-ordinate space.

2. The 3D vertex and normals from the previous frame are estimated by ray
casting the 3D model built so far from the global camera position estimated
from the previous frame.

3. The relative camera transformation is then estimated using Iterative Closest
Point (ICP) of the two point sets from the current and the previous frames.

The 3D model gets better and smoother as more consistent data becomes
available.

Implementation Details: We adapted an open source implementation' of
Kinect Fusion [12]. The focal length of the virtual camera can be computed

as f = ta;‘zg 2/2), where « is the view angle and w is the image width in pixel
co-ordinates. We set depth and RGB image sizes to 480 x 480. The discrimina-
tor model is trained on a Nvidia Titan X GPU with 12 GB of memory. During
runtime, the same GPU can be used for inference and EchoFusion, as the infer-
ence from the network does not require large resources like in training time. The

network was implemented in tensorflow.

3 Experiments and Results

Phantom Data: We use data from a fetal phantom Kyotokagaku UTU-1 at
a gestational age of about 20 weeks. The GT segmentation consists of fetal vs.
maternal tissue delineation in 28 3D volumes which is randomly split into 24
training samples and 4 validation samples. The GT segmentations include both
the fetal head and body as foreground.

Fetal Screening Data: Two expert sonographers delineated 192 US fetal head
volumes for training and validation of fetal head segmentation. These 3D images
were selected from 4D freehand scanning of 19 different fetuses having GAs in
the range of 23-34 weeks with mean (std) age of 30 (2.842) weeks.

The sonographers used MITK [18] to segment six to seven representative
slices manually, then performed 3D interpolation from these slices to create a
3D shape. Many of these images contained shadows on the far-field surface, so the
manual delineation was done empirically based on the sonographers’ anatomical
knowledge of the head shape. We split 192 GT data into 184 training and 8
validation images. We then test the trained network only once on a set containing
GT segmentations from five fetuses not used in training-validation set.

Evaluation: We use Dice score to evaluate the performance of segmentation
quantitatively. Evaluating tracking accuracy is challenging without a ground
truth. Surface reconstruction which can be qualitatively observed depends on

! https://github.com/Nerei/kinfu_remake.
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the tracking obtained from the SLAM. To assess the tracking robustness on
freehand 4D US stream of the real fetal heads, we test our framework on 37
fetuses and compute the number of tracking losses (i.e. reset of the tracked
pose) and the longest sequence without any resets.

Fig. 3. Orthogonal slices through examples of compounded volumes (a), EchoFusion
tracking trajectory (b) and TSDF iso-surface reconstruction (c) for sequences from
whole body fetus phantom. The sequence of images of the static phantom were taken
with a very wide range of probe directions as seen in the top right slice in (a), and from
the trajectory in (b). Limbs are not reconstructed faithfully due to limb information
being purposefully discarded at segmentation time.

Results: Table1 shows quantitative results for segmentation performance on
both the phantom and the real fetuses. Since there was only one phantom avail-
able which was used to create training and validation set, there is no test set
for the phantom. For the real fetuses, test set was created using the same pro-
tocol as the training sets but from the fetuses that were not used for training or
validation. Although the number of images used for training on the phantom is
much smaller than for the real fetuses, the validation set accuracy is higher for
the phantom. This is not surprising because the images from the phantom are
much less challenging than the real fetuses.

Table 1. Dice scores for real-time semantic tissue discrimination.

Set images(real) | mean(std) images(Phantom) | mean(std)
Train 178 0.9408(0.0389) | 24 0.9735(0.0125)
Validation 8 0.9217(0.0212) | 4 0.9267(0.0074)
Test 26 0.8942(0.0671) | - -

Figures 3 and 4 show qualitative results after compounding a series of 10-20
EchoFusion-tracked consecutive 3D volume acquisitions from different locations.
3D surface reconstruction in Fig. 3 shows that both the phantom face and body
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(b)

Fig. 4. Orthogonal slices through examples of compounded volumes (a), EchoFusion
tracking trajectory (b) and TSDF iso-surface reconstruction (c) for sequences of a real
fetal head. Note that the tracking is relative only to the fetal head, and not the other
moving maternal and fetal tissues.

which were selected as foreground objects for the segmentation are nicely recon-
structed. Similarly, the fetal head in compounded volume in Fig. 4 shows that the
sequence of images registered reasonably well although they were taken from a
wide range of angles. Table 2 shows EchoFusion tracking performance on 37 fetal
sequences of volumes. On average, there were approximately 98 total frames for
which the SLAM algorithm lost tracking approximately 5 times. These sequences
were obtained by moving the probe in different directions trying to cover the head
(skull and face) from all possible directions. The sequences were used as they
were acquired without data cleaning, thus containing views which do not show
the fetal head and many frames with only partial views of the head region.

Table 2. Robustness with respect to continuously tracked frames for 37 fetuses.

mean(std) | median | range
Total frames 98.11(54.65) | 91 [21, 277]
No. of tracking losses 5.16(3.67) | 5 [0, 15]
(

Longest sequence without tracking loss | 40.86(30.85) | 31 [4, 152

4 Discussion

The key contribution of this work is the novel approach to the tracking and
compounding problem in freehand 4D US, which constitutes combining the pow-
erful semantic segmentation neural networks with modern SLAM algorithms.
Since both of them are very active fields of research, there is a lot of potential
to improve EchoFusion for a multitude of applications including compounding,
image reconstruction, artefact reduction, super resolution and fetal face biomet-
rics using the resulting dense surface model. Moreover, this method could also
allow non-expert to acquire dense data for retrospective evaluation.
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The goal of this work was to provide a proof of concept, but clinical transla-
tion of this method would require a more extensive quantitative validation of the
tracking accuracy, drift over the long sequence, and compare how segmentation
accuracy impacts the overall tracking accuracy.

The use of whole body phantom vs fetal head also demonstrates that the
top level approach generalises across organs and anatomy as we can train the
segmentation network for a desired Rol. However, the current implementation
of the SLAM algorithm works only for largely rigid body motion; the static
phantom and the fetal head can be reasonably assumed to have mostly rigid
body movement with respect to the probe at the semantic level. For non-rigid
movements of the fetus such as the whole body or abdomen, the current SLAM
component must be replaced with the methods that take dynamic scene changes
into account [14]. However, such approaches would still not be robust to sud-
den movements (e.g. kicks) and introduce a significant computational overhead,
potentially jeopardizing hard real-time constraints. One approach to tackle this
problem is to consider such suddenly moving limbs as background in segmen-
tation so that they are ignored during the tracking and reconstruction. There
can still be challenges, (e.g. turning the head in the opposite direction and stay-
ing there, when reconstructing head/shoulders/torso at once), and is more of
an open problem at present. However, being able to focus and compound on
quasi-rigid areas like only the head or only abdomen and changing the model
depending on target application would already be very valuable e.g., for the
creation of fetal brain or abdomen atlases.

5 Conclusion

We have developed a novel approach demonstrating a promising potential for
robust segmentation and tracking of fetuses in utero. EchoFusion is versatile
and could be applied in any situation where an independently moving target
object is occluded by other tissue or material. We have also introduced a way to
learn a tissue discriminator from weak annotations in fetal 3D US images and
discussed the performance of a Residual 3D U-Net tissue discriminator learning
from this data. This discriminator is key to establishing semantics for SLAM-
based tracking, which we evaluated on 4D freehand US of a fetal phantom and
on real fetuses from screening examinations. In the future, we will perform a
more extensive validation of the tracking accuracy, and also find a way to derive
robust SDF's from tissue probabilities to exploit the possibilities of dynamic
fusion approaches.
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