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Abstract. In this work, we consider the problem of predicting the
course of a progressive disease, such as cancer or Alzheimer’s. Progressive
diseases often start with mild symptoms that might precede a diagnosis,
and each patient follows their own trajectory. Patient trajectories exhibit
wild variability, which can be associated with many factors such as geno-
type, age, or sex. An additional layer of complexity is that, in real life,
the amount and type of data available for each patient can differ sig-
nificantly. For example, for one patient we might have no prior history,
whereas for another patient we might have detailed clinical assessments
obtained at multiple prior time-points. This paper presents a proba-
bilistic model that can handle multiple modalities (including images and
clinical assessments) and variable patient histories with irregular timings
and missing entries, to predict clinical scores at future time-points. We
use a sigmoidal function to model latent disease progression, which gives
rise to clinical observations in our generative model. We implemented
an approximate Bayesian inference strategy on the proposed model to
estimate the parameters on data from a large population of subjects. Fur-
thermore, the Bayesian framework enables the model to automatically
fine-tune its predictions based on historical observations that might be
available on the test subject. We applied our method to a longitudi-
nal Alzheimer’s disease dataset with more than 3,000 subjects [1] with
comparisons against several benchmarks.

1 Introduction

Many progressive disorders, such as Alzheimer‘s disease (AD) [2], begin with
mild symptoms that often precede diagnosis, and follow a patient-specific clini-
cal trajectory that can be influenced by genetic and/or other factors. Therapeutic
interventions, if available, are usually more effective in the earliest stages of a
progressive disease. Therefore, tracking and predicting disease progression, par-
ticularly during the mild stages, is one of the primary objectives of personalized
medicine.

In this paper, we are motivated by the real-world clinical setting where each
individual is at risk and thus monitored for a specific progressive disease, such as
AD. Furthermore, we assume that each individual might pay zero, one, or more
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visits to the clinic. In each clinical visit, various biomarkers or assessments (cor-
related with the disease and/or its progression) are obtained. Example biomarker
modalities include brain MRI scans, PET scans, blood tests, and cognitive test
scores. The number and timing of the visits, and the exact types of data collected
at each visit can be planned to be standardized, but often vary wildly between
patients in practice. An ideal clinical prediction tool should be able to deal with
this heterogeneity and compute accurate forecasts for arbitrary time horizons.

We present a probabilistic disease progression model that elegantly handles
the aforementioned challenges of longitudinal clinical settings: data missingness,
variable timing and number of visits, and multi-modal data (i.e., data of different
types). The backbone of our model is a latent sigmoidal curve that captures the
dynamics of the unobserved pathology, which is reflected in time-varying clini-
cal assessments. Sigmoid curves are conceptually useful abstractions that fit well
a wide range of dynamic physical and biological phenomena, including disease
progression [3–5], which exhibit a floor and ceiling effect. In our framework, the
sigmoid allows us to model the temporal correlation in longitudinal measure-
ments and capture the dependence between the different tests and assessments,
which are assumed to be generated conditionally independently from the latent
state. We implemented an approximate Bayesian inference strategy on the pro-
posed model and applied it to a large-scale longitudinal AD dataset [1].

In our experiments, we considered three target variables, which are widely
used cognitive and clinical assessments associated with AD: the Mini Mental
State Examination (MMSE) [6], the Alzheimer’s Disease Assessment Scale Cog-
nitive Subscale (ADAS-COG) [7], and the Clinical Dementia Rating Sum of
Boxes (CDR-SB) [8]. We trained and evaluated the proposed model on a lon-
gitudinal dataset with more than 3,000 subjects that included healthy controls
(cognitively normal elderly individuals), subjects with mild cognitive impairment
(MCI, a clinical stage that indicates high risk for dementia), and patients with
AD. We provide a detailed analysis of prediction accuracy achieved with the
proposed model and alternative benchmark methods under different scenarios
that involve varying the past available visits and future time windows. In all our
comparisons, the proposed model achieves significantly and substantially better
accuracy for all target biomarkers.

2 Methods

2.1 Model

Let us first describe our notation and present our model. Assume we are given
n subjects. xi ∈ R

d×1 denotes subject i’s d-dimensional attribute vector. In our
experiments, this vector contains APOE genotype (encoded as number of E4
alleles, which can be 0, 1 or 2) [9], education (in years) [10], sex (0 for female
and 1 for male) [11] and two well-established neuroanatomical biomarkers of
AD computed from a baseline MRI scan (namely total hippocampal [12] and
ventricular volume [13] normalized by brain size). The MRI biomarkers capture
so-called “brain reserve” [14]. Let yk

i ∈ R
vi×1 represent the values of the the
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k’th dynamic (i.e., time-varying) target variable at vi different clinical visits.
ti = [ti1, · · · , tivi

] ∈ R
vi×1 denotes a vector of the age of subject i at these visits.

The number and timing of the visits can vary across subjects. In general, we
will assume k ∈ {1, · · · ,m}. In our experiments, we consider 3 target variables:
MMSE, ADAS-COG or CDRSB and thus m = 3. We use dk

i = [dki1, · · · , dkivi
]

to denote subject i’s latent trajectory values associated with the k’th target
variable. We assume each dkij ∈ [0, 1], with lower values corresponding to milder
stages. As we describe below, the target variable, which is a clinical assessment,
will be assumed to be a noisy observation of this latent variable. We model the
latent trajectory of dk

i as a sigmoid function of time (i.e., age), parameterized by
a target- and subject-specific inflection point pki ∈ R and a subject-specific slope
parameter si ∈ R. We assume that the slopes of the latent sigmoids associated
with each target are coupled for each subject, yet the inflection points differ,
which correspond to an average lag between the dynamics of target variables.
This is consistent with the hypothesized biomarker trajectories of AD [3]. How-
ever, it would be easy to relax this assumption by allowing each target variable
to have its own slope.

We assume the inflection points {pki } and slopes {si} are random variables
drawn from Gaussian priors with means equal to linear functions of subject-
specific attributes xi: pki ∼ N (vTxi + ak, σ

2
p), si ∼ N (wTxi + b, σ2

s), where
ak ∈ R is associated with the k’th target (accounting for different time lags
between target dynamics), while v,w ∈ R

d×1, and b, σp, σs ∈ R are general
parameters. Here and henceforth N (μ, σ2) denotes a Gaussian with mean μ
and variance σ2. Given si and pki , the latent value dkij associated with the k’th
target is computed by evaluating the sigmoid at tij , dkij = 1

1+exp(−(tij−pk
i )si)

.

The inflection point pki marks the age at which the rate of change achieves its
maximum, which is equal to si/4.

Finally, we assume that the target variable value yk
ij is a linear function of the

latent state dkij corrupted by additive zero-mean independent Gaussian noise:

yk
ij ∼ N (ckdkij + hk, σ

2
k), (1)

where ck, hk, and σk ∈ R are universal (not subject-specific) parameters associ-
ated with the k’th target variable. We refer to Eq. (1) as an observation model.

2.2 Inference

In this section, we discuss how to train the proposed model and apply it during
test time.

Training: Let us use Θ to denote the parameter set of our model:

Θ = {w, b, σp, σs,v, {ak, ck, hk, σk}k=1,··· ,m}.

The goal of training is to estimate the model parameters Θ given data from
n subjects: {yi,xi, ti}i=1,...,n. Here, yi = [y1

i . . .ym
i ] ∈ R

vi×m denotes m target
values of the ith subject for vi visits.
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We estimate Θ via maximizing the likelihood function:
n∏

i=1

P (yi|xi, ti;Θ).

We use the standard notation of p(y|x) to indicate the probability density func-
tion of the random variable Y (evaluated at y) conditioned on the random vari-
able X taking on the value x. Also, parameters not treated as random variables
are collected on the right hand side of “;”.

Now, let us focus on the likelihood of each subject:

P (yi|xi, ti;Θ) =
∫ ∫ ⎡

⎣
vi∏

j=1

p(yij |si,pi, tij)

⎤

⎦ p(si,pi|xi;Θ)dsidpi,

with p(si,pi|xi;Θ)T = p(si|xi;Θ)p(pi|xi;Θ)T .
Instead of the computationally challenging Eq. (2), we use variational approx-

imation [15] and maximize the expected lower bound objective (ELBO):

F (Θ, {γi}) =
n∑

i=1

Eq(
vi∑

j=1

m∑

k=1

T log p(yk
ij |si, pki , tij ;Θ))

− Eq(log q(si; γi)) − Eq(log q(pi; γi)), (2)

where q(si; γi) = N(μsi, σ
2
si) and q(pi; γi)) = N(μpi,Σpi = ΓT

piΓpi) are
proxy distributions that approximate the true posteriors p(si|yi,xi;Θ) and
p(pi|yi,xi;Θ), respectively. During training, we use gradient-ascent to itera-
tively optimize Eq. 2 and solve for the optimal model parameters Θ∗ and the
optimal parameters of the proxy distributions {γ∗

i }. The expectation in the first
term is with respect to the proxy distributions and can be approximated via
Monte Carlo sampling:

Eq(
∑

k

∑

j

log p(yk
ij |si, pki , tij ;Θ)) ≈ 1

S

∑

j

S∑

s=1

log p(yij |s(s)i ,p(s)
i , tij ;Θ), (3)

where s
(s)
i and p(s)

i are samples drawn using the “re-parameterization trick.”
I.e., s

(s)
i = η(s)σsi + μsi and p(s)

i = ΓT
piε

(s) + μpi, where η(s) ∈ R and ε(s) ∈
Rm×1 are realizations of the auxiliary random variables, independently drawn
from zero-mean standard Gaussians, N(0, 1) and N(0, I), respectively. The “re-
parameterization trick” allows us to differentiate the ELBO (or more accurately,
its approximation that uses Eq. 3) with respect to γi.

E.g.:

∂s
(s)
i

∂σsi
= η(s), and

∂s
(s)
i

∂μsi
= 1.

Testing. During test time, we are interested in computing the posterior distri-
bution of yn+1 for a new subject with xn+1 at an arbitrary time-point (age) t.
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We drop the second sub-script, i.e., j index, of yn+1 to emphasize that we will
be computing these posterior probabilities at many different (often future) time-
points. There are two types of test subjects: those with no history of visits
(scenario 1), and those with at least one prior clinical visit (scenario 2). For sce-
nario 2, we will use {y(n+1)j , t(n+1)j}j=1,...,vn+1 to collectively denote the vn+1

historical observations and their corresponding visit times. We fix Θ∗ to the
values obtained from training. In scenario 1, we use Eq. (eq:ELBO) to com-
pute the posterior. In the second scenario, we will first maximize the ELBO of
Eq. (2) with respect to γn+1 and evaluated for the observations on the new sub-
ject {y(n+1)j , t(n+1)j} and attribute vector: xn+1. We then proceed to use these
approximate q distributions in Eq. (2), replacing p(s|xi;Θ∗) and p(pk|xi;Θ∗), to
evaluate the posterior distribution for an arbitrary time-point t conditioned on
past observations.

3 Experiments

Dataset. We use a dataset of 3,057 subjects (baseline age 73.3 ± 17.2 years)
collected by ADNI [1] to empirically validate and demonstrate the proposed
model. This dataset contained multiple clinical visits per subject, during which
thorough cognitive and symptomatic assessments were conducted. In our exper-
iments, we used MMSE, ADAS-COG and CDR-SB as three target variables.
MMSE has a range between 0 (impaired) and 30 (healthy), whereas ADAS-COG
takes on values between 0 (healthy) to 70 (severe), and CDR-SB varies from 0
(healthy) to 18 (severe). The first two (MMSE and ADAS-COG) are general cog-
nitive assessments that track and predict dementia, while CDR-SB is a clinical
score that measures the severity of dementia-associated symptoms. In addition
to the target variables, we utilized individual-level traits associated with AD:
age, APOE genotype (number of E4 alleles), sex, and education (in years). We
also used baseline brain MRI scans to derive two anatomical biomarkers of AD:
total hippocampal and ventricle volume normalized by brain size. These imag-
ing biomarkers were automatically computed with FreeSurfer [16] and quality
controlled as previously described [17].

3.1 Experimental Setup

Benchmark Methods. In our experiments, we compare the proposed method
to the following benchmarks:

1. Global: A 4-parameter (scale, bias, inflection, and slope) sigmoidal model
that was fit on all training data (least-squares).

2. Sex-specific: Same as “Global” but separate for males and females.
3. APOE-specific: Same as “Global”, but separate for three groups defined by

APOE-E4 allele count {0, 1, 2}.
4. Sex- and APOE-specific: Same as “Global”, but separate for each sex and

APOE group.
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5. Linear mixed effects (LME) model: A linear regression model with
subject-specific attributes (xi) as fixed effects, and time and bias term as
a random effects. This LME model, commonly used to capture longitudinal
dynamics, allows each subject to deviate from the average trajectory deter-
mined by its attributes by shifts in slope and offset.

6. Subject-specific linear model: Least-squares fit of a linear model on each
subject’s historical data. When there is only one past visit, we adopt a carry-
forward extrapolation.

Implementation of Proposed Method. We coded in Python 1, using the
Edward library [18], which is in turn built on TensorFlow [19]. We used a 20-
fold cross-validation strategy in all our experiments. We first partitioned the
data into 20 non-overlapping, roughly equally-sized sets of subjects. In each of
the 20 folds, we reserved one of the partitions as the independent test set. Out
of the remaining 19 partitions, one was set aside as a validation set, while the
rest were combined into a training set. The training set was used to estimate the
model parameters, i.e., Θ∗, while performance on the validation set was used
to select hyper-parameters, such as step size in the optimization and evaluate
random initializations. Finally, test performance was computed on the test set.
We report results averaged across 20 folds.

3.2 Results and Discussion

We first show quantitative prediction results for all methods and target vari-
ables (MMSE, ADAS-COG, and CDRSB). In the following, we consider several
prediction scenarios. In the first scenario, we vary the number of past visits
available on test subjects (i.e., vn+1). In general, we expect this variation to
influence the LME and subject-specific linear model benchmarks, in addition to
the proposed model. These methods fine-tune their predictions based on histor-
ical observations available on test data. With more test observations, we expect
them to achieve better accuracy. All other benchmarks are fixed after training
and thus their performance should not improve with increasing number of past
observations. In the second scenario, we fix the number of past observations on
test subjects and vary the prediction horizon. In general, all models’ predictions
should be less accurate for more distant future time-points.

Varying the Number of Past Visits. Figure 1 shows the MMSE, ADAS-COG
and CDRSB prediction accuracies (mean and standard deviation of absolute
error). We observe that the performance of the training-fixed benchmarks (1–4)
worsen slightly as the number of past visits increases. This is likely because the
training data contains more samples at early times (i.e., relatively younger ages),
partially because most subjects drop out by their 4th visit. Therefore, a model
trained on these data is expected to be less accurate for older ages.

The adaptive benchmarks (5–6) and the proposed model, on the other hand,
overcome this handicap to achieve better accuracy with more past visits. As we
1 The code of this work is available at https://github.com/zyy123jy/kdd.
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Fig. 1. Absolute error (mean and standard derivation) of all methods for predicting
MMSE, ADAS-COG and CDRSB, as a function of number of past visits available on
test subjects.

Fig. 2. Absolute error (mean and standard derivation) of all methods for predicting
MMSE, ADAS-COG and CDRSB. We used two points from each test subject as past
observations and varied the time horizon for prediction.

discussed above, this is largely because these techniques exploit test observa-
tions to fine-tune their models. The subject-level linear model (benchmark 6),
in fact, is an extreme example, where the predictions are computed merely by
extrapolating from historical observations without relying on training data.

Finally, the proposed model achieves a significantly and substantially better
accuracy than all benchmarks (all paired permutation p-values < pmax = 0.04).
The subject-specific benchmark (6) exhibits the largest variance implying the
quality of performance varies wildly across subjects. Overall, the training-fixed
benchmarks perform the worst. In general the proposed model’s variance is
among the smallest, indicating consistency in prediction accuracy.

Varying the Time Horizon. In order to evaluate how prediction performance
changes as a function of the time horizon, we evaluated the methods for different
future time-points. In this empirical scenario, we assume that each test subject
has 2 past clinical assessments (obtained at baseline and month 6). Our goal is
to predict MMSE, ADAS-COG and CDRSB scores at later time-points (starting
at 12 months after baseline, up to 36 months). Based on the longitudinal study
protocol, we considered 6 month intervals and assigned the actual visits to the
closest 6-month bucket.

Figure 2 shows prediction accuracies of all considered methods. The proposed
method performs significantly (all paired permutation p-values < pmax = 0.03)
and substantially better than all other methods, with the difference increasing
from the short term (12 months) to long term (36 months). For the benchmark
models, prediction accuracy tends to drop more dramatically for longer time
horizons. As above, training-fixed benchmarks perform the worst.
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4 Conclusion

We presented a probabilistic, latent disease progression model for capturing
the dynamics of the underlying pathology that is often shaped by risk factors
such as genotype. Our work was motivated by real-world clinical applications,
where irregular visiting patterns, missing variables, and inconsistent multi-modal
assessments are ubiquitous. We applied the proposed method on a large dataset
of Alzheimer’s disease for predicting clinical scores at varying time horizons
with promising results. Future work will conduct a more detailed analysis of
our proposed model. We are also interested in exploring the use of modern neu-
ral network based methods, such as Recurrent Neural Networks [20], for this
application.
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