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Abstract. Named Entity Recognition and Typing (NER/NET) is a
challenging task, especially with long-tail entities such as the ones found
in scientific publications. These entities (e.g. “WebKB”,“StatSnowball”)
are rare, often relevant only in specific knowledge domains, yet important
for retrieval and exploration purposes. State-of-the-art NER approaches
employ supervised machine learning models, trained on expensive type-
labeled data laboriously produced by human annotators. A common
workaround is the generation of labeled training data from knowledge
bases; this approach is not suitable for long-tail entity types that are, by
definition, scarcely represented in KBs. This paper presents an iterative
approach for training NER and NET classifiers in scientific publications
that relies on minimal human input, namely a small seed set of instances
for the targeted entity type. We introduce different strategies for train-
ing data extraction, semantic expansion, and result entity filtering. We
evaluate our approach on scientific publications, focusing on the long-tail
entities types Datasets, Methods in computer science publications, and
Proteins in biomedical publications.

1 Introduction

The growth of domain-specific knowledge available as digital text demands
more effective methods for querying, accessing, and exploring document col-
lections. Scientific publications are a compelling example: online digital libraries
(e.g. IEEE Xplore) contain hundreds of thousands documents; yet, the avail-
able retrieval functionality is often limited to keyword/faceted search on shallow
meta-data (e.g. title, terms in abstract). A query like retrieve the publications
that used a social media dataset for food recipe recommendation is bound to
return unsatisfactory results1.

Named entities, obtained through an analysis of a document’s content, are an
effective way to achieve better retrieval and exploration capabilities. Automatic
Named Entity Recognition and Typing (NER/NET) is essential to unlock and
1 https://scholar.google.de/scholar?q=publications+using++social+media+datasets

+for+food+recipes+recommendation.
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mine the knowledge contained in digital libraries, as most smaller domains lack
the resources for manual annotation work.

To perform well, state-of-the-art NER/NET methods [3,4,11] either require
comprehensive domain knowledge (e.g. to specify matching rules), or rely on a
large amount of human-labeled training data for machine learning. Both solu-
tions are expensive and time-consuming.

A cheaper alternative is to generate labeled training data by obtaining exist-
ing instances of the targeted entity type from Knowledge Bases (KBs) [3]. This
of course requires that the desired entity type is well-covered in the KB.

Problem Statement. While achieving impressive performance with high-recall
named entities (e.g. locations and age) [11], generic NER/NETs show their limits
with domain-specific and long-tail entity types. Consider the following sentence:
“We evaluated the performance of SimFusion+ on the WebKB dataset”. Despite
WebKB2 being a popular dataset in the Web research community, generic
NERs (e.g. Textrazor3) mistype it as an Organization instead of the domain-
specific entity type Dataset. The entity SimFusion+ of type Software is missed
completely.

Literature [20,26,27] shows that training of domain-specific NER/NETs is
still an open challenge for two main reasons: (1) the long-tail nature of such entity
types, both in existing knowledge bases and in the targeted document collections
[22]; and (2) the high cost associated with the creation of hand-crafted rules, or
human-labeled training datasets for supervised machine learning techniques. Few
approaches addressed these problems by relying on bootstrapping [27] or Entity
Expansion [3,11] techniques, achieving promising performance. However, how
to train high-performance long-tail Entity Extraction and Typing with minimal
human supervision remains an open research question.

Original Contribution. We contribute TSE-NER, an iterative approach for
training NER/NET classifiers for long-tail entity types that exploits Term and
Sentence Expansion, extensively expanding on [16]. TSE-NER relies on minimal
human input – a seed set of instances of the targeted entity type. We intro-
duce different strategies for training data extraction, semantic expansion, and
result entity filtering. Different combinations of these strategies allow to tune
the technique for either higher recall or higher precision scenarios.

We performed extensive evaluations comparing to state-of-the-art methods,
and assess several sentence expansion and term filtering strategies. As our core
use case, we focus on 15,994 data science publications from 10 conference series
with the Dataset (e.g. Imagenet) and data processing Methods (e.g. LSTM) long-
tail entity types. We show that our approach is able to consistently outperform
state-of-the-art low-cost supervision methods, even with small amount of train-
ing information: with a seed set of 100 entities, our approach can achieve pre-
cision up to 0.91 when tuned for precision, and recall up to 0.41 when tuned
for recall, or 0.77 and 0.30 for a balanced setting. When applied in an iterative

2 http://www.cs.cmu.edu/∼WebKB/.
3 https://www.textrazor.com/.

http://www.cs.cmu.edu/~WebKB/
https://www.textrazor.com/
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fashion, our approach can achieve comparable performance with an initial seed
set of only 5 entities. We show that sentence expansion and filtering strategies
can provide a spectrum of performance profiles, suitable for different retrieval
applications such as search (high precision) and exploration (high recall).

To study the performance of TSE-NER across scientific domains, we pro-
cessed 4,525 biomedical publications focusing on Protein (e.g. Myoglobin) entity
type. Evaluation on the Craft corpus [2] shows that TSE-NER can achieve per-
formance comparable to existing dictionary-based systems, and obtain precision
up to 0.40 and recall up to 0.28 with just 25 seed terms. TSE-NER is imple-
mented in the SmartPub platform [17]; its source code is available on the com-
panion Website [18], and its application shown in the video screencast at the
following address: https://youtu.be/zLLMwOT5sZc.

Outline. The remainder of the paper is organized as follows. In Sect. 2 we cover
related work. Section 3 presents our approach, and describes alternative data
expansion and entity filtering strategies. The experimental setup and results are
presented in Sect. 4. Section 5 concludes.

2 Related Work

A considerable amount of literature published in recent years addressed the deep
analysis of text. Common approaches for deep analysis of publications rely on
techniques such as bootstrapping [27], word-frequency analysis [25], probabilistic
methods like Latent Dirichlet Allocation [8], etc. In contrast to current research
[25] which limits the analysis of a publication’s content to its title, abstract,
references, and authors, we extract entity instances from the much richer full
text. In addition, our method does not rely on existing knowledge bases [20,23]
and it is not based on selecting the most frequent keywords [25]. More recent
research [26] used both corpus-level statistics and local syntactic patterns of
scientific publications to identify entities of interest. Our method uses only a
small set of seed names (i.e 5–100), and automatically trained distributed word
representations to train a NER in iterative steps (i.e. 2–3).

Entity Instances Extraction. Named Entity Recognition (NER) has been
applied to identify both entity types of general interest (e.g. Person, Location,
Cell, Brand, etc.) as well as for specific domains (e.g., medicine or other domain
where resources for training a NER are easily available). NERs rely on different
approaches such as dictionary-based, rule-based, machine-learning [26] or hybrid
(combination of rule based and machine learning) [29] techniques. Despite its
high accuracy, a major drawback of dictionary-based approaches is that they
require an exhaustive dictionary of domain terms, which are expensive to create
and many smaller domains lack the resources to do so. The same holds for rule-
based techniques, which rely on formal languages to express rules and require
comprehensive domain knowledge and time to create.

Bootstrapping and Entity Set Expansion. Most current NERs are based
on Machine Learning techniques, which require a large corpus of labeled training

https://youtu.be/zLLMwOT5sZc
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text [9]. Again, the high costs of data annotation is one of the main challenges
in adopting specialized NER for rare entity types in specialized domains [26]. In
recent years, many attempts have been made to reduce annotation costs. Active
learning techniques have been proposed, asking users to annotate a small part
of a text for machine learning methods [7].

Transfer learning techniques [21] use the knowledge gained from one domain
and apply it to a different but related named entity type. Co-training [1]
starts with a small amount of manually annotated supervised training data and
attempt to increase the amount of annotated data. In contrast to previous work,
we are not dependent on manually annotated supervised training data [1]; we do
not require a large training corpus [21] for transfer learning; also, our approach
differs from works on high-recall entity extractors (e.g. with regular expression
extractors) for detecting entity types such as location and age [11].

Entity Set Expansion is a technique finding similar entities to a given small
set of seed entities [3,6,11]. Bootstrapping [27] is another approach similar to our
method that uses seed terms and extracts features such as unigrams, bigrams,
left unigram, closest verb, etc. These are used to annotate more concept men-
tions which leads to extracting new features. This step operates in an iterative
fashion until no new features are detected. Our approach is inspired by Entity
Set Expansion and bootstrapping, but relies on different expansion strategies
and does not require concepts already being available in knowledge bases [3].

3 Approach

The TSE-NER (Term and Sentence Expansion) approach for domain-specific
long-tail entity recognition is organized in five steps, as shown in Fig. 1.

1 An initial set of seed terms is used to identify a set of sentences used as
initial training data (Sect. 3.1). 2 Expansion strategies can be used to expand
the set of initial seed terms, and the training data sentences (Sect. 3.2). 3 The
Training Data Annotation step annotates the training data using the (possibly
expanded) seed terms set (Sect. 3.3). 4 A new Named Entity Recognizer (NER)
is trained using the annotated training data, and the newly trained NER is
applied on the corpus to detect a candidate set of entities (Sect. 3.4). 5 The
Filtering step refines the set candidate entities set, to improve the quality of
outputted Verified Terms set (Sect. 3.5).

Fig. 1. Overview of the domain-specific long-tail named entities recognition approach.
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TSE-NER operates under the hypothesis that there are recurring patterns in
the mentions of domain-specific named entities, and that they appear in similar
contexts. If this hypothesis holds, by training a classifier on the texts containing
the entities, we are able to extract the instances of the entity type of interest.
The process can be iterated, by repeating the first step using the newly detected
terms as seeds to generate new training data. We rely on the following concepts
(some are only relevant for the evaluation, and could be omitted in setups where
evaluation is not necessary). The companion website [18] provides a complete
unified algorithm covering the TSE-based NER training workflow.

Known Entity Terms Tall:= Tseed ∪Ttest: This represents a manually created
set of instances of the entity type for which a NER classifier is to be trained. In
this work, we split this set into a set of seed terms Tseed used for training, and
test terms Ttest used for evaluation purposes. In a real-life scenario not requiring
a formal evaluation, of course only the seed terms would be necessary. Tseed may
be small. In this work we consider seed sets 5 ≤ |Tseed| ≤ 100. Creating Tseed is
the only manual input required for NER training in our approach.

Document Corpus Dall:= {d1, ..., d|D|}: This is the complete document corpus
available to our system. Parts of it can potentially be used for training, others
for testing. Each document is considered to be a sequence of sentences.

All Sentences Sall := {s|s ∈ d∧ d ∈ Dall}: This represents all sentences of the
whole document corpus. Each sentence is considered to be a sequence of terms.

Test Sentences Stest :=
⋃

t∈Ttest
{s|s ∈ Sall ∧ t ∈ s}: These are all sentences

containing any term from the test set, and they need to to be excluded from any
training in order to ensure the validity of our later evaluations, resulting in the
set of Development Sentences S := Sall \ Stest.

In the following, we introduce the iterative version of our approach, repre-
senting the current iteration number as i whereas initially i = 0. Each iteration
i uses its own term list Ti, which initially is T0 ⊆ Tseed (the size of the subset of
Tseed depends on the desired use case, as discussed in Sect. 4.3).

3.1 Training Data Extraction

As a first step, a set of training data sentences Si for the current iteration is
created by extracting suitable sentences from S. At this stage, this is realized by
selecting all sentences containing any of the seed terms. Therefore, Si provides
examples of the positive classification class as they are guaranteed to contain a
desired entity instance. To better capture the usage context of the seed entity,
we also extract surrounding sentences in the text: Si := ∪t∈Ti

{s|s ∈ S ∧ (t ∈
s ∨ t ∈ successor(s) ∨ t ∈ predecessor(s))}.

3.2 Expansion

The small size of the seed term set Tseed has two obvious shortcoming that can
greatly hinder the accuracy and recall of the trained NERs: (1) the amount
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of training data sentences Si is limited; and (2) there are only few examples of
mentions of the entity instances of the given type. In addition, the generalization
capability of the NER for identifying new named entities can also be affected:
an insufficient amount of positive examples can lead to entities of the targeted
type being labeled negatively; while the extraction of sentences in the training
data that are related to seed terms will cause a shortage of negative examples.
To account for these issues, we designed two expansion strategies.

Term Expansion (TE). Term Expansion is designed to increase the num-
ber of known instances of the desired entity type before training the NER. An
expanded set of entities will provide more positive examples in the training
data, thus ideally improving the precision of the NER. In scientific documents,
it is common for domain-specific named entities to be in close proximity, e.g. to
enumerate alternative solutions, or list technical artifacts. The Term Expansion
(TE) strategy is therefore designed to test and exploit this hypothesis.

We introduce the interface expandTerms(termss), with termss ⊆ termsi.
While many different implementations for this interface are possible, in this work
we use semantic similarity : terms which are semantically similar to terms in the
seed list should be included in the expansion. For example, given the dataset
seed terms Clueweb and cim-10, the expansion should add similar terms like
trec-2005.

We exploit the distributional hypothesis [10] stating that terms frequently
occurring in similar context are semantically related, using the popular word2vec
implementation of skip-n-gram word embeddings [19]. In essence, word2vec
embeds each term of a large document corpus into low-dimensional vector space
(100 dimensions in our case), and the cosine distance between two vectors has
been shown to be a high-quality approximation of semantic relatedness [14]. In
our implementation, we trained the word2vec model on the whole development
sentence collection S, as described in [19], learning all uni- and bigram word
vectors of all terms in the corpus. Then, in its most basic version, we select
all terms from all sentences, and cluster them with respect to their embedding
vectors using K-means clustering. Silhouette analysis is used to find the optimal
number k of clusters. Finally, clusters that contain at least one of the seed terms
are considered to (only) contain entities the same type (e.g Dataset).

Algorithm 1. TE using Semantic Relatedness
function expandTerms(termss)

Tentity := {t|t ∈ s ∧ s ∈ S ∧ isEntity(t)}
� All entities in S

clusters := cluster(word2vec(Tentity))
� Cluster the embeddings

clusterscorrect := {c|c ∈ clusters ∧ t ∈ termss
∧t ∈ c}
� Select clusters containing any initial term

return
⋃

c∈clusterscorrect
end function

Initial experiments have
shown that this naive app-
roach is slow, and that it can
potentially introduce many
false positives due to (1) the
large number of considered
terms, and (2) the sometimes
faulty assumption that all
terms in cluster are indeed
similar as word2vec related-
ness is not always reliable for
similarity measurements [14].



TSE-NER: An Iterative Approach for Long-Tail Entity Extraction 133

To improve, in the following we only consider terms which are likely to be named
entities by using NLTK entity detection to obtain a list of all entities Eall con-
tained in S4. This results in the Algorithm 1.

Sentence Expansion (SE). A second (optional) measure to increase the size
and variety of the training set is the Sentence Expansion (SE) strategy. It
addresses the problem of the over-representation of positive examples resulting
from selecting only sentences with instances of the desired type (see Sect. 3.1).
The goal is to include negatives sentences not containing instances of the desired
type, but are still very similar in semantics and vocabulary.

We rely on doc2vec document embeddings [13], a variant of word2vec, to learn
vector representations of all sentences. For each sentence in S, we use the cosine
distance to discover the most similar sentences filtered to those not containing
any known instance of the targeted type. As such sentences might contain an
unknown instance of that type, we always combine SE with term expansion to
minimize the risk of accidentally mislabeling them as negative examples.

3.3 Training Data Annotation

The annotation of training data from the (expanded) seed terms is performed
automatically, with no human intervention. After obtaining an (expanded) set
of instances Ti (the current term list) and training sentences Si, we annotate
each term ATi

:= annotateTi
(Si) in all training sentences if they are a positive

instance of the targeted entity type, i.e. if the term ∈ Ti. Using ATi
, any state-

of-the-art supervised NER can be trained.

3.4 NER Training

For training a new NERi, we used the Stanford NER tagger5 to train a Con-
ditional Random Field (CRF) model. As the focus of this paper is the process
of training data generation, we do not consider additional algorithms. CRF has
shown to be an effective technique on different NER tasks [12]; the goal of CRF
is to learn the hidden structure of an input sequence. This is done by defining a
set of feature functions (e.g. word features, current position of the word labels of
the nearby word), assigning them weights and transforming them to a probabil-
ity to detect the output label of a given entity. The features used in the training
of the model are listed in the companion website. After a NER for the current
iteration Ni is trained, it is used to annotate the whole development corpus S,
i.e. ANERi

:= annotateNERi
(S). All positively annotated terms are considered

newly discovered instances of our desired type.

4 NLTK entity detection is based on grammatical context. It does not perform any
typing, and due to it’s simplicity, has high recall values.

5 https://github.com/dat/stanford-ner.

https://github.com/dat/stanford-ner
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3.5 Filtering

After applying the NER to the development corpus, we obtain a list of new can-
didate terms. As our process relied on several steps which might have introduced
noise and false positives (like the expansion steps, but also the NER itself), the
goal of this last (optional) step is to filter out candidate terms that are unlikely
of the targeted type using a set of external heuristics with different assumptions:

Wordnet + Stopwords (WS) Filtering. In the domain-specific language of
scientific documents, it is common for named entities to be “proper” of that
domain (like Simlex-999), or to be expressed as acronyms (like Clueweb, SVM,
RCV). In this strategy, named entities are assumed to be not relevant if they are
part of the “common” English language, either as proper nouns (e.g. software,
database, figure), or a Stopwords (e.g. on, at). This is achieved by performing
lookup operations in WordNet6 and in common lists of stopwords7. As both
sources focus on general English language, only domain-specific terms should be
preserved.

Similar Terms (ST) Filtering. In order to distinguish between different entity
types that pertain to a given domain (e.g. SVM is of type Method, while Clueweb
is of type Dataset), this filtering strategy employs an approach similar to the
one used in the Term Expansion (TE) strategy. The idea is to cluster entities
based on their embedding feature using K-means clustering, and keep all the
entities that appear in the cluster that contains a seed term.

Pointwise Mutual Information (PMI) Filtering. This filtering strategy
adopts a semantic similarity measure derived from the number of times two given
keywords appear together in a sentence in our corpus. The heuristic behind this
filter is vaguely inspired by Hearst Patterns [24], as we manually compile a list of
context terms/patterns CX which likely indicate the presence of an instance of
our desired class (e.g., “we evaluate on x” typically indicates a dataset). Unlike
the other filters, it does increase the manual resource costs for training.

Given a set of candidate entities CTi and the context term set CX, we
measure the PMI between them using log N(ct,cx)

N(ct)N(cx) with ct ∈ CTi ∧ cx ∈ CX,
and N(ct, cx) being the number of sentences in which both a candidate entity
(ct) and a given keyword (t) occur (analogously, N(ct) counts the number of
occurrences of ct). Finally, candidate terms are filtered and excluded if their
PMI value is below a given threshold value.

Knowledge Base Lookup (KBL) Filtering. Our target are long-tail domain-
specific entities, i.e. entities that are not part of existing knowledge bases. Named
entities that could be linked to a knowledge base could be assumed incorrect,
and therefore amenable to exclusion from the final named entity set. In the KBL
approach we exclude the entities that have a reference in the DBpedia.

6 http://wordnet.princeton.edu/.
7 http://www.nltk.org/book/ch02.html.

http://wordnet.princeton.edu/
http://www.nltk.org/book/ch02.html
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Ensemble (EN) Filtering. Different filtering strategies are likely to remove
different named entities. To reduce the likelihood of misclassification, the Ensem-
ble (EN) filtering strategy combines the judgment of multiple filtering strategies,
to preserve candidate entities that are considered correct by one or more strat-
egy. Intuitively, if each strategy makes different errors, then a combination of
the filters’ judgment can reduce the total error. We preserve the entities that are
passed through two out of three selected filtering strategies.

4 Evaluation

This section reports on an empirical evaluation to assess the performance of the
approach (and its variants) described in Sect. 3, and the ability to utilize it for
long-tail named entity recognition. Sect. 4.1 describes the experimental set-up,
followed by the results (Sect. 4.2), and their discussion (Sect. 4.3).

4.1 Experimental Setup

Corpora. Our main evaluation, shown in the following sections, is performed on
the data science (15,994 papers from 10 conference series) domain. To assess the
performance of TSE-NER in other scientific domains, at the end of the section
we describe an experiment over 4,525 publications from 10 biomedical journals.
The full description of the corpora is described in the companion Web site [18].
Publications are processed using GROBID [15], to extract a structured full-text
representation of their content.

Long Tail Entity Types Selection. Scientific publications contain a large
quantity of long-tail named entities. Focusing on the data science domain, we
address the entity types Dataset (i.e. dataset presented or used in a publi-
cation), and Methods (i.e. algorithms – novel or pre-existing – used to cre-
ate/enrich/analyze a dataset). Both entities types are scarcely represented in
existing knowledge bases8. To evaluate the performance of our approach, we cre-
ate a set of 150 seed instances Tall for each targeted type, collected public from
public websites9.

For each type, 50 of those are selected as test terms for that type Ttest, while
100 are used as seed terms Tseed.

Evaluation Dataset. As discussed in Sect. 3, in the training process all test
sentences Stest (i.e. sentences mentioning terms in Ttest) in the corpus Dall are
removed. For evaluation, we manually created a type-annotated test set: for

8 In DBPedia, the type dbo:database features 989 instances, but mostly related to
biology, economy, and history. The type dbo:software contain names of several
algorithms, but the list is clearly incomplete.

9 For instance: https://github.com/caesar0301/awesome-public-datasets. The full list
of seed entity instances, as well as the list of sources are available on the companion
Website.

https://github.com/caesar0301/awesome-public-datasets
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each test term, we select all sentences in which they are contained including
any adjacent sentence, forming the set of annotated sentences Sannotated :=
∪t∈Ttest

{s|s ∈ Stest∧(t ∈ s∨ t ∈ successor(s) ∨ t ∈ predecessor(s))}. An expert
annotator labeled each term as an instance of the target type to create the test
annotation set used for evaluation Atest := annotateexpert(Sannotated).

Algorithm 2. Evaluation Protocol
function evaluate(seed size)

T ⊆seed size Tseed

NERfinal := longtailT rain(T, Sall)
Afinal := annotateNERfinal(Sannotated)

result := analyze(Afinal, Atest)
end function

Details of statistics on sen-
tences used for training and test-
ing can be found in the companion
Web site. For training, depend-
ing on the seed set size between
5 and 100, we used between 198
and 2863 sentences for the dataset
entity type and 617 to 18545 sen-
tences for the Method entity type.

For testing 50 seed terms were used for both dataset (i.e. 3149 sentences) and
method (i.e. 1097 sentences) entity type. The evaluation protocol is described in
Algorithm 2, where the seed size values can be initialized with different values.
Our analysis was not limited to the 50 test seed terms, we further evaluated 200
entities recognized by TSE-NER via a pooling technique.

4.2 Results

For a given entity type (Dataset and Method), we test the performance with
differently sized seed sets and expansion strategies to create the training data
for generating the NER model, and different filtering strategies. We report the
performance of the basic WS, PMI, and EN strategies, plus a combination of
the WS, ST, and KBL strategies, as listed in Table 1. The complete evaluation
results for all the seed set size and the filtering techniques can be found in the
companion Web site. We investigate iterative performance, and results on the
manually annotated test from the previous section.

Tables 1 and 2 summarize the performance achieved for Dataset and Method
entity types. In Table 2, the No Expansion and Term Expansion figures for the
Method type are omitted for brevity’s sake. Our approach is able to achieve
excellent precision [89% – 91%] with both entity types, and good recall (up to
41%) with the Dataset type. The lower recall obtained with the Method type
can be explained with the greater diversity (in terms of n-grams and use of
acronyms) of method names.

The expansion strategies lead to an average +200% (SE – Dataset) and
+300% (TE – Dataset) increase in recall, thus demonstrating their effective-
ness for generalization. On average, filtering decrease recall, but with precision
improvements up to +20% (PM – Method). These are promising figures, con-
sidering the minimal human supervision involved in the training of the NERs.
We can also show the different trade-offs our approach can strike: different con-
figurations of filtering and expansion lead to different results with respect to
precision and recall values, allowing for example a high-precision slightly-lower
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recall setup for a digital library, and a higher recall lower precision setup for a
Web retrieval system.

Expansion Strategies. Expansion strategies increase the size and variety of
training datasets, thus improving the precision and recall. Both strategies achieve
the expected results, although with different performance increase: compared
to NE strategy, both TE and SE achieve a considerable performance boost
(µ = +190%) for recall, but at cost of lower precision (µ = −8.7%). We account
the better recall performance of TE to the contextual similarity (and proximity)
of named entities of the same type in technical documents (e.g. Gov2, Robust04,
ClueWeb and Wt10g). The precision decrease in TE can be accounted to treating
some terms incorrectly as positive instances due to their presence in the same
embedding clusters as the seed terms (see also Sect. 3.2). The SE strategy shows
lower recall (µ = +210% over NE), but with less precision loss (µ = −5.2% than
NE). We account this positive behaviour to the presence of more quality negative
examples, helping to maintain the generalization capabilities of the NER, while
refining the quality of its recognition.

Filtering Strategies. We observe no significant improvement in precision with
the WS filtering approach. Manual inspection of results reveal that most of the
false positives are already domain-specific terms (e.g. Pagerank, Overcite for
Dataset, and NDCG for Method) which are not included in Wordnet, but that are
of the wrong type. SS slightly increases the precision by keeping only the entities
that appear in the same cluster as the seed names; however, this comes at a cost,

Table 1. Dataset entity type: precision/recall/F-score on evaluation dataset. Legend:
NE – No Expansion; TE – Term Expansion; SE – Sentence Expansion; NF – No
Filtering; WS – Wordnet + StopWords; SS – Similar Terms + WS; KS – Knowledge
Base Lookup + SS; PM – Point-wise Mutual Information; EN – Ensemble.

Table 2. Method entity type: precision/recall/F-score. Legend as in Table 1.
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as the recall is also penalized by the exclusion of entities of interest that are in
other clusters. KB excludes popular entities that are contained in the knowledge
base (e.g. Wordnet, Dailymed), but also some rare entities that are mistyped.

For instance, the Dataset entities Ratebeer10 or Jester can be retrieved
from DBpedia using the lookup search, although the result points to another
entity. This is a clear limitation with the adopted lookup technique, which could
be avoided with a more precise implementation of the lookup function. PMI
usually gets the highest precision; the strategy proved effective in removing false
positives, but penalizes recall by excluding entities that do not appear with the
words in the context list CX. For instance, Unigene (Dataset) often appears
in with the term data source, which is not in our context list and thus filtered
out. The EN strategy keeps only the entities that are preserved by two out of
three (WS, KB and PMI) filtering strategies. While reducing the number of false
positives, this proves to be too restrictive; for instance Dataset names such as
Yelp, Twitter, Foursquare and Nasdaq are removed by both the WS and KB
strategies.

Seed Set Size. We randomly initialize T ⊆ Tseed with |T | = 5, 10, 25, 50, 100
(see Algorithm 2). We execute the evaluation cycle 10 times for each size of T ,
and again vary expansion and filtering strategies. The recall performance sharply
increase with the number of seeds term (µ = +340% from 5 to 100 seeds): this
is due to the increase in the number of sentences available for NER training,
and is an expected behaviour. The decrease in precision is an average of −6%
from 5 to 100 seeds, with an average value of −5.1% for Dataset and −6.9% for
Methods. Noteworthy are the good performance with as little as 5 seed entities
(Datasets: 0.25 F-score with TE strategy and no filtering).

Iterative NER Training. Figure 2 shows the result of the iterative NER train-
ing using Sentence Expansion with 5 seeds. We report the results with the PMI
(Dataset) and EN (Methods) filtering, as they are the ones offering the most
balanced performance in both precision and recall. Despite the small initial seed
seed, it is possible to achieve precision and recall comparable to the ones obtained
with an initial set of 100 seeds in only 2 iterations.

Fig. 2. Dataset (L) and Method (R) entity: iterative NER training using 5 initial seeds.

10 http://lookup.dbpedia.org/api/search/KeywordSearch?QueryClass=&QueryString
=ratebeer.

http://lookup.dbpedia.org/api/search/KeywordSearch?QueryClass=&QueryString=ratebeer
http://lookup.dbpedia.org/api/search/KeywordSearch?QueryClass=&QueryString=ratebeer


TSE-NER: An Iterative Approach for Long-Tail Entity Extraction 139

Fig. 3. Dataset (L) and Method (R): precision and recall for ranked top 10, 25, 50, 100
and 200 entities, varying seeds sizes.

Analysis of Recognized Entities. To widen the scope of our evaluation, we
extended our result analysis beyond the 150 named entities in Tall. We manually
investigated up-to-now unknown named entities which have been recognized by
the NER after training. We applied a method inspired by the pooling technique
typically used in information retrieval research: given a list of seed terms Tseed

of a given type, and a list of recognized potential filtered terms FT of an yet
unknown type, the idea is to rank the items in the list of candidate terms FT
according to their embedding similarity to the items in the seed set Tseed and
collect the top K. As a result, the obtained precision and recall measurements are
only approximate values. The similarity is measured based on the cosine similar-
ity between the word2vec embedding vectors. Each entity in the lists has been
manually checked by an expert. Figure 3 shows the precision and recall of the top
K = 10, 25, 50, 100, and 200 retrieved entities using the SE approach. As in the
previous experiment, we used the PMI and EN filtering strategies respectively
for Dataset and Method types. Precision performance are consistently high at all
level of recall. Note that we randomly selected T ⊆ Tseed with —T—=5,25,100
seed terms and used them to train the NER using the SE strategy. Variations
in precision performance in Fig. 3 are therefore accountable on the initial seed
term used in each configuration (seed terms might bring in more false positives).

The Dataset entities mslr-web10 (a benchmark collection for learning to rank
method) and ace2004 (ACE 2004 Multilingual Training Corpus); and Method
entities such as TimedTextTank and StatSnowball are a sample of extracted enti-
ties. More examples can be found in the companion website. Some examples of
incorrect detected entities are due to ambiguous nature of the sentence. Consider
the following sentence: “The implementation of scikitlearn toolkit was adopted
for these methods”, since it is similar to a sentence that contains a method entity,
the entity scikitlearn was detected as a method although its a software library.
In another sentence: “The Research Support Libraries Programme (RSLP) Col-
lection Description Project developed a model.”, RSPL (a project) was detected
as a dataset due to its surrounding words (e.g. collection, libraries).

Comparison with State-of-the-Art. We compared our method with: (1) the
BootStrapping (BS) based concept extraction approach [27], a commonly used
state-of-the-art technique in scientific literature; the experiments where executed
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with the code and the parameters (k, n, t) to (2000, 200, 2) provided in [27], and
with 100 seeds. And, (2) improved and expanded Hearst Pattern (HP) [24] for
automatically building or extending knowledge bases extracting type-instance
relations e.g., X such as Y as in “we used datasets such as twitter”. Intuitively,
the performance of BS decreases with less number of seed terms. For the HP
we kept type-instance pairs related to dataset or method (i.e. the context words
in CX). Experiments on our evaluation dataset shown that TSE-NER achieved
better performance in terms of precision/recall/fscore for the dataset entity type
(0.77/0.30/0.43) compared to BS (0.08/0.13/0.10) and HP (0.92/0.15/0.27) as
well as for the method entity (TSE-NER: 0.68/0.15/0.25, BS : 0.11/0.32/0.16,
HP : 0.64/0.04/0.07). The high precision and low recall in HP is explained by
the limited set of HP patterns. We infer that different expansion strategies aug-
ment the performance of our technique compared to the BS which just relies on
features such as unigrams, bigrams, closest verb, etc. Finally we also evaluated
the performance of traditional supervised annotation. The supervised approach
can achieve precision/recall/f-score of 0.82/0.35/0.49 for dataset entity type and
0.70/0.17/0.28 for method entity type using training data from 100 seeds.

Biomedical Domain. To test the performance of TSE-NER on another
domain, we processed 4,525 biomedical publications from 10 journals focusing
on the Protein entity type. The seed terms were selected from the protein ontol-
ogy.11 We excluded test terms appearing in the Craft corpus [2] (a manually
annotated corpus containing 67 full-text biomedical journals) and kept only those
with references in the publications (see companion site). We randomly initial-
ized T ⊆ Tseed with |T | = 5, 25, 100 and employed the SE strategy and a simple
WS filtering. The evaluation cycle has been executed 10 times for each size of
T , and results are averaged. TSE-NER can achieve precision/recall/f-score of
0.57/0.08/0.14 using 5 seeds, 0.40/0.28/0.32 using 25 seeds, and 0.38/0.46/0.41
with 100 seeds. The latter results are comparable to extensive dictionary-based
systems [28] (0.44/0.43/0.43) [5] (0.57/0.57/0.57) where existing ontologies in
the biomedical domain are used for matching Protein entities of the text.

4.3 Discussion

The design goal of the TSE-NER approach was minimizing the training costs
in scenarios where the targeted entity types are rare, and little to no resources
(for manual annotations) are available. In these cases, relying on dictionaries or
knowledge-bases is not feasible, and common techniques like supervised learning
cannot be applied. We believe to have successfully reached that goal, as we
could show that even with small seed lists Tseed with little as 5 or 25 terms,
high-precision NERs could be trained.

Nonetheless, this ease-of-training comes at a price: recall values are low, and
are unlikely to be able to compete with known much more elaborately trained
NERs for popular types. However, by selecting different configurations for filter-
ing and expansion, recall can be moderately improved at the cost of precision.
11 http://obofoundry.org/ontology/pr.html.

http://obofoundry.org/ontology/pr.html
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Also, the effectiveness of such changes of configurations seems to slightly differ
between the Dataset and Method entity types. As a result, we cannot identify
one clear best configuration as TSE-NER seems to benefit from some entity
type-specific tuning. However, this also provides some flexibility to tune with
respect to different quality and application requirements.

Furthermore, some of our underlying assumptions, heuristics and implemen-
tation choices, are designed as a simplistic prove-of-concepts, and deserve further
discussion and refinement. As an example, consider WS WordNet filtering: we
assumed domain-specific named entities would not be part of common English
language. While this is true for many relevant domain-specific entities, several
datasets (for instance) do indeed carry common names like the census dataset.
For a production system, more complex implementations and tailored crafting is
necessary for reaching better performance values. Another restriction is related
to the core heuristics found in the term and sentence expansion, where we assume
that similar types of entities occur in similar contexts – which is not necessarily
always the case.

Threats To Validity. Our evaluation has been performed on an extensive doc-
ument corpus, covering two distinctively different domains. However, we focused
only on a limited set of entity types. The hypothesis described in Sect. 3 hold for
Datasets, Methods, and Proteins, but further experiments are needed for other
entity types in the same domains (e.g. Software) or in other domains. Despite the
good performance achieved, it could already be noted that even between those
three types, no single TSE-NER configuration is clearly the best. In order to
obtain a complete understanding of the full capabilities, limitations, and trade-
offs of our approach, more studies addressing additional domains and entity
types are necessary.

5 Conclusion

We presented a novel approach for the extraction of domain-specific long-tail
entities from scientific publications. A limiting factor in this scenario is the lack
of resources and/or available explicit knowledge to allow for established NER
training techniques. We explored techniques able to limit the reliance on human
supervision, resulting in an iterative approach that requires only a small set
of seed terms of the targeted type. Our core contributions, in addition to the
overall approach, are a set of expansion strategies exploiting semantic relatedness
between terms to increase the size and labelling quality of the generated training
dataset, as well as several filtering techniques to control the noise.

In our evaluation, we could show that we can reach a precision of up to 0.91,
or a recall of up to 0.41 – a good result considering the very cheap training costs.
Furthermore, we could show that recall can be traded for more precision to a
moderate extend by changing the configuration of our NER training process.

For future work, additional evaluation addressing more domains and entity
types is of importance to better understand the range of applicability of our app-
roach. Also, many of our currently still simplistic heuristics and implementation
choices can benefit from (domain-specific) improvement and optimization.
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