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Abstract. Rules over a Knowledge Graph (KG) capture interpretable
patterns in data and various methods for rule learning have been pro-
posed. Since KGs are inherently incomplete, rules can be used to deduce
missing facts. Statistical measures for learned rules such as confidence
reflect rule quality well when the KG is reasonably complete; however,
these measures might be misleading otherwise. So it is difficult to learn
high-quality rules from the KG alone, and scalability dictates that only
a small set of candidate rules could be generated. Therefore, the rank-
ing and pruning of candidate rules are major problems. To address this
issue, we propose a rule learning method that utilizes probabilistic rep-
resentations of missing facts. In particular, we iteratively extend rules
induced from a KG by relying on feedback from a precomputed embed-
ding model over the KG and external information sources including text
corpora. Experiments on real-world KGs demonstrate the effectiveness
of our novel approach both with respect to the quality of the learned
rules and fact predictions that they produce.

1 Introduction

Motivation. Rules are widely used to represent relationships and dependen-
cies between data items in datasets and to capture the underlying patterns in
data [1,24]. Applications of rules include health-care [37], equipment diagnos-
tics [16,19], telecommunications [18], and commerce [27].To facilitate rule con-
struction, a variety of rule learning methods have been developed, see e.g. [8,17]
for an overview. Moreover, various statistical measures such as confidence,
actionability, and unexpectedness to evaluate the quality of the learned rules
have been proposed.

Rule learning has recently been adapted to the setting of Knowledge Graphs
(KGs) [9,10,32,36] where data is represented as a graph of entities interconnected
via relations and labeled with classes, or more formally as a set of grounded
binary and unary atoms typically referred to as facts. Examples of large-scale
KGs include Wikidata [33], Yago [30], NELL [21], and Google’s KG. Since many
KGs are constructed from semi-structured knowledge, such as Wikipedia, or
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D. Vrandečić et al. (Eds.): ISWC 2018, LNCS 11136, pp. 72–90, 2018.
https://doi.org/10.1007/978-3-030-00671-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00671-6_5&domain=pdf


Rule Learning from Knowledge Graphs Guided by Embedding Models 73

harvested from the Web with a combination of statistical and linguistic methods,
they are inherently incomplete [10].

Rules over KGs are of the form head ← body , where head is a binary atom
and body is a conjunction of, possibly negated, binary or unary atoms. When
rules are automatically learned, statistical measures like support and confidence
are used to assess the quality of rules. Most notably, the confidence of a rule is the
fraction of facts predicted by the rule that are indeed true in the KG. However,
this is a meaningful measure for rule quality only when the KG is reasonably
complete. For rules learned from largely incomplete KGs, confidence and other
measures may be misleading, as they do not reflect the patterns in the missing
facts. For example, a KG that knows only (or mostly) male CEOs would yield
a heavily biased rule gender(X ,male) ← isCEO(X ,Y ), isCompany(Y ), which
does not extend to the entirety of valid facts beyond the KG. Therefore, it is
crucial that rules can be ranked by a meaningful quality measure, which accounts
for KG incompleteness.

Example. Consider a KG about people’s jobs, residence and spouses as well as
office locations and headquarters of companies. Suppose a rule learning method
has computed the following two rules:

r1 : livesIn(X ,Y ) ← worksFor(X ,Z ), hasOfficeIn(Z ,Y ) (1)
r2 : livesIn(Y ,Z ) ← marriedTo(X ,Y ), livesIn(X ,Z ) (2)

The rule r1 is quite noisy, as companies have offices in many cities, but employees
live and work in only one of them, while the rule r2 clearly is of higher quality.
However, depending on how the KG is populated with instances, the rule r1
could nevertheless score higher than r2 in terms of confidence measures. For
example, the KG may contain only a specific subset of company offices and only
people who work for specific companies. If we knew the complete KG, then the
rule r2 should presumably be ranked higher than r1.

Suppose we had a perfect oracle for the true and complete KG. Then we
could learn even more sophisticated rules such as:

r3 : livesIn(X ,Y ) ← worksFor(X ,Z ), hasHeadquarterIn(Z ,Y ),
not locatedIn(Y ,USA)

This rule would capture that most people work in the same city as their employ-
ers’ headquarters, with the USA being an exception (assuming that people there
are used to long commutes). This is an example of a rule that contains a negated
atom in the rule body (so it is no longer a Horn rule) and has a partially grounded
atom with a variable and a constant as its arguments.

Problem. The problem of KG incompleteness has been tackled by methods
that (learn to) predict missing facts for KGs (or actually missing relational
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edges between existing entities). A prominent class of approaches is statistics-
based and includes tensor factorization, e.g. [23] and neural-embedding-based
models, e.g. [2,22]. Intuitively, these approaches turn a KG, possibly augmented
with external sources such as text [38] or log files [29], into a probabilistic rep-
resentation of its entities and relations, known as embeddings, and then predict
the likelihood of missing facts by reasoning over the embeddings (see, e.g. [34]
for a survey).

These kinds of embeddings can complement the given KG and are a potential
asset in overcoming the limitations that arise from incomplete KGs. Consider
the following gedankenexperiment: we compute embeddings from the KG and
external text sources, that can then be used to predict the complete KG that
comprises all valid facts. This would seemingly be the perfect starting point for
learning rules, without the bias and quality problems of the incomplete KG. How-
ever, this scenario is way oversimplified. The embedding-based fact predictions
would themselves be very noisy, yielding also many spurious facts. Moreover, the
computation of all fact predictions and the induction of all possible rules would
come with a big scalability challenge: in practice, we need to restrict ourselves
to computing merely small subsets of likely fact predictions and promising rule
candidates.

Approach. In this work we propose a novel approach for rule learning guided
by external sources that allows to learn high-quality rules from incomplete KGs.
In particular, our method extends rule learning by exploiting probabilistic repre-
sentations of missing facts computed by embedding models of KGs and possibly
other external information sources. We iteratively construct rules over a KG and
collect feedback from a precomputed embedding model, through specific queries
issued to the model for assessing the quality of (partially constructed) rule can-
didates. This way, the rule induction loop is interleaved with the guidance from
the embeddings, and we avoid scalability problems. Our machinery is also more
expressive than many prior works on rule learning from KGs, by allowing non-
monotonic rules with negated atoms as well as partially grounded atoms. Within
this framework, we devise confidence measures that capture rule quality better
than previous techniques and thus improve the ranking of rules.

While enhancing embeddings with precomputed rules or constraints has been
studied in several works [14,15,28,35,35], accounting for embeddings in rule
construction as we propose, has not been considered before to the best of our
knowledge.

Contribution. The salient contributions of our work are as follows:

– We propose a rule learning approach guided by external sources, and show
how to learn high-quality rules by utilizing feedback from embedding models.

– We implement our approach and present extensive experiments on real-world
KGs, demonstrating the effectiveness of our approach with respect to both
the quality of the learned rules and the fact predictions that they produce.
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– Our code and data are made available to the research community at https://
github.com/hovinhthinh/RuLES.

2 Rule Learning Guided by External Sources

In this section, we first give some necessary preliminaries, then introduce our
framework for rule learning guided by external sources, discuss challenges asso-
ciated with it, and finally propose a concrete instantiation of our framework with
embedding models.

2.1 Background

We assume countable sets R of unary and binary relation names and C of con-
stants. A knowledge graph (KG) G is a finite set of ground atoms a of the form
p(b, c) and c(b) over R ∪ C. With ΣG , the signature of G, we denote elements of
R ∪ C that occur in G.

We define rules over KGs following the standard approach of non-monotonic
logic programs under the answer set semantics [11]. Let X be a countable set
of variables. A rule r is of the form head ← body , where head , or head(r), is
an atom over R ∪ C ∪ X and body, or body(r), is a conjunction of positive and
negative atoms over R ∪ C ∪ X . Finally, body+(r) and body−(r) denote the
atoms that occur in body(r) positively and negatively respectively; that is, the
rule can be written as head(r) ← body+(r),not body−(r). A rule is Horn, if all
head variables occur in the body, and body−(r) is empty.

We define execution of rules with default negation [11] over KGs in the stan-
dard way. More precisely, let G be a KG, r a rule over ΣG , and a be an atom
over ΣG . Then, r |=G a holds if there is a variable assignment that maps atoms
body+(r) in G such that it does not map any of the atoms in body−(r) in G. Then,
let Gr = G ∪ {a | r |=G a}. Intuitively, Gr extends G with edges derived from G by
applying r. Note that to avoid propagating uncertain predictions, given a set of
rules R we execute every rule in R on G independently, i.e., GR =

⋃
r∈R Gr. Given

additional syntactic restrictions on rules in R, which disallow cycles through
negation, consistency is ensured.

2.2 Problem Statement and Proposal of General Solution

Let G be a KG over the signature ΣG = (RG , CG). A probabilistic KG P is a pair
P = (G, f) where f : RG × CG × CG → [0, 1] is a probability function over the
facts over ΣG . We assume f(a) = 1 for each fact a ∈ G, which is already known
to be true.

The goal of our work is to learn rules that not only describe the available
graph G well, but also predict highly probable facts based on the function f .
The key questions now are how to define the quality of a given rule r based on P
and how to exploit this quality during rule learning for pruning out unpromising
rules.

https://github.com/hovinhthinh/RuLES
https://github.com/hovinhthinh/RuLES
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A quality measure μ for rules over probabilistic KGs is a function μ : (r,P) �→
α, where α ∈ [0, 1]. In order to measure the quality μ of r over P we propose:

– to measure the quality μ1 of r over G, where μ1 : (r,G) �→ α ∈ [0, 1],
– to measure the quality μ2 of Gr by relying on Pr = (Gr, f), where

μ2: (G′, (G, f)) �→ α ∈ [0, 1] for G′ ⊇ G is the quality of extension G′ of G
over ΣG given f , and

– to combine the result as the weighted sum.

Formally, we define our hybrid rule quality function μ(r,P) as follows:

μ(r,P) = (1 − λ) × μ1(r,G) + λ × μ2(Gr,P) (3)

In this formula μ1 can be any classical quality measure of rules over the given
KG G. Intuitively, μ2(Gr,P) is the quality of Gr wrt f that allows us to capture
the information about facts missing in G that are relevant for r. The weighting
factor λ, we call it embedding weight, allows one to choose whether to rely more
on the classical measure μ1 or on the measure μ2 of the quality of the extension
Gr of r over G.

Challenges. There are several challenges that one faces when realising our app-
roach. First, given an incomplete G, one has to define f such that (G, f) satisfies
the expectations, i.e., reflects well the probabilities of missing facts. Second, one
has to define μ1 and μ2 that also satisfy the expectations and admit efficient
implementation. Finally, the adaptation of existing rule learning approaches to
account for the probabilistic function f without the loss of scalability is not
trivial. Indeed, materializing f by augmenting G with all possible probabilistic
facts over ΣG and subsequently applying standard rule learning methods on the
obtained graph is not practical. Storing such potentially enormous augmented
graph where many probabilistic facts are irrelevant for the extraction of mean-
ingful rules might be simply infeasible.

2.3 Realization of General Solution

We now describe how we addressed the above stated challenges. In this section,
we present concrete realizations of f , μ1 and μ2, and in Sect. 3 we discuss how
we implemented them and adapted within an end-to-end rule learning system.

Realization of the Probabilistic Function f . We propose to define f by
relying on embeddings of KGs. Embeddings are low-dimensional vector spaces
that represent nodes and edges of KGs and can be used to estimate the likelihood
(not necessary probability) of potentially missing binary atoms using a scoring
function ξ : RG × CG × CG → IR. Examples of concrete scoring functions can be
found, e.g., in [34]. Since embeddings per se are not in the focus of our paper,
we will not give further details on them and refer the reader to [34] for an
overview. Note that our framework is not dependent on a concrete embedding
model. What is important for us is that embeddings can be used to construct
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Fig. 1. An example knowledge graph.

probabilistic representations [22] of atoms missing in KGs and we use this to
define f .

Consider an auxiliary definition. Given a KG G, and an atom a = p(s, o),
the set Gs consists of a and all atoms a′ that are obtained from a by replacing s
with a constant from ΣG , except for those that are already in G. Then, given a
scoring function ξ, [Gs] is a list of atoms from Gs ordered in the descending order.
Finally, the subject rank [12] of a given ξ, subject rankξ(a) is the position of a
in [Gs]. Analogously,one can define [Go] and the corresponding object rank [12]
of a given ξ, that is, object rankξ(a).

Now we are ready to define the function f for an atom a /∈ G as the average
of its subject and object inverted ranks given ξ [12], i.e.:

fξ(a) = 0.5 × (1/subject rankξ(a) + 1/object rankξ(a))

Note that we assume fξ(a) = 1 for a ∈ G.

Realization of µ1. This measure should reflect the descriptive quality of a
given rule r with respect to G. There are many classical data mining measures
that can be used as μ1, see, e.g. [10,20,31,41] for μ1s proposed specifically for
KGs.

In this work, we selected the following two measures for μ1: confidence and
PCA confidence [10], where PCA stands for the partial completeness assumption,
that can be defined using rule support, r-supp, body support, b-supp, and partial
body support, pb-supp, as follows. Let r : head ← body+,not body− be a rule, x
be the subject variable of the head , and let h denote a head ’s variable assignment
that we with a slight abuse of notation use as a homomorphism on (sets of)
atoms. Then,

r-supp(r,G) = |{h | h(head) ∈ G,∃h′ ⊇ h s.t. h′(body+) ∈ G, h′(body−) 	∈ G}|,
b-supp(r,G) = |{h | ∃h′ ⊇ h s.t. h′(body+) ∈ G, h′(body−) 	∈ G}|,

pb-supp(r,G) = |{h | ∃h′ ⊇ h s.t. h′(body+) ∈ G, h′(body−) 	∈ G, and
∃h′′ s.t. h(x) = h′′(x), h′′(head) ∈ G}|.
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Finally, we are ready to define μ1 as confidence or PCA confidence:

μ1 = conf (r,G) = r-supp(r,G)/b-supp(r,G),
μ1,pca = confpca(r,G) = r-supp(r,G)/pb-supp(r,G).

Intuitively, confidence of a rule is the conditional probability of rule’s head
given its body, while PCA confidence is its generalisation to the open world
assumption (OWA), which does not penalize rules that predict facts p(s, o),
such that p(s, o′) 	∈ G for any o′.

Example 1. Consider the KG G in Fig. 1 and recall the rules r1 and r2 from
Eqs. (1)–(2). For r1, we have conf (r1 ,G) = confpca(r1 ,G) = 3

6 , while for r2 it
holds that conf (r2 ,G) = confpca(r2 ,G) = 1

3 . If Alice was not known to live in
Germany, then confpca(r2 ,G \ {livesIn(Alice,Germany)}) = 1

2 . Finally, for the
following rule with negation:

r4 : livesIn(Y ,Z ) ← marriedTo(X ,Y ), livesIn(X ,Z ),not researcher(X )

stating that married people live together unless one is a researcher, and G′ =
G ∪ {researcher(bob)}, we have conf (r4 ,G′) = confpca(r4 ,G′) = 1

2 . 
�

Realization of µ2. There are various ways how one can define the quality
μ2(Gr,P) of Gr. A natural candidate to define the quality of Gr is the probability
of Gr, that is, as μ2(Gr,P) =

∏
a∈Gr

f(a) × ∏
a∈(RG×CG×CG)\Gr

(1 − f(a)). A
disadvantage of such quality measure is that in practice it will be very low, as
the product of many (potentially) small probabilities, and thus Eq. 3 will be
heavily dominated by μ1(r,G). Therefore, we advocate to define μ2(Gr,P) as
the average probability of predicted facts in Gr:

μ2(Gr,P) = (Σa∈Gr\Gf(a))/|Gr\G|.

Example 2. Consider the KG G in Fig. 1, and the rules from Eqs. (1)–(2) with
their confidence values as presented in Example 1. Suppose that a text-enhanced
embedding model produced a relatively accurate estimation of the probabili-
ties of facts over livesIn relation. For example, even though there is no direct
connection between Germany and Berlin within the graph, relying on the liv-
ing places of entities similar to John and hidden semantic relations between
Germany and Berlin such as co-occurrences in text and other linguistic fea-
tures, for the fact a = livesIn(john, berlin) we obtained f(a) = 0.9, while for
a′ = livesIn(john, france), a much lower probability f(a′) = 0.09. These natu-
rally support the predictions of r2 but not those of r1.

Generalising this idea, assume that on the whole dataset we get μ2 (Gr1 ,P) =
0.1 and μ2 (Gr2 ,P) = 0 .8 , where P = (G, f). Thus, for λ = 0.5 we have
μ(r1,P) = (1 − 0.5) × 0.5 + 0.5 × 0.1 = 0.3, while for μ(r2,P) = (1 − 0.5) × 1

3 +
0.5 × 0.8 ≈ 0.57, resulting in the desired ranking of r2 over r1 based on μ. 
�
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Fig. 2. Overview of our system.

3 Approach Description

In this section, we describe our rule learning system with embedding support.
Conceptually, it extends the standard relational association rule learners [10,13]
to also take into account the feedback from embedding models through the
probabilistic function f .

Following common practice [10] we restrict ourselves to rules that are closed,
where every variable appears at least twice (moreover, we extract only rules
whose Horn part is closed), and safe, where variables appearing in the negated
part also appear in the positive part of the rule.

Overview. The input of the system are a KG, possibly a text corpus, and a
set of user specified parameters that are used to terminate rule construction.
These parameters include an embedding weight λ, a minimum threshold for μ1,
a minimum rule support r-supp and other rule-related parameters such as a
maximum number of positive and negative atoms allowed in r. The KG and text
corpus are used to train the embedding model that in turn is used to construct
the probabilistic function f . The rules r are constructed in the iterative fashion,
starting from the head, by adding atoms to its body one after another until at
least one of the termination criteria (that depend on f) is met. In parallel with
the construction of the rule r, the quality μ(r) is computed.

In Fig. 2 we present a high level architecture of our system, where arrows
depict information flow between blocks. The Rule Learning block constructs
rules over the input KG, Rule Evaluation supplies it with quality scores μ for
rules r, using G and f , where f is computed by the Embedding Model block from
G and text.

We now discuss the algorithm behind the Rule Learning block in Fig. 2.
Following [10] we model rules as sequences of atoms, where the first atom is the
head of the rule and other atoms are its body. The algorithm maintains a priority
queue of intermediate rules (see the Rules Queue block in Fig. 2). Initially all
possible binary atoms appearing in G are added to the queue with empty bodies.
At each iteration, a single rule is selected from the queue. If the rule satisfies
the filtering criteria (see the Filer rules block) which we define below, then the
system returns it as an output. If the rule is not filtered, then it is processed with
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one of the refinement operators (see the Refine rules block) that we define below
that expand the rule with one more atom and produce new rule candidates,
which are then pushed into the queue (if not being pushed before). The iterative
process is repeated until the queue is empty. All the reported rules will be finally
ranked by the decreasing order of the hybrid measure μ, computed in Collect
statistics block.

In the remainder of the section we discuss refinement operators and filtering
criteria.

Refinement Operators. We rely on the following three standard refinement
operators [10] that extend rules:

(i) add a positive dangling atom: add a binary positive atom with one fresh
variable and another one appearing in the rule, i.e., shared.

(ii) add a positive instantiated atom: add a binary positive atom with one argu-
ment being a constant and the other one being a shared variable.

(iii) add a positive closing atom: add a binary positive atom with both of its
arguments being shared variables.

Additionally, we introduce two more operators to allow negated atoms in rule
bodies:

(iv) add an exception instantiated atom: add a binary negated atom with one of
its arguments being a constant, and the other one being a shared variable.

(v) add an exception closing atom: add a binary negated atom to the rule with
both of its arguments being shared variables.

These two operators are only applied to closed rules. Moreover, we ensure that
the addition of exception atoms to the rule r : head(r) ← body+(r), should result
in r′ : head(r) ← body+(r),not body−(r), such that

r-supp(head(r) ← body+(r), body−(r),G) = 0.

Intuitively, we aim at adding exceptions that explain the absence of predictions
expected to be in the graph rather then their presence. Thus, the introduced
exceptions should not affect the rule support, i.e., r-supp(r,G) = r-supp(r′,G).

Filtering Criteria. After applying one of the refinement operators to a rule,
a set of candidate rules is obtained. For each candidate rule we first verify that
the hybrid measure μ has increased and discard the rule if it has not. Then, we
compute its h-cover [10] and our novel exception confidence measure e-conf that
are defined as follows:

h-cover(r,G) = r-supp(r,G)/|{h | h(head(r,G)) ∈ G}|,
e-conf(r,G) = conf(r′′,G),
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where r′′ : body−(r) ← body+(r), not head(r). If the h-cover and e-conf are
below the user specified threshold, then the rule is discarded. Intuitively, h-cover
quantifies the ratio of the known true facts that are implied by the rule. In
contrast, e-conf is the conditional probability of the exception given predictions
produced by the Horn part of r, which helps to disregard insignificant exceptions,
i.e., those that explain the absence in G of only a small fraction of predictions
made by head(r) ← body+(r), as such exceptions likely correspond to noise.
Observe that not all of the filtering criteria are relevant for all rule types. For
example, exception confidence is relevant only for non-monotonic rules to ensure
the quality of the added exceptions.

Finally, note that by exploiting the embedding feedback, we can now dis-
tinguish exceptions from noise. Consider the rule stating that married people
live together. This rule can have several possible exceptions, e.g., either one of
the spouses is a researcher or he/she works at a company, which has headquar-
ter in the US. Whenever the rule is enriched with an exception, naturally, the
support of its body decreases, i.e., the size of Gr goes down. Relying on our
filtering criteria, we aim at adding such negated atoms, that the average quality
of Gr increases, meaning that the introduced negated atoms prevent unlikely
predictions.

4 Evaluation

We have implemented our hybrid rule learning approach in Java within a system
prototype RuLES, and conducted experiments on a Linux machine with 80 cores
and 500 GB RAM. In this section we report the results of our experimental
evaluation, which focuses on (i) the benefits of our hybrid embedding-based rule
quality measure over traditional rule measures; (ii) the effectiveness of RuLES
against the state-of-art Horn rule learning systems; and (iii) the quality of non-
monotonic rules learned by RuLES compared to existing methods.

4.1 Experimental Setup

Datasets. We performed experiments on the following two real world datasets:

– FB15K [2]: a subset of Freebase with 592K binary facts over 15K entities and
1345 relations commonly used for evaluating KG embedding models [34].

– Wiki44K : a dataset with 250K binary facts over 44K entities and 100 rela-
tions, which is a subset of Wikidata dataset from December 2014 used in [10].

In the experiments for each incomplete KG G we need its ideal completion Gi

that would give us a gold standard for evaluating our approach and comparing
it to others. Since obtaining a real life Gi is hard, we used the KGs FB15K and
Wiki44K as reference graphs Gi

appr that approximate Gi. We then constructed G
by randomly selecting 80% of its facts while preserving the distribution of facts
over predicates.
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Embedding Models. We experimented with the three state-of-the-art embed-
ding models: TransE [2], HolE [22], and the text-enhanced SSP [38] model.
We reuse the implementation of TransE, HolE1, and SSP2. TransE and HolE
were trained on G and SSP on G enriched with a textual description for each
entity extracted from Wikidata. We compared the effectiveness of the models
and selected for every KG the best one. Apart from SSP, which showed the best
performance on both KGs, we also selected HolE for FB15K and TransE for
Wiki44K. Note that in this work as a proof of concept we considered some of
the most popular embedding models, but conceptually any model (see [34] for
overview) can be used in our system.

Evaluation Metric. To evaluate the learned rules we use the quality of predic-
tions that they produce when applied on G, i.e., the more correct facts beyond
G a ruleset produces, the better it is. We consider two evaluation settings: closed
world setting (CW) and open world setting (OW). In the CW setting, we define
the prediction precision of a rule r and a set of rules R as:

pred precCW (r) =
|Gr ∩ Gi

appr \ G|
|Gr \ G| , pred precCW (R) =

∑

r∈R

pred precCW (r)

|R| .

In the OW setting, we also take into account the incompleteness of Gi
appr and

consider the quality of predictions outside it by performing a random sampling
and manually annotating the sampled facts relying on Web resources such as
Wikipedia. Thus, we define the OW prediction precision pred precOW for a set
of rules R as follows:

pred precOW (R) =
|G′ ∩ Gi

appr | + |G′\Gi
appr | × accuracy(G′\Gi

appr )
|G′| .

where G′ =
⋃

r∈R Gr\G is the union of predictions generated by rules in R,
and accuracy(S ) is the approximated ratio of true facts inside S computed via
manual checking of facts sampled from S. Finally, to evaluate the meaningfulness
of exceptions in a rule (i.e., negated atoms) we compute the revision precision,
which according to [32] is defined as the ratio of incorrect facts in the difference
between predictions produced by the Horn part of a rule and its non-monotonic
version over the total number of predictions in this difference (the higher the
revision precision, the better the rule exceptions) computed per ruleset. Formally,

rev precOW (R) = 1 − |G′′ ∩ Gi
appr | + |G′′\Gi

appr | × accuracy(G′′\Gi
appr )

|G′′| .

where G′′ = GH\GR and H is the set of Horn parts of rules in R. Intuitively,
G′′ contains facts not predicted by the rules in R but predicted by their Horn
versions.
1 https://github.com/mnick/scikit-kge.
2 https://github.com/bookmanhan/Embedding.

https://github.com/mnick/scikit-kge
https://github.com/bookmanhan/Embedding
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Fig. 3. pred precCW of the top-k rules with various embedding weights.

RuLES Configuration. We run RuLES in several configurations where μ1 is
set to either standard confidence (Conf) or PCA confidence (PCA), and μ2 is
computed based on either TransE, HolE, or SSP models. Through the experi-
ments the configurations are named as μ1-μ2 (e.g. Conf-HolE).

4.2 Embedding-Based Hybrid Quality Function

In this experiment we study the effect of using our hybrid embedding-based
rule measure μ from Eq. 3 on the rule ranking compared to traditional mea-
sures and embedding models independently. We do it by first learning rules
of the form r : h(X,Z) ← p(X,Y ), q(Y,Z) from G where r-supp(r ,G) ≥ 10 ,
conf (r ,G) ∈ [0 .1 , 1 ) and h-cover(r ,G) ≥ 0 .01 . Then, we rank these rules using
Eq. 3 with λ ∈ {0, 0.1, 0.2, . . . , 1}, μ1 ∈ {conf , confpca} and with μ2 that is com-
puted by relying on TransE, HolE and SSP. Note that λ = 0 simulates learning
rules using the standard measure μ1 similar to [10], while λ = 1 corresponds to
ranking rules solely based on the predictions of the embedding models. Config-
uring λ indirectly allows us to compare our hybrid measure to both traditional
measures and quality of embedding models.
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Table 1. pred precCW of the top-k rules learned using different measures.

top-k FB15K Wiki44K

Conf

(λ = 0)

PCA

(λ = 0)

Conf-HolE

(λ = 0.3)

Conf-SSP

(λ = 0.3)

Conf

(λ = 0)

PCA

(λ = 0)

Conf-TransE

(λ = 0.3)

Conf-SSP

(λ = 0.3)

5 0.800 0.638 1.000 1.000 0.800 0.402 0.995 0.968

10 0.900 0.506 1.000 1.000 0.638 0.321 0.863 0.932

20 0.900 0.499 0.950 1.000 0.712 0.357 0.802 0.825

50 0.881 0.410 0.936 0.937 0.670 0.352 0.675 0.674

100 0.855 0.348 0.885 0.895 0.477 0.331 0.474 0.474

200 0.842 0.355 0.870 0.875 – – – –

Figure 3 shows the average prediction precision pred precCW of the top-k
rules ranked using our measure μ for different embedding weights λ (x-axis). In
particular, in Figs. 3a, b, d, and e we observe that combining confidence with
any embedding model increases the average prediction precision for 0 ≤ λ ≤ 0.3.
Moreover, we observe the decrease of prediction precision for 0.4 ≤ λ ≤ 1 and
top-k rules learned from FB15K when k ≥ 20 and from Wiki44K when k ≥ 10.
This shows that the combination of μ1 and μ2 gives noticeable positive effect on
the prediction results. Ranking using hybrid measure with λ around 0.3 achieves
better results than both the traditional rule learning and embedding models.
On the other hand, for μ1 = confpca the precision increases significantly when
combined with embedding models and only decreases slightly for λ = 1 (Figs. 3c
and f). Utilizing confpca instead of conf as μ1 in our hybrid measure is less
effective, since our training data G is randomly sampled breaking the partial
completeness assumption adopted by the PCA confidence.

Table 1 compactly summarizes the average prediction precision of top-k rules
ranked by the standard rule measures and our μ for the best value of λ = 0.3
and highlights the effect of using the better embedding model (text-enhanced
vs standard). We observe that the accuracy of a utilized embedding model is
naturally propagated to the accuracy of the rules that we obtain using our hybrid
ranking measure μ. This demonstrates that the use of a better embedding model
positively effects the quality of learned rules.

4.3 Horn Rule Learning

In this experiment, we compare RuLES under Conf-SSP configuration (with
embedding weight λ = 0.3) with the state-of-art Horn rule learning system
AMIE. We used the default AMIE-PCA configuration with confpca and AMIE-
Conf with conf measures respectively. For a fair comparison, we set the two
configurations of AMIE and our system to generate rules with at most three
positive atoms and filtered them based on minimum confidence of 0.1, head
coverage of 0.01 and rule support of 10 in case of FB15K and 2 in case of
Wiki44K. We then filtered out all rules with conf (r ,G) = 1 , as they do not
produce any predictions.

Table 2 shows the number of facts (see the Facts column) predicted by the
set R of top-k rules in the described settings and their prediction precision



Rule Learning from Knowledge Graphs Guided by Embedding Models 85

Table 2. pred precOW of the top-k rules generated by RuLES and AMIE.

top-k FB15K Wiki44K

AMIE-PCA AMIE-Conf RuLES AMIE-PCA AMIE-Conf RuLES

Facts Prec. Facts Prec. Facts Prec. Facts Prec. Facts Prec. Facts Prec.

20 1029 0.28 82 0.63 44 1.00 185 0.73 91 0.95 3291 0.98

50 1716 0.43 190 0.74 186 0.92 47099 0.10 3594 0.95 6154 0.88

100 3085 0.65 255 0.78 539 0.80 56831 0.20 13870 0.83 13253 0.82

200 10586 0.62 1210 0.83 1205 0.88 82288 0.39 19538 0.72 20408 0.73

500 40050 0.51 2702 0.75 7124 0.95 219264 0.35 124836 0.23 128256 0.48

Table 3. pred precOW of the top-k rules generated by NeuralLP and RuLES.

top-k Family-NeuralLP Family-Conf-TransE

Facts Prec. Facts Prec.

10 3709 0.72 4201 0.68

20 8821 0.53 6957 0.72

30 11337 0.49 9368 0.71

40 14662 0.46 11502 0.72

50 18768 0.40 14547 0.62

pred precOW (R) (see the Prec. column). The size of the random sample outside
Gi

appr is 20. We can observe that on FB15K, RuLES consistently outperforms
both AMIE configurations. The top-20 rules have the highest precision difference
(outperforming AMIE-PCA and AMIE-Conf by 72% and 37% respectively). This
is explained by the fact that the hybrid embedding quality penalizes rules with
higher number of false predictions. For Wiki44K, RuLES is capable of achiev-
ing better precision in most of the cases. Notably, for the top-20 rules RuLES
predicted significantly more facts then competitors yet with a high precision.

In Table 3, we compare RuLES with the recently developed NeuralLP sys-
tem [40]. For this we utilized the Family dataset used by NeuralLP with 28K
facts over 3K entities and 12 relations. Starting from the top-20 rules RuLES
is capable of achieving significantly better precision. For the top-10 rules the
precision of NeuralLP is slightly better, but RuLES predicts many more facts.

More experiments and analysis on different datasets are provided in the tech-
nical report at https://github.com/hovinhthinh/RuLES.

4.4 RuLES for Exception-Aware Rule Learning

In this experiment, we aim at evaluating the effectiveness of RuLES for learning
exception-aware rules. First, consider in Table 4 examples of such rules learned
by RuLES over Wiki44K dataset. The first rule r1 says that a person is a citizen
of the country where his alma mater is located, unless it is a research institution,
since most researchers in universities are foreigners. The second rule r2 states

https://github.com/hovinhthinh/RuLES
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Table 4. Example rules with exception generated by RuLES.

Table 5. pred precOW (left) and rev precOW (right) of the top-k rules learned by
RUMIS and RuLES.

top-k FB15K Wiki44K top-k FB15K Wiki44K

RUMIS RuLES RUMIS RuLES RUMIS RuLES RUMIS RuLES

Facts Prec. Facts Prec. Facts Prec. Facts Prec. Facts Prec. Facts Prec. Facts Prec. Facts Prec.

20 672 0.95 34 0.97 5844 0.93 5640 0.93 20 76 0.70 111 0.68 63 0.47 81 0.94

50 1797 0.94 158 0.99 8585 0.83 13333 0.84 50 126 0.51 435 0.74 191 0.28 611 0.69

100 2672 0.94 434 0.99 21081 0.76 25265 0.81 100 183 0.43 680 0.76 543 0.49 1698 0.79

200 4103 0.87 1155 0.96 50957 0.51 43677 0.67 200 310 0.30 1112 0.87 4861 0.40 3175 0.80

500 13439 0.76 5466 0.90 – – – – 500 1155 0.53 3760 0.59 – – – –

that the scriptwriter of some artistic work is also the scriptwriter of its sequel
unless it is a TV series, which actually reflects the common practice of having
several screenwriters for different seasons. Additionally, r3 encodes that someone
belonged to a noble family if his/her spouse is also from the same noble family,
excluding the Chinese dynasties.

To quantify the quality of RuLES in learning non-monotonic rules, we com-
pare the Conf-SSP configuration of RuLES (with embedding weight λ = 0.3)
with RUMIS [32], which is a revision-based non-monotonic rule learning system,
which extracts rules of the form r : h(X ,Z ) ← p(X ,Y ), q(Y ,Z ),not E , where
E is either e(X,Z) or e(X). For a fair comparison we restricted RuLES to learn
rules of the same form. We configured both systems setting the minimum rule
support threshold to 10 and exception confidence for RuLES to 0.05. To enable
the systems to learn rules with exceptions of the form e(X), we enriched our
KGs with types from original Freebase and Wikidata KGs.

Table 5 (left) reports the number of predictions produced by a rule set R
of top-k non-monotonic rules learned by both systems as well as their precision
pred precOW (R) with a sample of 20 prediction outside Gi

appr. The results show
that RuLES consistently outperforms RUMIS on both datasets. For Wiki44K,
and k ∈ {50, 100}, the top-k rules produced by RuLES predicted more facts than
those induced by the competitor achieving higher overall precision. Regarding
the number of predictions, the converse holds for the FB15K KG; however, the
rules learned by RuLES are still more accurate.

To evaluate the quality of the chosen exceptions, we compare the
rev precOW (R) with a sample of 20 predictions. Observe that in Table 5 (right),
rules induced by RuLES prevented the generation of more facts than RUMIS. In
all of the cases apart from top-20 for FB15K, our system managed to remove a
larger fraction of erroneous predictions. For Wiki44K, RuLES consistently per-
forms twice as good as RUMIS. In conclusion, the guidance from the embedding
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model exploited in our system gives us hints on which among the possible excep-
tion candidates likely correspond to noise.

5 Related Work

Inductive Logic Programming (ILP) addresses the problem of rule learning
from data. In its probabilistic setting, given a set of probabilistic examples for
grounded atoms and a target predicate p, the task is to learn rules for predict-
ing probabilities of atoms for p [5,25,26]. which quickly grows to sizes that ILP
methods cannot handle.

A recently proposed differentiable ILP framework [7] has advantages over
traditional ILP in its robustness to noise and errors in the underlying data.
However, [7] requires negative examples, which in our case are hard to get due
to the large KG size. Moreover, [7] is memory-expensive as authors admit, and
cannot scale to the size of modern KGs.

Unsupervised relational association rule learning systems such as [10,13]
induce logical rules from the data by mining frequent patterns and casting them
into rules. In the context of KGs [3,10,32] such approaches address the incom-
pleteness of KGs by exploiting sophisticated measures over the original graph,
possibly enhanced with a schema [6] or constraints on the number of missing
edges [31]. However, these methods do not tap any unstructured information
like we do. Indeed, our hybrid embedding-based measure allows us to conve-
niently account for unstructured information implicitly via embeddings as well
as making use of various graph-based rule metrics.

Exploiting embedding models for rule learning is a new research direction
that has recently gained attention [39,40]. To the best of our knowledge, existing
methods are purely statistics-based, i.e., they reduce the rule learning problem
to algebraic operations on neural-embedding-based representations of a given
KG. The work [39] constructs rules by modeling relation composition as multi-
plication or addition of two relation embeddings. The authors of [40] propose a
differentiable system for learning models defined by sets of first-order rules that
exploits a connection between inference and sparse matrix multiplication [4].
However, existing approaches pose strong restrictions on target rule patterns,
which often prohibit learning interesting rules, e.g. non-chain-like or exception-
aware ones, which we support.

Another line of work concerns enhancing embedding models with rules and
constraints, e.g. [14,15,28,35]. While our direction is related, we pursue a differ-
ent goal of leveraging the feedback from embeddings to improve the quality of
the learned rules. To the best of our knowledge, this idea has not been considered
in any prior work.

6 Conclusion

We presented a method for learning rules that may contain negated atoms from
KGs that dynamically exploits feedback from a precomputed embedding model.
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Our approach is general in that any embedding model can be utilized includ-
ing text-enhanced ones, which indirectly allows us to harness unstructured web
sources for rule learning. We evaluated our approach with various configurations
on real-world datasets and observed significant improvements over state-of-the-
art rule learning systems.

An interesting future direction is to extend our work to more complex non-
monotonic rules with higher-arity predicates, aggregates and existential variables
or disjunctions in rule heads, which is challenging due to inevitable scalability
issues.

Acknowledgements. This work was partially supported by the EPSRC projects
DBOnto, MaSI3 and ED3.

References
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33. Vrandecic, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. CACM
57(10), 78–85 (2014)

34. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of
approaches and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743
(2017)

35. Wang, Q., Wang, B., Guo, L.: Knowledge base completion using embeddings and
rules. In: IJCAI (2015)

36. Wang, Z., Li, J.: RDF2Rules: Learning rules from RDF knowledge bases by mining
frequent predicate cycles. CoRR, abs/1512.07734 (2015)

37. Wojtusiak, J.: Rule learning in healthcare and health services research. In: Dua, S.,
Acharya, U.R., Dua, P. (eds.) Machine Learning in Healthcare Informatics. ISRL,
vol. 56, pp. 131–145. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-40017-9 7

38. Xiao, H., Huang, M., Meng, L., Zhu, X.: SSP: semantic space projection for knowl-
edge graph embedding with text descriptions. In: AAAI (2017)

39. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for
learning and inference in knowledge bases. CoRR, abs/1412.6575 (2014)

40. Yang, F., Yang, Z., Cohen, W.W.: Differentiable learning of logical rules for knowl-
edge base reasoning. In: NIPS, pp. 2316–2325 (2017)

41. Zupanc, K., Davis, J.: Estimating rule quality for knowledge base completion with
the relationship between coverage assumption. In: WWW 2018, pp. 1073–1081
(2018)

https://doi.org/10.1007/978-3-642-40017-9_7
https://doi.org/10.1007/978-3-642-40017-9_7

	Rule Learning from Knowledge Graphs Guided by Embedding Models
	1 Introduction
	2 Rule Learning Guided by External Sources
	2.1 Background
	2.2 Problem Statement and Proposal of General Solution
	2.3 Realization of General Solution

	3 Approach Description
	4 Evaluation
	4.1 Experimental Setup
	4.2 Embedding-Based Hybrid Quality Function
	4.3 Horn Rule Learning
	4.4 RuLES for Exception-Aware Rule Learning

	5 Related Work
	6 Conclusion
	References




