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Abstract. Cloud-based systems provide a rich platform for managing
large-scale RDF data. However, the distributed nature of these sys-
tems introduces several performance challenges, e.g., disk I/O and net-
work shuffling overhead, especially for RDF queries that involve multi-
ple join operations. To alleviate these challenges, this paper studies the
effect of several optimization techniques that enhance the performance of
RDF queries. Based on the query workload, reduced sets of intermediate
results (or reductions, for short) that are common for certain join pat-
tern(s) are computed. Furthermore, these reductions are not computed
beforehand, but are rather computed only for the frequent join patterns
in an online fashion using Bloom filters. Rather than caching the final
results of each query, we show that caching the reductions allows reusing
intermediate results across multiple queries that share the same join pat-
terns. In addition, we introduce an efficient solution for RDF queries with
unbound properties. Based on a realization of the proposed optimizations
on top of Spark, extensive experimentation using two synthetic bench-
marks and a real dataset demonstrates how these optimizations lead to
an order of magnitude enhancement in terms of preprocessing, storage,
and query performance compared to the state-of-the-art solutions.
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1 Introduction

Processing RDF queries involves multiple scans of the same data, e.g., when
certain join patterns are frequent and are repeated across multiple queries. This
calls for workload-driven mechanisms that cache only the data that is required by
the query workload. Network shuffling overhead also degrades query performance
in a distributed environment. It occurs when the processing nodes exchange data
in order to answer queries. Reducing the network shuffling overhead highly relies
on how the data is partitioned across the nodes.

This paper presents Workload-driven RDF Query Processing (WORQ, for
short), a system that encapsulates several optimizations that significantly
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enhance the performance of RDF queries. In particular, WORQ addresses three
main issues: (1) how to efficiently partition the RDF data in an online fashion,
(2) how to reduce the intermediate join results of an RDF query in an online
fashion, and (3) how to cache reusable intermediate join results instead of the
final results of an RDF query.

Workload-Driven Partitioning: Data partitioning is common in distributed
data management systems. The RDF data is typically divided into several par-
titions, and then is distributed across the cluster machines. The objective of
partitioning is to reduce the query execution time by leveraging parallelism.
Data partitioning incurs a preprocessing overhead as it needs to be performed
over the whole data. However, for a real workload, only a small fraction of the
data is accessed (e.g., see [25]). WORQ adopts a workload-driven approach when
partitioning the data. For each query, WORQ identifies each query triple (i.e.,
an entry consisting of bound and unbound subject, property, and an object) as
a subquery. Then, WORQ partitions the data triples by the join attribute of
each subquery. The join attribute represents the variable that connects two or
more query triples. The join can be between subjects, properties, objects, or a
combination of the three attributes. WORQ partitions the data only once for
every new query join pattern that is identified.

Join Reductions: Tables are one way of storing RDF data triples. When a
single query involves joins between multiple tables that correspond to different
query patterns, every binary join operation generates intermediate join results
(or intermediate results, for short). The intermediate results represent the data
that satisfies the binary join and eventually contributes to the final result of the
query. However, intermediate results may contain redundant data triples that
do not match all the query joins. WORQ minimizes the intermediate results by
precomputing join reductions through Bloom-joins [8,16].

Caching: To boost query performance, caching can be employed to improve
query response time and increase the throughput of execution. One caching app-
roach is to cache the results of each query. However, caching the unique query
results incurs significant memory storage overhead. In contrast, WORQ caches
(in main memory) the join reductions that correspond to the frequent join pat-
terns. These reductions can be reused by other queries that share the same query
patterns.

Queries with Unbound Properties: Some query workloads may have query
triples with unbound (i.e., unspecified) properties. For example, the query triple
:John ?x :Mary queries all data triples that have a subject :John and an object
:Mary, where ?x specifies an unbound property. Answering unbound property
queries is challenging for RDF systems that adopt a specific RDF partition-
ing scheme. Assuming that the data is vertically partitioned [1,13] (VP, for
short), the data triples are split into separate files denoted by the property (i.e.,
predicate) name, where each file contains the subject and object representing
the property. Using VP, answering unbound property is challenging because all
property files need to be accessed or an index needs to be built on top of each
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file. In contrast, WORQ utilizes Bloom filters as indexes to efficiently answer
unbound property queries.

WORQ is implemented as part of the Knowledge Cubes (KC) proposal [17].
The source code1 for a Spark-based implementation of WORQ is publicly avail-
able for download. Our experimental setup includes two synthetic benchmarks,
namely WatDiv [4] and LUBM [10], and a real dataset, namely YAGO2s [7,12].
The purpose of the experiments is to demonstrate three aspects of WORQ :
(1) the preprocessing time required given an RDF dataset, (2) the storage over-
head incurred to create the RDF database, and (3) the query processing time
when answering RDF queries with respect to partitioning and caching. The
results illustrate how the presented optimizations provide at least an order of
magnitude better results on the three aforementioned aspects when compared
to the Hadoop-based state-of-the-art solution.

The contributions of this paper can be summarized as follows:

– We present workload-driven partitioning of RDF triples that can join together
in order to minimize the network shuffling overhead based on the query work-
load.

– We present the use of Bloom filters for computing RDF join reductions online.
– Rather than caching the results of an RDF query, we show that caching the

RDF join reductions can boost the query performance while keeping the cache
size minimal.

– We study an efficient technique for answering RDF queries with unbound
properties using Bloom filters.

The rest of this paper proceeds as follows. Section 2 presents the online reduc-
tion of RDF data. Section 3 presents workload-driven partitioning in WORQ .
Section 4 presents how WORQ answers unbound-property queries. Section 5
presents the experiments performed over the WatDiv, LUBM, and YAGO
datasets. Section 6 presents the related work. Finally, Sect. 7 presents concluding
remarks.

2 Online Reduction of RDF Data

WORQ employs Bloom-join [8,16] to compute the reductions between verti-
cal partitions. Many cloud-based systems [13] use vertical partitioning (VP) [1]
including the state-of-the-art [27]. VPs can be realized over any relational
database system and stored in cloud data sources (e.g. Parquet, ORC2). Bloom-
join determines if an entry in one partition qualifies a join condition with another
partition. The reductions can be computed in an online fashion using Bloom-join
instead of precomputing all possible reductions in an offline fashion (i.e., during
the preprocessing phase [27]). Bloom-join utilizes a probabilistic data structure,
termed Bloom filter [8]. A Bloom filter does not physically store items, but rather
hashes the input against different hash functions. The main functionality of a

1 http://github.com/amgadmadkour/knowledgecubes.
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Bloom filter is to determine the existence of an item. Bloom filters can have
false-positives, but no false-negatives. Bloom filters are fast to create, fast to
probe, and small to store. Also, the false-positives introduce a small percentage
of irrelevant rows that eventually are not joined in a Bloom-join. During the
evaluation of a join, WORQ uses Bloom filters to probe the join attributes of
the query join-patterns. The Bloom filters representing the join attributes filter
the rows in both partitions involved in the join, and the results are materialized
as a reduction for a specific join pattern, or reductions, for short.

Fig. 1. Evaluating a SPARQL query using Bloom-join between :mention and :tweet

Figure 1 gives an example of using Bloom filters to compute a join reduc-
tion. The query has a BGP join between :mention and :tweet on the Subject
attribute. WORQ uses the Bloom filter of BloomFiltersub(:tweet) to compute
a reduction for the :mention property on the subject column. :tweet’s Bloom
filter consists of the elements :John, :Mike, and :Alex. Each element in the sub-
ject column of the :mention partition is probed against the :tweet Bloom filter.
The reduction for :mention represents all the rows that qualify a join between
the vertical partitions :mention and :tweet on the subject attribute. Figure 1
illustrates the entries that qualify the join between :mention and :tweet, where
the vertical partition of :mention is reduced from five entries to only three qual-
ifying entries. Similarly, the vertical partition of :tweet is reduced from four
entries to only two qualifying entries. The reductions for both properties are
cached by WORQ in order to be reused by other queries that share the same
join patterns. In other words, the :mention reduction can be reused by the
:mention property if it joins with :tweet on the subject attribute. Also, the
:tweet reduction can be reused by the :tweet property if :tweet joins with the
:mention property on the subject attribute.

WORQ does not apply selection (i.e., filtering) operations on the original
data triples (i.e., VP). Instead, selections are applied on the reductions after the



WORQ: Workload-Driven RDF Query Processing 587

reductions are computed. For example, the reduction for :mention contains a
selection on the object, namely :Mary. However, the selection has been delayed
until the reductions have been computed from the original data triples. The
advantage of delaying the selection is that the reductions can be reused by other
queries that share the same join patterns. However, if selections are pushed
early on the original data triples, then the reductions will not be representative
of the join operation between the query triples. Finally, the resulting reductions
(including the ones that have been filtered) are joined together based on the
join attribute indicated by the query triples. WORQ does not require a specific
join algorithm to be used. Distributed join algorithms, e.g., broadcast hash join
or sort-merge join that are employed by distributed computational frameworks,
e.g., Spark, can be used [3]. Figure 1 illustrates the final result of the query after
joining both the query triples representing :mention (after the selection) and
:tweet properties, where two entries qualify the join result.

N-ary Join Reductions

WORQ computes the reductions online instead of pre-computing the reductions
offline [27]. In addition, WORQ computes the reductions between all the possible
(n-ary) query-triples instead of computing the reductions in binary form [27].

Fig. 2. N-ary join between the reductions of three query triples involving the :mention,
:tweet, and :like VPs

Figure 2 illustrates a SPARQL query with three query-triples that share
the same join attribute (i.e., variable ?x). When the join is computed between
the :mention, :tweet, and :like VPs, only the data triples that are common
amongst the three VPs will qualify as a result. WORQ utilizes Bloom join to
reduce the number of data triples in every VP involved in the join operation,
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and hence reduces the intermediate results between the three join operations.
WORQ uses the Bloom filters representing the join columns of the three query
triples (the subject Bloom filters, in this instance) to reduce the VP entries to
the ones that would qualify the join operation. For example, the :mention VP
is reduced from five data triples to two triples that have :John as the subject
because :John is the only resource that qualifies the :tweet Bloom filter on
the subject and the :like Bloom filter on the subject. The same applies to
the :tweet VP, where :John is the only resource that qualifies the :mention
Bloom filter on the subject and the :like Bloom filter on the subject. Finally,
WORQ uses the computed reductions instead of the VPs to evaluate the query.
The result of the query includes two rows corresponding to the only resource
common across the three property-VPs. The computed reductions are cached to
be reused by any other query that contains a join between the three properties
on the subject attribute.

Caching of Reductions

Rather than caching portions of the original RDF data or the final query results,
WORQ caches (in main-memory) the reductions that correspond to the join pat-
terns that are discovered during query processing. Caching intermediate results
(i.e., reductions) is suitable in situations where the query workload consists of a
high number of unique queries that share similar patterns. In contrast, caching
the results is suitable in situations where the query workload consists of a high
number of frequent queries that do not necessarily share the same query pattern.
WORQ is suitable for the former case where many unique queries can utilize the
reductions without the need to cache all their results. WORQ does not assume
a specific cache-eviction policy, i.e., any eviction policy. WORQ employs least
recently used (LRU) strategy where evicted reductions can be saved to disk and
be reused if the pattern they represent reoccurs. Also, the advantage of saving
to disk is that filtering will not be performed again. The cache-eviction policy is
beyond the scope of this paper.

3 Workload-Driven Partitioning

Rather than relying on a predefined partitioning criteria (e.g., using the sub-
ject only), WORQ partitions the RDF data according to the join patterns in
the queries received so far. WORQ aims at placing the partitions of the reduc-
tions that share the same join attribute on the same machine, which minimizes
the shuffling overhead, and more importantly, reduces the query response time.
Instead of partitioning the VP, WORQ partitions the reduction rows across the
machines. After a query is parsed, WORQ identifies the join attributes in the
query. Based on the join attributes, the reductions that need to be partitioned
are determined. Reduction partitioning is performed only once, and the resulting
partitions are reused by any query that has the join pattern that corresponds to
the reduction.
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Fig. 3. Workflow for workload-driven partitioning

Figure 3 illustrates a set of query join patterns and their corresponding reduc-
tions. The join pattern representing the :tweet property uses the reduction
denoted by R1 on the subject. The join pattern representing the :like property
uses the reduction denoted by R3 on the subject as well. WORQ partitions the
rows of every reduction based on the join attribute (i.e., the subject or object).
In Fig. 3, the reductions representing R1, R2, R3 are partitioned using the sub-
ject (as the reductions are based on the subject attribute). The reduction rows
are hash-distributed across the machines using the join attribute (i.e., subject
or object). This partitioning scheme guarantees that all the data triples that are
related to the join attributes of the query are co-located on the same machine,
and thus allowing the reductions to be computed locally.

4 Queries with Unbound Properties

The performance of unbound-property queries depends on the adopted RDF
partitioning scheme. If the data is vertically partitioned, answering unbound-
property queries becomes challenging because all the VPs need to be iterated.
A straightforward approach to query the unbound properties in a distributed
setting is to store the RDF data triples in a single file (i.e., triples file). Dis-
tributed file systems, e.g., HDFS, split the files into a set of blocks and distribute
the blocks across machines. In this case, RDF query processors can evaluate
unbound-property RDF queries in parallel [26], where each machine processes a
set of blocks. We refer to this baseline approach as RDF-Table. We implement
this baseline for evaluation purposes.

WORQ utilizes Bloom filters as cheap indexes to efficiently answer unbound-
property queries over data that has been vertically partitioned. WORQ performs
two steps to determine the matching properties. The first step is called the
identification step, where a set of candidate properties are identified. The second
step is called the verification step, where the candidate properties are verified
to eliminate the possibility of false-positives. Given a query, WORQ uses the
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existing Bloom filters to discover the unbound property. WORQ relies on the
bound attributes (i.e., subject and object) to discover the matching properties.

Fig. 4. The identification and verification steps to answer unbound-property queries

Figure 4 illustrates the identification step for answering unbound-property
queries. First, the unbound and bound attributes are identified. Then, the bound
attributes are used to probe the Bloom filters to determine if the bound values
exist for a specific property. If a value exists, the corresponding property is added
as a candidate for answering the query. For instance, in Fig. 4, :Mary exists in the
:mention property, and is found using a MATCH in the corresponding Bloom
filter. However, :Mary does not exist in the :tweet property, and hence the
Bloom filter returns DOES NOT MATCH. Although :Mary does not exist in
:like, the Bloom filter returns a MATCH, which is a false positive.

Given that Bloom filters can incur false positives, a verification step is needed
to ensure the correctness of query evaluation. WORQ verifies the candidate prop-
erties by issuing a filter based on the bound attributes with the value indicated
in the query triple (i.e., the value that made the candidate property match).
If the result-set includes at least one match, then WORQ determines that the
candidate property was identified correctly. Otherwise, the candidate property
is discarded. Disqualifying data will not happen frequently based on the false-
positive rate of the constructed Bloom filters.

5 Experiments

WORQ is compared against S2RDF [27], a Spark-based system that runs over
Hadoop. S2RDF [27] proposes an extension to VP, namely ExtVP, where reduc-
tions of entries are computed for every vertical partition. S2RDF utilizes semi-
join reductions [6] to reduce the number of rows in a partition. The reduc-
tions represent all RDF query combinations that appear in SPARQL queries
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(i.e., Subject-Subject, Subject-Object, Object-Subject, Object-Object). How-
ever, S2RDF exhibits a substantial preprocessing overhead. Semi-joins are expen-
sive to compute, and generate large network-traffic. In addition, S2RDF gener-
ates a large number of files to represent the reductions of the original data.
S2RDF translates SPARQL queries to SQL and runs them on Spark SQL.
S2RDF has outperformed Hadoop-based systems such as H2RDF+, Sempala,
PigSPARQL, SHARD, and other systems such as Virtuoso, where S2RDF has
achieved (on average) the best query execution performance [27]. Accordingly,
this paper presents a comparison with S2RDF only as S2RDF represents the
state-of-the-art Hadoop-based RDF query processing system. WORQ is imple-
mented over Spark (v2.1) where it utilizes Spark DataFrames to represent the
reductions. WORQ does not translate the query to SQL. Instead, WORQ imple-
ments joins as a series of Spark DataFrame joins. To guarantee a fair setup, all
Spark-related parameters are unified for both WORQ and S2RDF. The data for
both systems is stored using Parquet2 columnar-store format. Vertical partition-
ing has been implemented as a baseline.

5.1 Experimental Setup

The experimental setup datasets and queries proposed by Abdelaziz et al. [2]
are used. Our experiments are conducted using a real dataset (YAGO2s [7,12])
as well as two synthetic benchmarks (WatDiv [4] and LUBM [10]) that provide
widely-adopted query workload generators:

1. WatDiv provides a stress-test query workload that allows generating several
queries per-pattern. One Billion triples have been generated to demonstrate
the query execution performance and preprocessing performance (i.e., the
number of files generated, disk space utilization, and loading time). A pre-
generated workload provided by WatDiv [4] contains 5000 queries that cover
100 diverse SPARQL patterns, each having 50 variations. A variation repre-
sents different bound values for the same query pattern. The variations allow
measuring the performance of specific patterns under different selectivities.
For the unbound-property queries, we use the query workload provided by
Alvarez-Garcia et al. [5] that represents 500 queries covering three combi-
nations namely, unbound subject with bound object, unbound object with
bound subject, and bound subject and object.

2. LUBM provides a query-workload generator, where 1000 queries are gener-
ated. Unlike WatDiv, LUBM does not specify the number of patterns.

3. YAGO2s consists of 245 million real RDF triples. YAGO2s benchmark
queries are used to compare the query execution time [19,27]. There is no pub-
licly available real query workload for YAGO. Generating synthetic queries
for YAGO is similar to what WatDiv and LUBM provide while they guarantee
generating all possible query shapes.

2 parquet.apache.org.

http://parquet.apache.org/
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Our experiments are conducted using an HP DL360G9 cluster with Intel
Xeon E5-2660 realized over 5 nodes. The cluster uses Cloudera 5.9 consisting
of Spark 2 as a computational framework and Hadoop HDFS as a distributed
file-system. Each node consists of 32 GB of RAM, and 52 cores. The total HDFS
size is 1 Terabyte. The experiments measure various aspects of WORQ includ-
ing (1) the number of generated files, (2) the filesystem size, (3) the load-
ing time, (4) the workload query execution performance, (5) the overhead of
caching results instead of caching reductions, and (6) the execution performance
of unbound properties queries. The data for the 3 benchmarks is loaded into
memory before execution.

Fig. 5. Disk space utilization Fig. 6. Preprocessing time

5.2 Experimental Results

Preprocessing Performance. Figure 5 gives the disk storage overhead
incurred by the three systems over the LUBM, WatDiv, and YAGO2s datasets.
VP introduces minimal space overhead across all three systems. The reason is
that VP only needs to partition the original triple file based on the property
name. Storage in WORQ is composed of the VP and the Bloom filters. S2RDF
precomputes all the possible reductions for binary joins (O(n2), where n is the
number of VPs), and stores them on disk along with the original data. Thus,
S2RDF introduces the highest disk storage overhead.

Figure 6 gives the preprocessing time for all three systems over the LUBM,
WatDiv, and YAGO2s datasets. VP has the smallest loading time due to its
simplicity, followed by WORQ, and then S2RDF. The majority of time spent
by S2RDF in the preprocessing time involves creating the proposed partitions
called ExtVP. The computation involves performing semi-joins between binary
partitions in a distributed fashion causing high network shuffling overhead.
WORQ incurs a minor overhead compared to VP due to the computation of
the Bloom filters.

Query Workload Awareness. For the remaining experiments, the results
of VP are omitted due to its low performance. The following experiments
demonstrate the query performance of both WORQ and S2RDF across differ-
ent aspects, e.g., the total execution time, the mean execution time per query
pattern, and the mean execution time given the number of join-triples in a
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query. WatDiv and LUBM are used due to the availability of workload genera-
tors while YAGO2s is omitted as a real query workload is unavailable. However,
a set of benchmark queries [27] are used to measure the performance against
the YAGO2s dataset. In S2RDF, the partitioning is done for every query and
takes place while the queries are being evaluated. S2RDF reports the overall
execution time which includes both the partitioning and the actual execution
time. WORQ follows the same procedure when reporting the overall execution
time.

Fig. 7. Mean query execution time Fig. 8. Total query execution time

Figures 7 and 8 give the mean and total execution times based on executing
5000 queries over WatDiv (1 Billion triples) and 1000 queries over LUBM (1
Billion triples). WORQ is consistently better across the two benchmarks. The
difference in performance is attributed to the combination of efficient partition-
ing and the caching of reduction employed by WORQ as illustrated in later
experiments. WORQ reduces the relations to be joined by computing light-
weight reductions that can fully represent the original data in answering the
RDF queries. Rather than scanning the original (large) data for each query, the
light-weight reductions are used instead.

The difference in performance between LUBM and WatDiv is attributed to
the characteristics of both benchmarks in terms of the number of properties and
the query workload representing each dataset. LUBM consists of 18 properties
while WatDiv consists of 86 properties. The 1 Billion triples for LUBM and
WatDiv are distributed across 18 and 86 properties, respectively. WORQ per-
forms well with the increase in the number of properties. In real datasets, e.g.,
YAGO2s [7,12], the number of properties are in hundreds, making WORQ more
appropriate to use than S2RDF.

Fig. 9. Mean execution time per query
pattern over WatDiv 1 Billion dataset

Fig. 10. Mean execution time per query
pattern over LUBM 1 Billion dataset

Figure 9 gives a break-down of the query execution of 5000 queries over Wat-
Div (1 Billion triples) per query pattern. The x-axis represents the query numbers
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and the y-axis represents the execution time. A query pattern represents a set
of one or more query triples (i.e., BGP triples) that vary based on the bound
and unbound attributes, e.g., one pattern can have two query triples joined by
the subject attribute while another pattern would be based on two query triples
joined on the object attribute. For every pattern, the mean execution time is
recorded for the two systems. Figure 9 shows that WORQ executes each pattern
nearly an order of magnitude faster than S2RDF.

Figure 10 gives a break-down of executing 1000 queries over LUBM (1 Bil-
lion triples per query pattern). Similar to WatDiv, the mean execution time is
recorded per pattern for the two systems. The number of patterns included in the
LUBM query workload is 20. Figure 10 shows that all the patterns are executed
faster by WORQ than S2RDF.

Fig. 11. Execution timeline for two
query pattern over WatDiv 1 Billion
dataset

Fig. 12. Execution timeline for two
query pattern over LUBM 1 Billion
dataset

Figure 11 gives the performance when executing only two patterns over the
WatDiv benchmark. The x-axis represents the timeline, where we execute one
query pattern first, and then execute another pattern. There are two major spikes
in the performance of WORQ that reflect the first time each query pattern was
executed. For each pattern, a high query execution overhead is exhibited at the
beginning, followed by near-linear performance for the rest of the queries that
share the same join pattern.

Figure 12 repeats the same experiment for two patterns over the LUBM
benchmark. Similar to Fig. 11, the first time a join pattern is executed, a spike in
execution time is exhibited followed by a near-linear performance for the remain-
ing queries. Unlike WatDiv, the computation of the query patterns for the first
time over LUBM consumes more time than S2RDF. However, the overall exe-
cution time of WORQ outperforms S2RDF as Fig. 8 illustrates.

We analyze the effect of query triples on the query execution. The WatDiv
query workload contains a set of 100 representative patterns and is used for the
analysis. LUBM benchmark is discarded for this experiment as WatDiv provides
a workload with more diverse shapes than LUBM.

Figure 13 gives a break-down of executing 5000 queries over WatDiv (1 Billion
triples) given the number of triples per query. From the figure, the number of
triples affects the overall query performance, where the query execution time
increases as more triples are processed.

Figure 14 gives a break-down of the mean query execution time for 5000
queries over WatDiv (1 Billion triples) based on the number of joins between
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Fig. 13. Mean execution time - number
of triples per query over WatDiv 1 Bil-
lion

Fig. 14. Mean execution time for joins
per pattern over WatDiv 1 Billion

query triples. This is different from the number of query triples experiment,
where the number of joins experiment measures the maximum number of joins
identified per query, e.g., a query may contain five query triples, but contains
a join between two query triples only. To create the experimental setup, every
query is first placed in a join group based on the maximum number of joins
that it has. Then, the mean execution time is measured for queries within a join
group. WORQ achieves nearly an order of magnitude better performance than
S2RDF.

Fig. 15. Mean query execution time
using workload-driven and static parti-
tioning

Fig. 16. Execution time of 14 query
patterns over YAGO2s dataset

Figure 15 gives a break-down of the mean execution time using workload-
driven partitioning and static partitioning of WORQ to illustrate the effect of
using the workload-driven component only. Static partitioning is based on sub-
ject. In workload-driven partitioning, every query is partitioned based on the
join patterns of the query. In contrast, static partitioning is performed based
on a pre-specified criteria, e.g., partitioning by subject. Static partitioning was
performed on the subject column. Figure 15 demonstrates that workload-driven
partitioning contributes positively towards the overall query execution perfor-
mance over the two datasets. The partitioning time is dependent on where data
is originally stored on the cluster and generally incurs a minor cost. The query
evaluation time given where data is partitioned dominates the execution time.

Figure 16 gives a break-down of the query execution over 14 benchmark
YAGO2s queries [27]. The x-axis represents the query numbers and the y-axis
represents the execution time. The queries were designed to take into consider-
ation various query shapes, e.g., star-shaped, and resources selectivities. Each
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query was executed 5 times using different selective predicates and the aver-
age time was reported. For every query, the corresponding reductions for both
WORQ and S2RDF were loaded into memory in advance. WORQ achieves better
query execution performance over all queries.

Fig. 17. Mean query execution
time given warm and cold cache
for WORQ over WatDiv and LUBM

Fig. 18. Memory usage based on
caching results and caching reductions

Caching of Reductions. Figure 17 demonstrates the effect of caching on the
query performance. Cold queries are those with patterns that have not been
executed before, i.e., that have no corresponding reductions in the cache. Warm
queries are those that share the same pattern as queries that executed before,
i.e., that have corresponding reductions in the cache. The figure gives the mean
execution time of 5000 queries from the WatDiv benchmark and 1000 queries
from the LUBM benchmark. The figure demonstrate how utilizing cached pat-
terns (i.e., reductions) achieves better query execution performance. The reason
LUBM cold cache is worse is because while both datasets are of the same over-
all size (1B triples), one contains 18 files/predicates (LUBM) in contrast to 87
files/predicates in WatDiv so the filtering time is higher for LUBM queries. Also,
WORQ pays a price only once when a query pattern is seen for the first time.
However, the cold-start cost is minor.

Figure 18 gives a break-down of the memory usage over 5000 unique queries
covering 100 patterns. Using a workload of 5000 unique queries, the figure demon-
strates how the size of the cached queries grows over time and surpasses the size
of cached reductions. The memory usage for caching the query results can reach
more than 10 GB over 5000 queries while caching reductions exhibits a slower
memory usage curve. The conclusion is that caching the reductions is more suit-
able than caching the query results in situations where there are many unique
queries that share common patterns.

Performance of Unbound-Property Queries. Schatzle et al. [27] do not
evaluate the performance of S2RDF for unbound-property queries as it is out of
the scope of their current work. In addition, S2RDF adopts a VP structure to
answer queries, leading to degraded query performance over unbound-property
queries. Therefore, we use the RDF-Table approach described in Sect. 4 as a
baseline. We evaluate three query patterns based on the attributes of an RDF
triple, namely a bound subject and object, a bound subject, and a bound object.
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Table 1. Unbound property results - (BSO) Bound Subject and Object, (BS) Bound
Subject, (BO) Bound Object

System BSO-Mean BSO-Sum BS-Mean BS-Sum BO-Mean BO-Sum

WORQ 1.25 ms 10.49min 4.18 ms 34.84min 3.52 ms 29.34min

RDF-Table 5.3 ms 44.44min 3.80 ms 31.67min 4.35 ms 36.26min

Table 1 gives the result of processing 500 queries with bound subject and
object (BSO), bound subject (BS), and bound object (BO) over WatDiv (1 Bil-
lion triples). For bound subject and object (BSO), the mean execution time per
query is nearly five times better than the baseline. This is attributed to the
Bloom filter usage, where the number of false-positives is reduced by evaluating
the properties against two bound values instead of one bound value, e.g., queries
with bound subject only or a bound object only. For bound subject (BS), the
mean execution time of WORQ is comparable to that of RDF-Table. This per-
formance is due to two main reasons. The first is the efficiency of RDF-Table
within Spark as RDF-Table performs predicate pushdown filtering in parallel
and the result is aggregated back to the driver (i.e., master node). The sec-
ond is that the data of the RDF-Table is sorted by the subject, allowing the
predicate-pushdown to work efficiently. For bound object, the mean execution
time is also comparable to that of RDF-Table. The overall execution time of
WORQ is better than RDF-Table. The reason for the better result is attributed
to the lack of sorting on the object column for the RDF dataset. This gives
WORQ performance advantage when executing bound object queries.

6 Related Work

Graph-based partitioning is an NP-complete problem [14], and hence hash par-
titioning heuristics [21,31] are employed instead of graph-based partitioning in
order to partition RDF data efficiently. However, sophisticated partitioning tech-
niques [11,15,22,28] cannot guarantee that no data will be shuffled when pro-
cessing complex queries with multiple joins. Several techniques [23,29] utilize
the query workload to enhance the partitioning of RDF data. In addition, one
study [4] demonstrates the need to continuously adapt to workloads in order
to guarantee consistent performance. Characteristic sets [18] capture the set of
properties that occur together for a given subject. However, characteristic sets
are data-driven and are tied to star-shaped queries only. Castilo et al. [9] perform
evaluation of SPARQL queries using (offline) materialized results coined RDF-
MatView indexes. In contrast to materialized views, WORQ does not materialize
results but instead identifies reductions that can be reused across queries that
share the same join patterns. H2RDF+ [20] provides a result-based workload-
aware RDF caching engine that manages to dynamically index frequent workload
subgraphs in real time. However, caching the final results of RDF queries incurs
significant storage overhead and cannot generalize to a broader query work-
loads. Yang et al. [30] propose caching the intermediate results of basic graph
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patterns in SPARQL queries. However, the proposed approach is tied to the join
orders that would result in different intermediate results. Alvarez-Garcia et al. [5]
introduce a compressed index called k2-triples for answering unbound-property
queries. However, the proposed index is not applicable in a distributed setting.
Ravindra et al. [24] uses a non-relational algebra based on a TripleGroup data
model to answer unbound-property queries.

7 Concluding Remarks

This paper presents several optimizations for RDF query processing over ver-
tically partitioned triples. First, we present how to use Bloom join to compute
reduced sets of intermediate results (or reductions, for short) that are common
for certain join pattern(s) in an online fashion. Second, we study the effect of
caching these reductions instead of caching the final results of each query. Third,
we present how to partition the RDF data triples using the join attributes of the
query instead of using a predefined partitioning criteria. Fourth, we present how
to efficiently answer queries with unbound properties using Bloom filters. Exten-
sive experimentation using the WatDiv, LUBM, and YAGO2s demonstrate how
a realization of these optimizations can lead to an order of magnitude enhance-
ment in terms of preprocessing time, storage, and query performance. Bloom
filters/join is one case study. N-ary filtering can utilize any set membership
structure (e.g., Bloom, Cuckoo, Roaring Bitmaps) so long as we can add and
check elements in a set. The novelty is in how membership structures (e.g., Bloom
Filter) are used to filter data and answer unbound property queries efficiently in
a distributed setting. For future work, we will investigate further query process-
ing enhancements including load-balanced partitioning of reductions, generalized
filtering (exact vs. approximate structures), and spatio-temporal RDF filtering.
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