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Abstract. The steadily-growing popularity of semantic data on the Web
and the support for aggregation queries in SPARQL 1.1 have propelled
the interest in Online Analytical Processing (OLAP) and data cubes in
RDF. Query processing in such settings is challenging because SPARQL
OLAP queries usually contain many triple patterns with grouping and
aggregation. Moreover, one important factor of query answering on Web
data is its provenance, i.e., metadata about its origin. Some applications
in data analytics and access control require to augment the data with
provenance metadata and run queries that impose constraints on this
provenance. This task is called provenance-aware query answering. In this
paper, we investigate the benefit of caching some parts of an RDF cube
augmented with provenance information when answering provenance-
aware SPARQL queries. We propose provenance-aware caching (PAC),
a caching approach based on a provenance-aware partitioning of RDF
graphs, and a benefit model for RDF cubes and SPARQL queries with
aggregation. Our results on real and synthetic data show that PAC out-
performs significantly the LRU strategy (least recently used) and the
Jena TDB native caching in terms of hit-rate and response time.

1 Introduction

In the last years we have seen a steady increase of the amount of Linked Data
available on the Web. This data spans over a wide variety of topics ranging
from common-sense information to specialized domains such as governmental
information, media, life sciences, etc. The data is usually published in RDF [27]
and queried with SPARQL [28]. The extended capabilities of SPARQL 1.1—
notably the support for aggregation queries—have motivated the publication
of multidimensional data, i.e., data cubes, in RDF [1,11,19,31]. Analysis on
multidimensional data warehouses and is known as OLAP (On-Line Analytical
Processing). The publication of the QB vocabulary [8] has served as a bridge
between the Semantic Web and OLAP communities.
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Imposing constraints on the provenance of query results, a task known as
provenance-aware query processing, is crucial in a setting with data coming
from multiple independent sources. The provenance of a piece of data is a set of
assertions about its origin. If a query must be evaluated over multiple indepen-
dent data cubes [20], provenance metadata can help restrict OLAP queries to
data or sources meeting certain quality constraints [24]. Moreover, provenance
metadata allows for the implementation of access control policies on data [4].

The importance of provenance data management motivated the creation of
the PROV ontology [23] (PROV-O), the W3C standard to represent provenance
information for RDF data. PROV-O provides the data model to describe a set of
provenance entities, i.e., RDF resources, which are assigned to the triples in an
RDF dataset. There exist multiple representations for provenance-augmented
RDF data, such as named graphs and reification. These representations are,
though, not exempt from performance issues for very complex queries [25] due
to the additional complexity added by the provenance metadata. In this paper
we use the named graph representation [5].

A recent formulation for provenance-aware query answering divides the query
in two parts: a provenance query and an analytical query [2,35]. The provenance
query imposes constraints on the provenance entities of the triples that should
be considered to answer the analytical query on the actual data. In a represen-
tation of provenance entities using named graphs, this is equivalent to adding
a FROM clause to the analytical query for each provenance entity reported by
the provenance query. As shown in [2], query response time is seriously affected
in frameworks, such as Jena, as the number of FROM clauses increases. This
happens because the query engine has to fetch a large number of intermediate
results from disk in order to answer the analytical query.

In this paper we propose to alleviate the aforementioned phenomenon by
caching some fragments of the RDF graph in memory, so that the analytical
queries benefit from fast access to the data. Our strategy, called provenance-
aware caching (PAC), selects the most beneficial fragments that fit within a
memory budget. Since we are interested in RDF cubes, we assume our queries
are OLAP queries, i.e., SPARQL queries with aggregation, grouping and filtering.
This assumption reduces the space of possible queries we optimize for, without
the need of an explicit query-load. We show that for OLAP analytical queries,
it suffices to cache a small percentage of the dataset in order to achieve up to
2x speed-up in query response time. This is particularly convenient for memory-
constrained settings. In summary our contributions are:

– A fragmentation scheme tailored for provenance-augmented RDF graphs.
– The formulation of the budgeted provenance-enabled fragment selection prob-

lem: The problem of selecting a set of fragments for caching so that as many
OLAP queries as possible benefit from fast access to cached data.

– A query rewriting algorithm to answer analytical queries from a set of named
graphs and cached fragments.

– A study of the impact of caching on the performance of Jena TDB for
provenance-aware SPARQL aggregation queries.
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The remainder of this paper is structured as follows. Section 2 introduces the
basic concepts of RDF cubes, SPARQL aggregation queries and provenance in
RDF. In Sect. 3, we introduce the fragment selection problem with a memory
budget for RDF cubes with provenance information. This is followed by an exper-
imental evaluation in Sect. 4 and a discussion of related work in Sect. 5. Section 6
concludes the paper.

2 Preliminaries

2.1 RDF Cubes

In compliance with the official RDF specification [27], we define an RDF triple t
(or simply a triple), as t = 〈s, p, o〉 ∈ (U ∪ B)×P × (U ∪ B ∪ L), where s is the
subject, p is the predicate, and o is the object. In this definition, U , B and L are
countably infinite sets of IRIs, blank nodes and literals. In addition, we define
the set of predicates P ⊆ U and the set of classes C ⊆ U . An RDF dataset K is
a set of RDF triples. Since RDF defines a graph-like data model, we also refer
to RDF datasets as RDF graphs. An RDF cube Kc = {O,D,PM,PD,PA,Δ} is
an RDF graph defined in terms of:

– A set of observations O ⊆ U .
– A set of measure predicates PM ⊆ P, defined between observations and

literal numerical values. These predicates are the target of aggregation in
OLAP queries.

– A set of dimensions D. Observations are defined by their coordinates in D.
Each dimension consists of a hierarchy of classes that describe an observation
at different degrees of specificity. Each class defines a level in the hierarchy.

– A set of dimension predicates PD ⊆ P. These predicates connect the obser-
vations with the dimensions in D.

– A set of level attributes PA ⊆ P. Level attributes are predicates defined
on the class levels of the dimensions. They are often used for grouping and
filtering.

– A function Δ : D → H that assigns each dimension in D a class hierarchy from
the set of hierarchies H. A class hierarchy H = (L,≺L, γ, σ) ∈ H consists of
a set of class levels L ⊆ C and a partial order ≺L on L with a single greatest
element. The function γ : L → 2PD assigns each class level in L a set of
dimension predicates, whereas the function σ : L → 2PA assigns each class
level a set of level attributes.

Example 1. Consider an RDF cube representing a database of air pollution
measurements. Each measurement corresponds to an observation in the cube
model. A measurement of 12.3µg/m3 of the pollutant PM10 corresponds to the
triple 〈Obs, air:pm10, 12.3 〉 depicted in Fig. 1. It follows that Obs ∈ O and
air:pm10 ∈ PM. The triple 〈Obs, air:station, St1 〉 defines the coordinates of
Obs in the Station dimension. There are three dimensions in our example, i.e.,
D = {Year ,Station,Sensor}. The predicates air:year, air:station, air:sensor ∈
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PD are dimension predicates. The function Δ associates each dimension with
a class hierarchy. For example, the dimension Station is mapped to a hier-
archy H = (L,≺L, γ, σ) defined by the classes L = {Station,City ,Country}
and the order Station ≺L City ≺L Country . In addition, it holds that
γ(Country) = {air:locatedIn}. The country’s code can be modeled as a level
attribute air:ccode ∈ PA of the Country class. Thus, σ(Country) = {air:ccode}.

Fig. 1. Observation with 3 dimensions: year, station, and sensor. Measure predicates
PM are in solid line style, whereas attribute predicates PA use dotted lines. The dashed
edges correspond to the dimension properties PD.

2.2 SPARQL Queries

Due to space constraints, we do not provide a rigorous definition of SPARQL
queries; instead we resort to the formulation used in [17] to define SPARQL
aggregation queries. These are the most common types of OLAP queries. We
define a triple pattern as a triple t̂ = 〈s, p, o〉 ∈ (U ∪ B ∪ V) × (P ∪ V) ×
(U ∪ B ∪ L ∪ V). The set V is a set of variables with (U ∪ B ∪ L) ∩ V = ∅.
A basic graph pattern Gp is a set of triple patterns. A SPARQL select query
Q is an expression of the form “SELECT V F WHERE Ĝp GROUP BY V ′

HAVING c” with V ∪ F �= ∅. In this definition V ⊆ V is the set of projection
variables and F is a set of aggregation expressions of the form f(g(V̂ )) where
f ∈ {COUNT,SUM,AVG,MIN,MAX} and g(V̂ ) is a numerical expression on
the set of aggregated variables V̂ ⊆ V. Ĝp is an extended basic graph pattern,
potentially containing OPTIONAL and FILTER clauses. The set of grouping
variables is a superset of the projection variables (V ′ ⊇ V ) whereas c is a Boolean
expression on V ∪ F . The GROUP BY and HAVING clauses are optional.

Example 2. The following SPARQL query computes the maximal concentration
of PM10 per city in Denmark in 2012 according to the schema in Fig. 1.

SELECT ?city (MAX(?ms) as ?max) WHERE {
?obs air:pm10 ?ms. ?obs air:year y:2012. ?obs air:station ?st.

?st air:inCity ?city. ?city air:locatedIn Denmark.

} GROUP BY ?city
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2.3 Provenance

There exist multiple provenance models for RDF in the literature [7]; in this
paper, we focus on workflow provenance [29]: the history of a unit of information
from its sources to its current state. This provenance is modeled using RDF by
assigning each triple an RDF resource, which we call its provenance entity. The
set of statements describing the provenance entities of an RDF graph is a prove-
nance graph. The PROV Ontology [23] is the W3C specification to model prove-
nance graphs. In this model a provenance entity can represent a data resource
such as a file, a web page or the intermediate result of a data transformation
process. Any operation on data is modeled as an activity in PROV-O. Those
activities can be directly or indirectly carried out by agents: people, organiza-
tions or even computer programs.

If I is a set of provenance entities and f : K → I is a provenance function on
the triples of an RDF graph K, a provenance-augmented RDF graph KI is a set
of pairs 〈t, f(t)〉, which can also be seen as a set of quadruples 〈s, p, o, i〉, where
i ∈ I. We can also model a provenance-augmented RDF graph as a set of RDF
sub-graphs, each containing the triples associated to the same provenance entity.
In this view KI = {Ki1 , . . . ,Kin} (i1, . . . , in ∈ I) and each RDF sub-graph is a
named graph with label i. We define a provenance-augmented cube as an RDF
cube whose triples have been augmented with provenance entities.

2.4 Provenance-Aware Query Answering

Given a provenance-augmented RDF graph KI = {Ki1 , . . . ,Kin} and a prove-
nance graph GI describing the set of provenance entities i1, . . . , in ∈ I, a
provenance-aware query is a pair of SPARQL queries 〈qp, qa〉 [2,35]. qp is known
as the provenance query and is defined on GI . The provenance query is designed
so that it returns a set of provenance entities I ⊆ I. Those provenance enti-
ties are used to restrict the scope of the analytical query qa on the RDF graph
KI to those subgraphs with labels in I. The problem of answering provenance-
aware queries on RDF data has been studied in the last years [2,6,34,35]. If
provenance information is modeled using named graphs (where the labels are
provenance entities), the naive strategy is to augment the analytical query with
a FROM clause for every provenance entity reported by the provenance query.
In [2] it is shown that this strategy performs poorly in frameworks such as Jena
for non-selective provenance queries. A strategy called full materialization[35]
proposes to first fetch all the triples from the named graphs, and then run the
analytical query on the union of those graphs. While this strategy generally
outperforms the naive approach, it is not free from performance issues for non-
selective analytical queries. Nonetheless, we observe that both strategies require
the retrieval of a large number of triples from disk. Therefore, we study the
impact of keeping some parts or fragments of the dataset in main memory so
that queries can benefit from fast access to the data.
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3 The Budgeted Provenance-Enabled Fragment Selection
Problem

In this section, we define the budgeted provenance-enabled fragment selection
problem. This is the problem of selecting a set of provenance-enabled RDF data
fragments for caching so that we reduce the response time of the analytical query
when answering a provenance-enabled query. This is achieved by maximizing the
amount of data that is retrieved from the cache. In the following, we describe
the three components of our approach, namely the fragmentation strategy, the
cost-benefit model, and the query rewriting algorithm. We highlight that our
method is query-load agnostic, thus it aims at optimizing for as many queries as
possible in the space of analytical queries.

3.1 Fragmentation Strategy

A fragmentation strategy defines how to split a dataset into smaller parts, i.e.,
fragments. Once the dataset is fragmented, we can decide which parts to put
in the cache. We start by defining a fragment for provenance-augmented RDF
graphs.

Definition 1. A fragment signature sφ is a quadruple 〈s, p, o, i〉 such that each
component can be a constant or a variable. We say a quadruple q in a provenance-
augmented RDF graph KI matches a fragment signature if there exists an instan-
tiation ρ for the variables in the signature such that ρ(sφ) = q. The set φ
of quadruples that match sφ in a provenance-augmented RDF graph KI is a
fragment.

Definition 2. A provenance-aware fragment tree Φ consists of a set of frag-
ments and a partial order 
f on those fragments. A fragment φ subsumes a
fragment φ′, denoted by φ 
f φ′, iff sφ′ ⇒ sφ. If φ 
f φ′ then φ ⊇ φ′.

Figure 2 shows a provenance-aware fragment tree describing some fragments
from the cube introduced in Example 1 with two provenance entities pr:e1 and
pr:e2. The root fragment contains the trivial signature, i.e., the signature that
matches all quadruples in the dataset. In the second level, we have signatures
with restrictions on the provenance entities of the quadruples. The fragments in
the third level have restrictions on both the predicate and the provenance entity.
Fragments always subsume their children.

Fig. 2. A provenance-aware fragment tree. The size of each fragment is noted below.
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Algorithm 1 describes the method to construct a provenance-aware fragment
tree given a provenance-augmented RDF graph. The algorithm first initializes
the tree with the trivial signature (line 1). Then for each quadruple in the dataset,
the method constructs signatures with (a) bound provenance entity, (b) bound
provenance entity and predicate (line 3), and (c) bound provenance entity, pred-
icate and object for the rdf:type predicate (lines 4–5). The latter step accounts
for the typically large size of the rdf:type predicate. If the tree does not contain
a signature, the signature is initialized (by setting its size to 1 in line 8) and
added to the tree (line 9). Otherwise, the size of the signature is incremented to
account for the current quadruple (line 11).

Algorithm 1. BuildProvenanceAwareFragmentTree
Input: a provenance-augmented RDF graph: KI
Output: a provenance-aware fragment tree: Φ

1 Φ := {〈∗, ∗, ∗, ∗〉}
2 foreach q := 〈s, p, o, i〉 ∈ KI do
3 Φ′ := {〈∗, ∗, ∗, i〉, 〈∗, p, ∗, i〉}
4 if p = “rdf:type” then
5 Φ′ := Φ′ ∪ {〈∗, p, o, i〉}
6 foreach s′

φ ∈ Φ′ do
7 if s′

φ �∈ Φ then
8 s′

φ.size := 1
9 Φ := Φ ∪ s′

φ

10 else
11 s′

φ.size := s′
φ.size + 1

12 return Φ

When clear from the context, we drop the distinction between a fragment and
its signature and refer to both as φ. Finally, we highlight that Algorithm1 pro-
duces fragmentation schemes with redundancy. Whether we allow redundancy or
not in the set of selected fragments depends on the benefit model. We elaborate
on this in the following.

3.2 Cost-Benefit Model

The cost-benefit model quantifies the price we have to pay for caching a frag-
ment, as well as the amount of saved response time induced by using the cached
fragment to answer queries. In line with approaches for view materialization [17]
we use the number of quadruples matched by the fragment’s signature as its
cost, i.e., cost(φ) = |φ|. We say a fragment φ is relevant to a provenance-aware
query q = 〈qp, qa〉 if at least one of the quadruples in φ can be used to answer
q—and none of them could lead to a wrong answer. For example, consider a
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provenance query qp with result pr:e1 and the analytical query qa from Exam-
ple 2. In this case the analytical query is restricted by the provenance query to
the quadruples with provenance pr:e1. We say that the fragments φ and φ′ with
signatures sφ = 〈*, air:pm10, *, pr:e1〉 and sφ′ = 〈*, *, *, pr:e1〉 are relevant to
q. In contrast, the fragment φ′′ with signature sφ′′ = 〈*, p:unitPrice, *, pg:e2〉 is
not relevant, because qp does not consider the provenance entity pg:e2.

Under the assumption that the cost of accessing a quadruple from main
memory is insignificant compared to the cost of accessing it from disk, we define
the benefit of a cached fragment φ as ben(φ) =

∑
qa∈Q |φqa ∩ φ|. Here Q is the

space of all possible queries and φqa is the set of quadruples required by the
query engine to answer qa. In other words, the benefit of a cached fragment is
the absolute number of times one of its quadruples can be fetched to answer a
query. It follows that the total benefit of a set of cached fragments Φ′ ⊆ Φ from
a tree Φ, is given by ben(Φ′) =

∑
qa∈Q |φqa ∩ u(Φ′)|, with u(Φ′) =

⋃
φ∈Φ′ φ. Our

goal is to find a Φ′ with maximal ben(Φ′).
We highlight that in real-world query engines, the benefit of a fragment w.r.t

a query qa may not necessarily depend on the absolute number of cached relevant
quadruples used to answer qa, but on the ratio w.r.t the query’s relevant set,
i.e., |φqa ∩ u(Φ′)|

|φqa | . For example, it may be more beneficial to retrieve 1000 cached
quadruples for a query with |φqa | = 1000 than for a query with |φqa | = 10000. In
the absence of an explicit query load, however, we can only expect to estimate
the term |φqa ∩ u(Φ′)| since the queries qa as well as φqa and |φqa | are unknown.
In the following we show that the fixed structure of RDF cubes as well as our
focus on OLAP queries, both provide hints to guarantee that ben(Φ′) is at least
large.

Observation 1: Distance to observations. The closer to the observations a
predicate lies in the schema, the larger the relevance set of its matching frag-
ments is.

For example, all OLAP queries on data cubes involve aggregation of at least
one measure. This means that |φqa ∩ φ| > 0 for fragments φ that match measure
quadruples. Furthermore and assuming connected SPARQL queries, filtering or
grouping on attributes and dimensions in higher levels always requires to pass by
the lower levels, hence it is more beneficial to cache quadruples with predicates
in the lower levels.

Observation 2: Diversity. Fragments with larger diversity of predicates have
larger relevance sets, i.e., they “touch” more queries.

Observation 3: Duplicates. Given a selection of fragments Φ, duplicate quadru-
ples lying in different fragments do not provide additional benefit, because they
occupy extra memory without extending the set of relevant queries of Φ.

Based on these observations and the fragmentation defined by the
provenance-aware fragment tree, we devise a selection strategy given a mem-
ory budget.
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3.3 Fragment Selection

Given a provenance-augmented RDF cube Kc = {O,D,PM,PD,PA,Δ}, a max-
imum budget W in number of quadruples, and a provenance-aware fragment tree
Φ, we formulate the budgeted provenance-enabled fragment selection problem as
an integer linear program (ILP):

maximize
∑

φ∈Φ

do(φ)−1 × dv(φ) × xφ

s.t.
∑

φ∈Φ

|φ| × xφ ≤ W (budget)

∀p : φroot → · · · → φk :
∑

φ∈p

xφ ≤ 1 (no replication)

∀φ ∈ Φ : xφ ∈ {0, 1} (integrality constraints) (1)

Each fragment φ in the lattice is assigned a Boolean variable xφ. If xφ = 1
the fragment is chosen for caching. Hence, the solution to the ILP produces a
set of fragments Φcached ⊂ Φ that will be stored in main memory. Observations 1
and 2 are implemented in the objective function. This function decreases with
the distance of the fragment’s predicates to the observations (do) and increases
with the fragment’s diversity (dv)1. We define the distance of a predicate to
the observations as the number of hops from an observation to the predicate in
the schema. In Fig. 1, for example, the predicates air:pm10 and air:unit have
distances 1 and 2 respectively. If a fragment φ contains quadruples with different
predicates, d(φ) is the smallest distance among all predicates in φ. The diversity,
on the other hand, is the number of different predicates in quadruples in φ. The
cost model is encoded in the budget constraint. Since duplicate quadruples do not
contribute with additional benefit (Observation 3), the no replication constraint
guarantees that the resulting set Φcached has no redundancy. Because of this
constraint and the partial order encoded in the tree, the ILP solver can pick at
most one fragment in a given path from the root to a leaf.

3.4 Query Rewriting

In this section, we describe how to use a selection of cached fragments Φcached

to answer provenance-aware queries q = 〈qp, qa〉. Recall from Sect. 2.4 that in a
setting based on named graphs, a provenance-aware query can be answered by
adding a FROM clause to the analytical query qa for each provenance entity
i ∈ I reported by qp. Each provenance entity corresponds to a named graph
that resides in disk. In our setting we count additionally on a set of cached
fragments Φcached that can be accessed from memory. We treat each fragment
φ ∈ Φcached as a memory named graph with label id(φ), where id(φ) returns the

1 We omitted the fragment size from the objective function because size benefits too
much those fragments with general signatures, i.e., those of the form 〈∗, ∗, ∗, i〉.
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concatenation of the constant components of sφ (φ’s signature). Exploiting those
memory named graphs to answer the analytical query is the goal of Algorithm2.
The algorithm takes as input an analytical query qa, a provenance-aware tree
Φtree , the result of the provenance query I , and the set of cached fragments
Φcached reported by our selection strategy in Sect. 3.3. The algorithm returns
the graph labels that will be added as FROM clauses to the analytical query.

Algorithm 2. rewriteAnalyticalQuery
Input: Analytical query qa, provenance-aware tree Φtree , the provenance query

result I , the set of cached fragments Φcached

Output: A set of graph labels
1 candidates := relevant := disk := ∅
2 foreach t = 〈s, p, o〉 ∈ qa do
3 foreach i ∈ I do
4 s := {〈∗, p, o, i〉, 〈∗, p, ∗, i〉} ∩ Φtree

5 relevant := relevant ∪ {most-specific-fragment-in(s)}
6 foreach φ ∈ relevant do
7 if φ ∈ Φcached then
8 candidates := candidates ∪ {φ}
9 else if ∃ φ′ ∈ Φcached : sφ′ �f sφ then

10 candidates := candidates − {φ̂ : sφ′ �f sφ̂} ∪ {φ′}
11 else
12 disk := disk ∪ {i : sφ = 〈∗, p, ∗, i〉}
13 candidates := candidates − {φ : sφ ≈ 〈−, −, −, i〉}
14 return {id(φ) : φ ∈ candidates ∪ disk)}

Line 1 initializes some intermediate variables. Lines 2–5 compute the most
specific fragments in the lattice that are relevant to the analytical query, i.e.,
fragments whose signatures combine the provenance entities in I with the triple
patterns of the analytical query. Then for each relevant fragment φ, the algorithm
verifies whether φ is in the cache (line 9). If so, the fragment is added as a
candidate (line 8). Otherwise, the algorithm verifies whether one of φ’s ancestors
(line 9) has been cached. There can be at most of one of such ancestors due
to the redundancy constraint discussed in Sect. 3.3. If an ancestor φ′ is found
in the cache, the algorithm adds it to the set of candidates (line 10). Since
this addition turns every (possibly) selected descendant of φ′ redundant, the
algorithm removes those descendants from the list of candidates (line 10). If
neither φ nor any of its ancestors is in the cache, the algorithm takes as candidate
the named graph labeled with the provenance entity i in sφ (line 12). This step
turns any fragment with signature of the form 〈−,−,−, i〉 superfluous, and thus
unnecessary (line 13). Once the final list of candidates have been computed,
Algorithm 2 generates the graph labels that will be used to rewrite the analytical
query (line 14).



Answering Provenance-Aware Queries on RDF Data Cubes 557

4 Experiments

4.1 Experimental Setup

Data. We evaluated PAC on several datasets generated with the Star Schema
Benchmark (SSB [26]) and on the QBOAirbase dataset [11]. The SSB bench-
mark provides a data generator for a database of line orders processed by a
wholesaler. The number of line orders is an argument for the data generator. We
converted the SSB dataset into an RDF cube, where each line order corresponds
to an observation defined by four dimensions: supplier, part, customer, and date.
We generated four datasets with four different numbers of line orders: 80k, 160k,
320k, and 640k. This resulted in 2.3 m, 4.4 m, 7.8 m, and 14.4 m triples respec-
tively. All SSB datasets contain 68 distinct predicates. The QBOAirbase dataset,
on the other hand, models air pollution measurements from 36 European coun-
tries as an RDF cube augmented with workflow provenance. A measurement
corresponds to an observation with coordinates in the time, station (location),
and sensor dimensions. We tested our approach on the subset of measurements
of Denmark (qboairbase-dk) and Great Britain (qboairbase-gb). These datasets
account for 542k and 4.3 m triples respectively, both with 81 distinct predicates.

Provenance Data and Queries. Since the SSB benchmark does not provide
provenance for the data, we augmented each RDF cube with 1000 distinct prove-
nance entities and simulated a set of provenance queries. The provenance entities
are assigned to observations in the cube according to two settings: balanced and
unbalanced. In the balanced setting, each provenance entity is assigned the same
number of observations in the cube, whereas in the unbalanced setting the ith

provenance entity is assigned 2i triples. We denote the resulting SSB datasets
with the prefixes b- and u- followed by the number of line orders, e.g., b-ssb-80k
contains 80k line orders with a balanced provenance assignment. We simulated
our provenance queries by materializing sets of provenance entities covering from
10% to 90% of the provenance entities in the cube (at intervals of 10%). The
datasets qboairbase-dk and qboairbase-gb contain 25.3k and 191.8k different
provenance identifiers. For QBOAirbase we constructed a set of 5 provenance
queries. These queries impose constraints (a) on whether the data has been
quality checked or not (2 queries), (b) on whether we know the data provider or
not (2 queries), and (c) on the observation’s generation time.

Analytical Queries. The SSB benchmark provides a set of 13 standard OLAP
queries [26]. For QBOAirbase [11], we used 8 of the analytical queries available
at the project’s website2. These are the queries where Jena does not time out.
For all datasets, we construct provenance-aware queries by combining each ana-
lytical query with each of our provenance queries. Each provenance-aware query
is executed three non-consecutive times in random order. We averaged the run-
times.
2 http://qweb.cs.aau.dk/qboairbase/.

http://qweb.cs.aau.dk/qboairbase/
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System Setup and Opponent. We used the Jena (v.3.2) TDB physical
database for the in-disk named graphs, and the Jena TDB in-memory store
for the cached fragments. All experiments were run in a virtual server with an
AMD Opteron 6376 with 8 cores, 128 GB of RAM and 1 TB of disk space running
in RAID-5. We tested our queries under two general system settings: (1) after
purging the operating system cache and disabling the Jena TDB cache—which
we call cold, and (2) with the default TDB cache (∼50 MB) and a populated
OS’s cache after having run all the queries at least once. We call this setting
warm. We compare our approach with the caching provided by Jena TDB and
with the LRU caching strategy. The memory budgets are provided as percent-
ages. For Jena TDB a budget of 20% means the engine counts on memory of size
20% the physical database. In contrast, for PAC and LRU the budgets indicate
the percentage of triples in the dataset that will be cached. LRU populates the
available cache space with the fragments used by the last executed query in a
driven-by-size greedy fashion. Jena’s standard execution plans timed out with
most of the queries, thus we implemented an execution strategy on top of Jena,
on which queries are executed on the merge of all relevant in-disk named graphs
and cached fragments [2,35].

Table 1. Performance of different graph filtering strategies (warm setting).

Dataset PAC Context index Naive

Runtime Build time Triples

reduction

Runtime Build time Triples

reduction

Runtime

b-ssb-80k 24.52 s 17.38 s 24.11% 35.97 s 24.45 s 24.10% 33.36 s

u-ssb-80k 25.82 s 17.65 s 22.58% 37.48 s 27.57 s 22.56% 34.79 s

qboairbase-gb 20.04 s 42.72 s 12.00% 103.41 s 134.10 s −37.51% 24.85 s

qboairbase-dk 1.98 s 5.56 s 13.72% 6.54 s 19.94 s −35.31% 2.61 s

4.2 Evaluation

Impact of Graph Filtering. We disabled caching and compare PAC’s graph
filtering and query rewriting with the approach proposed in [2], and a naive
query rewriting on the analytical queries. The naive approach rewrites the ana-
lytical query by adding a FROM clause for each of the results of the provenance
query. In contrast, the approach in [2] defines a context index that maps prove-
nance entities to predicate paths, allowing for pruning of the graphs that do
not co-occur with predicate paths in the query. In the same spirit, Algorithm 2
filters irrelevant graphs by means of the provenance-aware fragment tree, which
encodes the co-occurrences of predicates, object values, and provenance iden-
tifiers. Table 1 shows the average runtime and average index built time of the
different strategies for four of our datasets. We observe that PAC’s filtering out-
performs the naive approach in query runtime, because it achieves reductions
from 12% to 24% in the total number of materialized triples. While the context
index and PAC achieve comparable reductions in the SSB datasets, [2] performs
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worse for two reasons: (a) it merges all relevant graphs in disk, and (b) it does
not handle unions natively. The latter limitation implies that subqueries must
be executed independently and their results merged. It also explains why this
method sometimes materializes more triples than the naive approach, leading
to negative reduction rates. Finally, we highlight that the context index’s build
time is up to 3x slower than PAC’s provenance-aware fragment tree because
the context index runs an expensive select query for each predicate path in the
index.

Caching vs. In-Memory DB. Table 2 compares the average runtime of PAC,
the LRU, and the Jena TDB caching strategies – the two latter with and without
PAC’s filtering – at budget 20% against full PAC (budget 100%) and the Jena
TDB in-memory database in a warm setting. PAC at budget 20% outperforms
in total time all caching strategies and the Jena in-memory database. The bottom
line is that with PAC’s strategic caching, it is not necessary to store everything in
main memory for speed-up. In addition, full PAC is 2x faster than the in-memory
database thanks to PAC’s graph filtering (Algorithm2).

Table 2. Runtime of a full in-memory database vs. the caching strategies at bud-
get = 20%

Dataset PAC LRU+
PAC+F

TDB+
PAC+F

LRU TDB Full-PAC Jena-mem

b-ssb-80k 23.43s 20.98 s 23.78 s 35.30 s 33.21 s 13.03 s 34.05 s

u-ssb-80k 26.58 s 38.15 s 26.34 s 38.15 s 35.84 s 13.74 s 35.80 s

airbase-gb 13.80 s 20.01 s 17.45 s 22.98 s 25.56 s 17.86 s 25.04 s

airbase-dk 1.65 s 2.88 s 0.02 s 3.63 s 2.56 s 2.06 s 2.75 s

Total 65.46 s 82.02 s 67.59 s 100.06 s 117.17 s 42.69 s 97.64 s

Impact of the Memory Budget. Figures 3 and 4 show the impact of the
memory budget on the average cache hit-rate and the average response time of
PAC in a cold setting on four datasets from all our families of datasets. We define
the hit-rate as the ratio of graph labels returned by Algorithm2 that correspond
to cached fragments. We observe a monotonically increasing behavior in the
hit-rate for all datasets. On the u-ssb-80k and qboairbase datasets, the hit-rate
already approaches 80% at budget 10%, contrary to the h-ssb-80k dataset where
the increase is more gradual. This phenomenon is mainly caused by the fine
granularity of the fragments both in u-ssb-80k and qboairbase. Fine-grained
fragments give the selector more flexibility at utilizing the available budget in
contrast to very large fragments as the ones found in h-ssb-80k. If a very large
fragment does not fit into the remaining cache space, it will not be added, even
though it may be relevant to many queries in the query space. The trends in the
hit-rate are supported by the runtime behavior in Fig. 4.
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Fig. 3. Budget vs. hit-rate for PAC Fig. 4. Budget vs. runtime for PAC

PAC vs. LRU and TDB. We compare PAC, the LRU caching strategy, and
the Jena TDB native caching for qboairbase-gb on a warm setting in Fig. 5. The
trend is independent of the system setting and is similar for qboairbase-dk. We
first observe that PAC outperforms Jena TDB at all budgets. Only when PAC’s
filtering is enabled (TDB+PAC-F), TDB performs comparably to PAC. On the
contrary, LRU seems inadequate for this dataset, even when PAC’s filtering is
enabled (LRU+PAC-F). Due to the high diversity of cached fragment signatures
in the qboairbase datasets (approx. 192k), it is unlikely for two consecutive
queries to require the same fragments. This hurts the performance of LRU, which
delivers a hit-rate of 0 for less than 40% budget. LRU+PAC-F does slightly
better, but its maximal hit-rate is no higher than 0.6. The situation is different
for the u-ssb-80k dataset as shown in Fig. 6. While PAC still delivers the best
performance, TDB is outperformed by LRU. The trends are corroborated by the
hit-rate, where PAC is between 0.26 and 0.57 ratio points better than LRU, and
between 0.24 and 0.69 points better than LRU+PAC-F. Our findings in the h-
ssb-80k dataset are alike: PAC is between 0.15 and 0.47 ratio points better than
LRU as displayed in Fig. 7 (between 0.08 and 0.28 points w.r.t. LRU+PAC-F).
All in all, the synergy between graph filtering and a high hit-rate makes PAC
faster than standard caching strategies.

Caching on Bigger Datasets. We also investigate the behavior of the dif-
ferent caching strategies as the number of triples increases in the u-ssb family
of datasets on a warm system setting. We set a budget of 20% and show the
results in Fig. 8. PAC consistently achieves better runtime than its competitors.
In general, all trends observed in the h-ssb-80k and u-ssb-80k datasets remain
constant as the number of triples increases.

Impact of Caching on Queries. We also study the impact of the different
caching strategies on the response time of the individual analytical queries. For
this purpose we compute the area under the curve of response time vs. budget
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Fig. 5. Runtime on qboairbase-gb Fig. 6. Runtime on u-ssb-80k

Fig. 7. Hit-rate on h-ssb-80k Fig. 8. Runtime on u-ssb

for each analytical query under the different strategies on the h-ssb-80k, u-ssb-
80k, qboairbase-gb, and qboairbase-dk datasets. The runtimes were averaged
across all provenance queries. Table 3 shows the number of queries where each
strategy wins, that is, the strategy achieves the smallest area under the curve
until budgets 20%, 50%, and 100%. We notice that TDB becomes insensitive to
the budget argument after a value of 20%. By looking at the winning strategies
in each query, we observe that PAC has an almost stable behavior: the set of
benefited queries grows monotonically as the budget increases. Despite of being
query-load oblivious, PAC with budget 20% wins in 30% of the analytical queries
in the SSB datasets, and in 50% of the analytical queries in the QBOAirbase
datasets.
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Table 3. Number of queries where each strategy wins (warm system setting)

Dataset Budget 20% Budget 50% Budget 100%

PACLRU+

PAC+F

TDB+

PAC+F

LRUTDBPACLRU+

PAC+F

TDB+

PAC+F

LRUTDBPACLRU+

PAC+F

TDB+

PAC+F

LRUTDB

b-ssb-80k 4 0 5 0 4 6 6 1 0 0 7 6 0 0 0

u-ssb-80k 4 1 5 2 1 8 1 2 1 1 7 3 2 0 1

qboairbase-gb 9 0 0 0 0 9 0 0 0 0 9 0 0 0 0

qboairbase-dk 0 0 9 0 0 0 0 9 0 0 0 0 9 0 0

5 State of the Art

This paper studies the impact of caching fragments of a provenance-augmented
RDF cube for faster query processing. Therefore, we present the state of the
art in terms of three axes: caching in SPARQL and OLAP, query answering on
SPARQL aggregation queries, and provenance management.

Caching in SPARQL and OLAP. Caching data to speed up query answering
is a standard technique in databases and has also been applied to RDF/SPARQL
and OLAP. Caching can be implemented at different levels. For example, the
Jena TDB engine relies on the file caching provided by the Java Virtual Machine
to speed up subsequent access to recently used parts of the RDF store. When
implemented at the application level, e.g., in a client-server setting, caching is
often concerned with the reutilization of query results [21,22,33]. In contrast, we
aim at caching fragments of the RDF dataset that are used by multiple queries
and unlike [21], we do not count on an explicit query load. Caching has also
been implemented for data fragments and intermediate query results. In the
framework of Linked Data Fragments (LDF) [32], the server can return cached
data fragments, leaving the query processing to the client. While PAC’s notion of
fragments is similar to that of LDF, [32] does not consider provenance and focuses
on reducing the server’s load for the sake of availability rather than on minimizing
response time. Caching has also been applied to OLAP queries [9,16,18]. The
system PeerOLAP [18], for example, relies on a P2P network to answer OLAP
queries. PeerOLAP reuses the results of queries executed by neighbor peers as
data sources. As PeerOLAP, most systems focus on caching recently queried
results [3,10]. In [30] a hybrid query engine is proposed; it combines live results
with cached data as a trade-off between precision and speed. PAC uses heuristics
to strategically pre-cache parts of the data.

SPARQL Aggregation Queries. The interest on optimizing SPARQL queries
with aggregation [16,17] started with the publication of SPARQL 1.1 [28]. MAR-
VEL [17] proposes to answer SPARQL aggregation queries on RDF cubes by
rewriting the query in terms of a set of views. These views are structured accord-
ing to a partial order, and selected for query answering based on a cost model
as in PAC. Unlike PAC, MARVEL is not a caching approach: it is based on
precomputed aggregates –materialized as views– rather than on actual RDF
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fragments. Moreover, MARVEL does not support provenance. Conversely, [2]
supports provenance and assumes that the quadruples produced by the ETL
process are all assigned the same provenance entity. The approach proposes a
context index for graph filtering to speed up the execution of the analytical
queries. The index stores the co-occurrence of provenance entities and predi-
cate paths. Albeit not equivalent, PAC’s fragment tree supports graph filtering
at a better performance without additional assumptions. Besides, [2] does not
implement caching.

Provenance Management. The management of provenance is a crucial task
for Linked Data and RDF given the decentralized nature of the Web [13,14].
There are several approaches to encode provenance in RDF, such as reifica-
tion [27], named graphs [5], singleton properties [25], and embedded triples [15].
In this work we focus on workflow provenance [29]. Other approaches study
provenance in terms of the lineage of the query results [12,34]: expressions (e.g.,
a polynomial) that encode the origin of a result w.r.t the triples in the dataset.
The TripleProv engine [34] allows for native calculation of lineage for the results
of SPARQL queries. Our setting is significantly different, because provenance
is encoded as provenance entities described using RDF and the PROV-O ontol-
ogy [23]. Compared to the notion of lineage for query results, a provenance entity
can be seen as the identifier of a precomputed lineage.

6 Conclusions

In this paper, we have presented provenance-aware caching (PAC), an approach
to cache fragments of a provenance-augmented RDF graph in order to speed up
provenance-aware OLAP queries. Our techniques are query-load agnostic and
our experimental evaluation shows that PAC outperforms the Jena TDB native
cache and the standard LRU caching strategy in real and synthetic data. The
PAC principle can be applied to scenarios where the query-load is unknown,
e.g., to bootstrap the cache, or when the workload changes constantly. It is also
applicable in settings characterized by locations of “fast” and “slow” access,
such as a hybrid drives or remote storage servers. As future work, we envision to
integrate explicit dynamic query workloads into our framework, and to extend
the fragment definitions beyond equality constraints on the quadruples by, for
example, using the provenance graph. All the data and experimental results are
available at http://qweb.cs.aau.dk/pac/.
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564 L. Galárraga et al.

References

1. Ahlstrøm, K., Andersen, A.B., Hose, K., Pedersen, T.B.: Optimizing RDF data
cubes for efficient processing of analytical queries. In: COLD (2015)

2. Ahlstrøm, K., Hose, K., Pedersen, T.B.: Towards answering provenance-enabled
SPARQL queries over RDF data cubes. In: Li, Y.-F., et al. (eds.) JIST 2016.
LNCS, vol. 10055, pp. 186–203. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-50112-3 14

3. Bishop, B., Kiryakov, A., Ognyanov, D., Peikov, I., Tashev, Z., Velkov, R.: A fast
track to the web of data. In: SWJ, FactForge (2011)

4. Cadenhead, T., Khadilkar, V., Kantarcioglu, M., Thuraisingham, B.: A language
for provenance access control. In: CODASPY (2011)

5. Carroll, J.J., Bizer, C., Hayes, P., Stickler, P.: Named graphs. Provenance and
trust. In: WWW (2005)

6. Chebotko, A., Abraham, J., Brazier, P., Piazza, A., Kashlev, A., Lu, S.: Storing,
indexing and querying large provenance data sets as RDF graphs in apache HBase.
In: SERVICES (2013)

7. Cheney, J., Chiticariu, L., Tan, W.C.: Provenance in databases: why, how, and
where. In: Foundations and Trends in Databases (2009)

8. Cyganiak, R., Reynolds, D.: The RDF data cube vocabulary. W3C Recommenda-
tion (2014). http://www.w3.org/TR/2014/REC-vocab-data-cube-20140116/

9. Deshpande, P.M., Ramasamy, K., Shukla, A., Naughton, J.F.: Caching multidi-
mensional queries using chunks. SIGMOD Rec. 27(2), 259–270 (1998)

10. Erling, O., Mikhailov, I.: RDF support in the virtuoso DBMS. In: Networked
Knowledge - Networked Media (2009)
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