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Abstract. The LOD cloud offers a plethora of RDF data sources where
users discover items of interest by issuing SPARQL queries. A common
query problem for users is to face with empty answers: given a SPARQL
query that returns nothing, how to refine the query to obtain a non-
empty set? In this paper, we propose an RDF graph embedding based
framework to solve the SPARQL empty-answer problem in terms of a
continuous vector space. We first project the RDF graph into a continu-
ous vector space by an entity context preserving translational embedding
model which is specially designed for SPARQL queries. Then, given a
SPARQL query that returns an empty set, we partition it into several
parts and compute approximate answers by leveraging RDF embeddings
and the translation mechanism. We also generate alternative queries for
returned answers, which helps users recognize their expectations and
refine the original query finally. To validate the effectiveness and effi-
ciency of our framework, we conduct extensive experiments on the real-
world RDF dataset. The results show that our framework can signif-
icantly improve the quality of approximate answers and speed up the
generation of alternative queries.
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1 Introduction

With the rapid development of Semantic Web technologies, various knowledge
bases are published on the Linked Open Data (LOD) cloud using Resource
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Description Framework (RDF). To enable users to retrieve the desired data,
many RDF datasets provide SPARQL endpoints that allow users to issue basic
graph pattern (BGP) queries [11]. However, issuing SPARQL queries requires
users to be precisely aware of the structure and schema of the RDF dataset,
and this is challenging. Therefore, it is a common scenario for users where an
inappropriate query returns an empty set, the so-called empty-answer problem.

Most existing work solves this problem through query relaxation approaches
[6–9,12–14] which focus on relaxing RDF terms specified in the original query
so that the new relaxed query returns sufficient answers. They find top-k opti-
mal relaxed queries in the exponential search space then evaluate the matching
process between the relaxed queries and the RDF graph, which is really time-
consuming. Is it possible to directly retrieve approximate answers for
a failing query without changing any parts of the original query? The
answer is yes. In this paper, we stand on recent advances in RDF embedding
techniques and address the SPARQL empty-answer problem from the angle of
continuous vector space.

Motivating Example: A user wants to find drama films which were released
in the United States and directed by Tim Burton. After issuing a SPARQL
query over DBpedia [16], the user obtains an empty answer, as shown on the
left of Fig. 1. In this example, Tim Burton, director, country, United States, type,
and drama films are specified RDF terms in the SPARQL BGP [11]. Since each
specified term must be matched, this is too restrictive for the graph pattern
matching. To deal with such failing queries, users usually have no idea which
parts of the query should be responsible for the missing possible answers.

Fig. 1. Failing SPARQL BGP and RDF graph embeddings.

The right of Fig. 1 illustrates the ideal vector representation (i.e., the embed-
ding) of the RDF graph to be queried in a continuous vector space, where entities
are represented by vectors (boldface letters), and semantically similar entities are
close to each other. For example, e3 and e5 are close since drama film(e3) and
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fantasy film(e5) are similar. The relation between two entities is represented as
a translation operation from the head entity to the tail entity, e.g., e4 + r3 ≈ e5
when a triple 〈Sleepy Hollow(e4), type(r3), fantasy film(e5)〉 holds. With the
translation mechanism, although the expected answer v1 does not exist in the
RDF graph, we can still compute its vector representation v1 based on specified
terms in the SPARQL, e.g., v1 ≈ e1 − r1 according to 〈v1, r1, e1〉. Then, we can
obtain e4 which is close to v1 in the space. Sleepy Hollow(e4) is likely to meet
the query intention of the original SPARQL query in the RDF graph.

Challenges: Leveraging RDF embeddings is a promising pathway to directly
find approximate answers for a failing SPARQL query, but it is also troubling.
Our method confronts the following challenges:

– Limitations of existing embedding models: We need to project the RDF graph
into a continuous vector space, where semantically similar entities are close to
each other and the relations among entities are represented by translations.
However, none of the existing embedding models (e.g., RDF2vec [20], TransE
[3], et al.) meet the requirements.

– Variety of BGPs: A BGP may contain multiple different variables and usu-
ally contains several triple patterns sharing the same variables or entities.
Therefore, how to exploit the interplay between triple patterns and compute
approximate answers for each variable is challenging and non-trivial.

– Comprehensibility of approximate answers: Obtaining approximate answers
without any explanations is inadequate for satisfying users because they may
ask why an approximate answer is returned.

Solutions: Given these challenges, we propose a novel framework to address the
SPARQL empty-answer problem. The procedure includes the following:

– Firstly, the RDF graph is projected into a continuous vector space by an
entity context preserving translational embedding model which is specially
designed for SPARQL BGPs.

– Then, given a SPARQL query that returns an empty answer, the SPARQL
BGP is partitioned into several parts based on different variables. By lever-
aging the RDF embeddings and the translation mechanism, approximate
answers are further computed based on the vector representations of vari-
ables and specified query terms.

– Finally, approximate answers are returned to users. Each returned answer
will be attached with an alternative query, which helps users recognize their
expectations and refine the original query.

Contributions: Our framework makes the following contributions:

– To the best of our knowledge, we are the first to solve the SPARQL empty-
answer problem from a continuous vector space perspective, which improves
the quality of the returned answers and speeds up the generation of alternative
queries.
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– We propose a novel RDF graph embedding model which utilizes the trans-
lation mechanism to capture the relations between entities while considering
the entity context to make the representations of semantically similar entities
close to each other in the vector space.

– We propose efficient algorithms to compute approximate answers attached
with alternative queries as the explanations for users.

– We conduct extensive experiments on the real-world dataset to evaluate the
effectiveness and efficiency of the framework. These results provide supporting
evidence that the framework is powerful in generating effective answers and
explanations for failing queries within an acceptable time.

Organization: The remainder of the paper is organized as follows. Section 2
presents the details of the proposed framework. The evaluation of the frame-
work is reported in Sect. 3. The related work is discussed in Sect. 4. Finally, our
conclusions and future work are presented in Sect. 5.

2 The Proposed Framework

Before demonstrating the details of our framework, we briefly introduce the
notations employed in this paper.

RDF Graph. Let E be a set of entities, R be a set of relations between entities.
An RDF graph G = (E ,R) is a finite set of RDF triples in the form 〈eh, r, et〉,
where eh, et ∈ E and r ∈ R. An RDF triple 〈eh, r, et〉 indicates a directed
relation r from the head entity eh to the tail entity et, e.g., 〈Batman, director,
Tim Burton〉.

The standard SPARQL [11] contains BGPs and other operations (UNION,
OPTIONAL, FILTER, etc.). In this paper, we focus on the SPARQL empty-
answer problem caused by over-constrained BGPs, which already yields a non-
trivial problem to study.

BGP. Let V be a set of entity variables. Each variable v ∈ V is distinguished by
a leading question mark symbol, e.g., ?film. A triple pattern is similar to an RDF
triple but allows the usage of variables for entities1, e.g., 〈?film, director, Tim
Burton〉. A SPARQL BGP P = (EP ∪ VP ,RP) is a finite set of triple patterns,
where EP ⊆ E , VP ⊆ V and RP ⊆ R.

SPARQL Query. The official standard [11] defines four different forms of
queries on the top of BGPs, namely SELECT, ASK, CONSTRUCT, and
DESCRIBE. Since SELECT is the only form which returns the graph match-
ing results to users, we define a SPARQL query Q as an expression of the form
SELECT S FROM G WHERE P, where P is a BGP, G is an RDF graph to be
queried, and S ⊆ VP .

1 To simplify the problem, we do not consider variables on predicates in this paper as
such graph patterns are mainly used for exploring RDF schema but rarely used in
real-world SPARQL queries [2].
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SPARQL Empty-Answer Problem. Given a SPARQL query SELECT S
FROM G WHERE P, P is evaluated to match G, and the variables in P are
substituted by entities in G. SELECT S employs the matched RDF graphs to
provide the final result set RS. The SPARQL empty-answer problem refers to
the scenario where the final result set is empty, i.e., RS = ∅.

Given a failing SPARQL query, our goal is to automatically generate top-k
answers which approximately meet the original query intention along with cor-
responding alternative queries. Different from the existing methods [6–9,12–14],
our framework solves the empty-answer problem based on a continuous vector
space, as introduced in the example of Sect. 1. The proposed framework mainly
includes three modules: learning RDF embeddings (described in Sect. 2.1), com-
puting variable embeddings (described in Sect. 2.2), as well as generating approx-
imate answers and alternative queries (described in Sect. 2.3).

2.1 Learning RDF Embeddings

In this module, we aim to embed entities and relations of the underlying RDF
graph into a continuous vector space while preserving the inherent structure
of the graph. Neural-language-based models, e.g., RDF2vec [20], only generate
entity latent representations, and they cannot encode relations between entities.
Therefore, we adopt the translation mechanism of TransE [3] to capture the
correlations between entities and relations2. The translation mechanism in this
context represents a relation as a translation operation from the head entity
to the tail entity in the continuous vector space. Specifically, if an RDF triple
〈eh, r, et〉 ∈ G, our objective is to learn embeddings eh, r and et which hold
eh + r ≈ et (et should be a nearest neighbor of eh + r). However, directly
adopting TransE does not guarantee that semantically similar entities are close
to each other in the continuous vector space since it regards an RDF graph as a
set of independent triples during the learning process. Triples in the RDF graph
are not independent, and semantically similar entities tend to share common
context information, e.g., neighboring entities and their associated relations.
Therefore, we propose a novel embedding method which considers the entity
context information during the translation-based learning process.

Definition 1 (Entity Context). For an entity e ∈ E, the context of e is a set
C(e) = {(rc, ec)|rc ∈ R, ec ∈ E , 〈e, rc, ec〉 ∈ G ∨ 〈ec, rc, e〉 ∈ G}, where rc is the
relation between e and its neighbor ec.

Given an entity e ∈ E , our goal is to learn the vector representation e while
preserving its entity context information. To this end, we first define the condi-
tional probability of e given its context C(e) as follows:

P (e|C(e)) =
exp(f1(e, C(e)))

∑
e′∈E exp(f1(e′, C(e)))

, (1)

2 Other translation-based embedding models, such as TransH [21] and TransR [17],
can also be easily adopted for the RDF triple encoding.
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where f1(e′, C(e)) is a score function that measures the correlation between an
arbitrary entity e′ and the entity context of e. We define f1(e′, C(e)) as:

f1(e′, C(e)) = − 1
|C(e)|

∑

(rc,ec)∈C(e)

f2(e′, rc, ec), (2)

where f2(e′, rc, ec) is the score function of TransE that measures the correlation
between e′ and (rc, ec) ∈ C(e). f2(e′, rc, ec) is formulated as follows:

f2(e′, rc, ec) =
{‖e′ + rc − ec‖22, if 〈e, rc, ec〉 ∈ G,

‖ec + rc − e′‖22, if 〈ec, rc, e〉 ∈ G,
(3)

where 〈e, rc, ec〉 and 〈ec, rc, e〉 indicate the directions of rc. Intuitively, if two enti-
ties share more common context information, their embeddings tend to be more
similar according to the above equations. By maximizing the joint probability
of all entities in G, we define the final objective function as:

O =
∑

e∈E
log P (e|C(e)). (4)

Considering the over-sized RDF graph, it is impractical to directly compute
Eq. (1). Hence, we follow [18] to approximate Eq. (1) based on negative sampling,
as formulated in Eq. (5).

P (e|C(e)) ≈ σ(f1(e, C(e))) ·
n∏

e′∈Ee
N

σ(f1(e′, C(e))), (5)

where n is the number of negative examples, σ(·) is the sigmoid function, and
e′ is the negative entity which is obtained by sampling entities from a uniform
distribution over the negative entity set Ee

N . For each negative entity e′ ∈ Ee
N ,

the precondition is C(e′)
⋂

C(e) = ∅.
Based on the above process, entities are encoded into the continuous vector

space with their context information such that semantically similar entities are
close to each other. The relations between entities are simultaneously captured
by the translation mechanism. It is worth mentioning that the generation of
embeddings is independent of the rest phases of the framework. Once the RDF
embeddings have been learned, we can use them in SPARQL empty-answer prob-
lems solving without frequent modification.

2.2 Computing Variable Embeddings

We assume that the initial SPARQL is free of spelling/syntactic errors. In this
module, we aim to compute embeddings of variables in the original SPARQL
query. Similar to the correlation between an entity and its context, a variable is
determined by its neighbors in the BGP of the initial query.

The neighbor of a variable could be a specified entity or any variable else (a
BGP may contain multiple variables). Given a failing SPARQL query, we first
partition its BGP into several sub-basic graph patterns (sBGPs), each of which
contains only one variable connected with a set of specified entities.
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Definition 2 (Sub-Basic Graph Pattern). Given a basic graph pattern P =
(EP ∪ VP ,RP), a sub-basic graph pattern (sBGP) for a variable vs ∈ VP is a set
SP = {〈vs, rs, es〉|rs ∈ RP , es ∈ EP , 〈vs, rs, es〉 ∈ P} ∪ {〈es, rs, vs〉|rs ∈ RP , es ∈
EP , 〈es, rs, vs〉 ∈ P}, where rs is a relation between vs and its neighbor es.

For instance, the left of Fig. 2 illustrates a SPARQL BGP that retrieves
American drama films directed by Tim Burton and there is a star actor who was
born in New York. We can partition the BGP into two sBGPs, i.e., sBGP1 and
sBGP2 for ?film and ?actor, respectively.

Fig. 2. Failing SPARQL basic graph pattern and RDF graph embeddings.

Then, given a variable vs and the corresponding sBGP SP, we utilize spec-
ified entities in SP to estimate the embedding of vs. For a single triple pattern
〈vs, rs, es〉 or 〈es, rs, vs〉 in SP, we can obtain a preliminary embedding ṽs, com-
puted as follows:

ṽs =
{

es − rs, if 〈vs, rs, es〉 ∈ SP,
es + rs, if 〈es, rs, vs〉 ∈ SP.

(6)

For instance, regarding the variable ?film (v1) shown in Fig. 2, we can uti-
lize the triple pattern 〈?film, director, Tim Burton〉, i.e., 〈v1, r1, e1〉, to obtain
the preliminary embedding of v1 according to Eq. (6), i.e., ṽ1= e1 − r1 in the
continuous vector space.

In the sBGP SP, if the variable vs is involved in multiple triple patterns, we
need to jointly consider these triple patterns in the estimation of the variable
embedding. Intuitively, different triple patterns may have different impacts on
determining the variable embedding. For example, sBGP1 in Fig. 2 consists of
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three triple patterns, i.e., 〈?film, director, Tim Burton〉, 〈?film, country, United
States〉, and 〈?film, type, drama film〉. In the underlying RDF graph, e.g., DBpe-
dia, there are respectively 24, 112,336, and 238 RDF triples matching the three
triple patterns. Therefore, the triple pattern 〈?film, director, Tim Burton〉 con-
tains more specific information for estimating the variable embedding of ?film
compared with the other two triple patterns, and it should attract more atten-
tion. We define the following attention function a(vs, rs, es) to measure the atten-
tion on a triple pattern 〈vs, rs, es〉 when estimating the embedding of vs.

a(vs, rs, es) = exp

(
− |{evs |〈evs , rs, es〉 ∈ G ∨ 〈es, rs, evs 〉 ∈ G}|∑

〈vs,r′
s,e′

s〉∈SP∨〈e′
s,r′

s,vs〉∈SP |{evs |〈evs , r′
s, e

′
s〉 ∈ G ∨ 〈e′

s, r
′
s, evs 〉 ∈ G}|

)
,

(7)

where the numerator of the exponent is the number of RDF triples in the under-
lying RDF graph matching the triple pattern 〈vs, rs, es〉. The denominator of the
exponent is the number of RDF triples in the underlying RDF graph matching
any triple pattern in SP. For instance, according to Eq. (7), the attention scores
in sBGP1 are 0.9998, 0.3687, and 0.9979 for the three triple patterns 〈v1, r1, e1〉,
〈v1, r2, e2〉, and 〈v1, r3, e3〉, respectively. And the attention scores in sBGP2 are
0.5967 and 0.6165 for 〈v2, r6, e6〉, 〈v2, r7, e7〉, respectively.

By examining all neighbors of vs in a sBGP SP, we further define the pre-
liminary embedding v̂s of vs as:

v̂s =

∑
〈vs,rs,es〉∈SP∨〈es,rs,vs〉∈SP a(vs, rs, es) · ṽs
∑

〈vs,rs,es〉∈SP∨〈es,rs,vs〉∈SP a(vs, rs, es)
, (8)

where ṽs is computed for each single triple pattern according to Eq. (6).
For instance, the preliminary embeddings of variable v1 and v2 can be com-

puted as v̂1 = 0.4225 · (e1 − r1) + 0.1558 · (e2 − r2) + 0.4217 · (e3 − r3) and
v̂2 = 0.4918 · (e6 − r6) + 0.5082 · (e7 − r7), respectively.

For the impacts of relations among variable entities in different sBGPs, we
introduce a simple and effective method to compute the final variable embeddings
based on the preliminary embeddings. For a variable vs ∈ VP which is directly
linked with other variables in BGP P = {EP ∪ VP ,RP}, we compute its final
embedding vs as follows:

vs =

∑
〈vs,r,v′

s〉∈P∨〈v′
s,r,vs〉∈P num(v′

s) · f3(vs, r, v′
s) + num(vs) · v̂s

∑
〈vs,r,v′

s〉∈P∨〈v′
s,r,vs〉∈P num(v′

s) + num(vs)
, (9)

where

f3(vs, r, v′
s) =

{
v̂′
s − r, if 〈vs, r, v′

s〉 ∈ P,

v̂′
s + r, if 〈v′

s, r, vs〉 ∈ P,
(10)

and num(·) is the number of triple patterns in the sBGP of a variable. The reason
we utilize num(·) is that we assume the preliminary embedding of a variable
deserves more attention if it is computed based on more triple patterns. It is
worth mentioning that the correlations between variables can be characterized
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by more sophisticated method, such as an iterative updating algorithm. We will
investigate this part in the future.

Finally, we can obtain all variable embeddings of the original query in the
continuous vector space. For instance, the final embeddings of variable v1 and v2
in Fig. 2 can be computed as v1 = 0.4 ·(v̂2 − r8) + 0.6 · v̂1 = 0.4 · [0.4918 ·(e6 −
r6) + 0.5082·(e7 − r7)−r8] + 0.6·[0.4225·(e1 − r1) + 0.1558·(e2 − r2) + 0.4217·
(e3 − r3)] and v2 = 0.6 ·(v̂1 + r8) + 0.4 ·v̂2 = 0.6 · [0.4225 ·(e1 − r1) + 0.1558 ·
(e2 − r2) + 0.4217 ·(e3 − r3) + r8] + 0.4 · [0.4918 ·(e6−r6)+0.5082 ·(e7 − r7)],
respectively.

2.3 Generating Approximate Answers and Alternative Queries

In this module, our goal is to discover approximate answers based on embeddings
of variables in the continuous vector space. For each approximate answer, we also
generate an alternative query as the explanation to help the user recognize his
expected information and refine the original query.

Fig. 3. Approximate answers generation based on the RDF embeddings.

As analyzed in Sect. 2.1, semantically similar entities are close to each other
in the continuous vector space. Therefore, given a BGP P = (EP ∪ VP ,RP),
a variable vp ∈ VP , and the embedding vp computed through Eq. (9), we can
readily find a semantically similar entity ei of the RDF graph G = (E ,R) for vp
by computing the distance between vp and ei in the continuous vector space.
We employ the cosine similarity to measure the distance between vp and ei as
follows:

sim(vp, ei) =
vp · ei

‖vp‖‖ei‖ . (11)
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According to Eq. (11), we can obtain top-k semantically similar entities EK =
{e1, ..., ei, ..., ek} for vp.

In a simple case where a failing BGP P = (EP ∪ {vp},RP) contains only
one variable vp, the semantically similar entity set EK implied by Eq. (11) is
exactly the set of final approximate answers to vp. For each approximate answer
ei ∈ EK, we can directly extract a sub-RDF graph SGi about ei from G. The
extraction of SGi is a searching process based on ei. Specifically, for each triple
pattern 〈vp, rp, ep〉 ∈ P (vp at the head), its ideal corresponding RDF triple is
〈ei, rp, ep〉. If 〈ei, rp, ep〉 /∈ G, we figure out the corresponding RDF triple 〈ei, r, e′〉
which is most similar to 〈ei, rp, ep〉 among all the RDF triples in G, formulated
as follows:

〈ei, r, e′〉 = arg max
〈ei,r,e′〉∈G

(
rp · r

‖rp‖‖r‖ +
ep · e′

‖ep‖‖e′‖ ). (12)

Analogically, for each triple pattern 〈ep, rp, vp〉 ∈ P (vp at the tail), we can
also compute its corresponding RDF triple. These RDF triples containing ei
form the sub-RDF graph SGi which can be utilized to generate a modified BGP
P ′ that expresses the similar query intention to P. For example, assuming that
a BGP {〈?film, type, drama film〉} returns nothing over an RDF graph, we may
obtain an approximate answer Sleepy Hollow. Then we can extract a sub-RDF
graph {〈Sleepy Hollow, type, fantasy film〉} and return Sleepy Hollow along
with {〈?film, type, fantasy film〉} for the user.

For a BGP with multiple variables, we select a seed variable and obtain its
approximate answers as seed answers according to Eq. (12). Specifically, given a
SPARQL query SELECT S FROM G WHERE P, we select the seed variable
from S (i.e., the expected result expressed by users). If S contains multiple
variables, the seed variable is selected from S based on the degrees of variables
in the BGP P, since a variable at a larger degree usually indicates that the
user is more interested in it. For each seed answer, we adopt a propagation
process to generate the final returned answer and the alternative query. For
example, the variable v1 at the largest degree in Fig. 3 will be selected as the
seed variable. We first find its approximate answer Sleep Hollow (e4) as the
seed answer in the continuous vector space. In the first step of the propagation
process, we follow Eq. (12) to find the corresponding triples {〈Sleep Hollow, type,
fantasy film〉, 〈Sleep Hollow, country, United States〉, 〈Sleep Hollow, director,
Tim Burton〉, 〈Sleep Hollow, starring, Johnny Depp〉}. After this step, we have
determined v2 as Johnny Depp. Then, in the second step, we remove the triple
patterns which have already been determined and set Johnny Depp (e8) as a
new seed answer for the next step. Repeat the propagation operation until all
triple patterns have been determined as illustrated in the right of Fig. 3. Finally,
we can generate the final returned answer {?film:Sleep Hollow, ?actor:Johnny
Depp} and the alternative BGP {〈?film, type, fantasy film〉, 〈?film, country,
United States〉, 〈?film, director, Tim Burton〉, 〈?film, starring, ?actor〉, 〈?actor,
occupation, Actor〉, 〈?actor, birthplace, Kentucky〉}.

Discussions: We discuss two parts which can be improved during the frame-
work implementation: (1) Given a variable embedding in the vector space, there
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is no need to traverse all entity embeddings for the top-k similar entities search-
ing. For example, we can partition the vector space into disjoint subspaces, and
differentiate entities of the RDF graph according to the subspaces to which they
belong. More sophisticated approaches are provided in [15] for this issue. (2)
Currently, we assume that a variable at a larger degree is more important in
the sub-RDF graph extraction. The preliminary experiments show some effec-
tiveness, but we still need to improve the scalability in the future. For instance,
users can be allowed to determine which variable is most important.

3 Experimental Evaluation

To scrutinize the effectiveness and efficiency of the proposed framework, we
performed three types of experiments including: (1) Entity context preserv-
ing embedding validation; (2) Quality evaluation of approximate answers and
alternative queries; (3) Efficiency evaluation. The results demonstrate that our
framework significantly outperforms other baselines.

Dataset: DBpedia [16] is extracted from Wikipedia3 and has become the core
dataset of the LOD. In this paper, we employed the English version of DBpedia4,
which consists of 6.7M entities, 1.4K relations and 583M RDF triples.

Queries: According to our investigation, there is no open domain benchmark
query set for SPARQL empty-answer problem. Therefore, twenty queries were
constructed over DBpedia for the evaluation. The queries were designed to
include basic graph patterns with different topological structures (e.g., star,
chain, cycle, and complex) based on joins over variables [10].

Baselines: To validate the effectiveness of the consideration of entity context
information in the translation-based model, we compared our embedding model
with TransE [3]. To evaluate the empty-answer problem solving, we compared
our framework with four state-of-the-art query relaxation models, i.e, similarity-
based (SB) [7], rule-based (RB) [14], user-preferences-based (UPB) [5], and
cooperative-techniques-based (CTB) [9] models. Meanwhile, we also compared
our framework to a lite version with directly TransE plugged in.

3.1 Entity Context Preserving Embedding Validation

Our translation-based embedding model leverages the entity context information
to encode semantically similar entities and utilizes the translation mechanism to
represent relations between entities. The embedding model was implemented
in Java, and the following validation was conducted on a Linux server with
an Intel Core i7 3.40 GHz CPU and 126 GB memory running Ubuntu-14.04.1.
We determined the optimal parameters using a grid search strategy. And the
training instances were conducted over 1,000 iterations. The running time per
iteration was 562 s. We report the implementation code and detailed parameters
in https://github.com/wangmengsd/re.
3 https://www.wikipedia.org.
4 http://wiki.dbpedia.org/develop/datasets.

https://github.com/wangmengsd/re
https://www.wikipedia.org
http://wiki.dbpedia.org/develop/datasets
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Fig. 4. Visualization of entity embeddings learned by our model and TransE.

For the entity context preserving validation, we projected several sample
entity embeddings generated by our embedding method and TransE into two-
dimensional spaces using t-SNE5, as shown in Fig. 4. The result in Fig. 4(a) is
consistent with our expectation, where semantically similar entities are close to
each other. In contrast, the distribution of entities in Fig. 4(b) does not represent
the result we want.

For the translation preserving validation, we followed TransE in [3] and
employed MeanRank and Hits@10 as evaluation metrics. Specifically, to test
a triple 〈eh, r, et〉, we removed the head entity eh or the tail entity et. Then we
predicted the missing entity eh or et based on et − r or eh + r, and we used
the score function Eq. (3) to rank the predictions in a descending order. Mean-
Rank denotes the average rank of all correct predictions, and Hits@10 denotes
the proportion of correct predictions ranked in the top-10. The MeanRank of
our embedding model is 8.01 and Hits@10 is 83.98. Whereas, the MeanRank of
TransE is 8.00 and Hits@10 is 84.01. Both the results of MeanRank and Hits@10
proved that our embedding model maintained the effectiveness of the translation
mechanism.

3.2 Quality of Approximate Answers and Alternative Queries

In this section, we compared our framework with four state-of-the-art query
relaxation models [5,7,9,14]. Note that the efficient approach in [9] only com-
puted Maximal Succeeding Subqueries (XSSs) (a kind of relaxed queries), and it
didn’t support similarity criteria to rank the multiple XSSs and query answers.

5 https://lvdmaaten.github.io/tsne/.

https://lvdmaaten.github.io/tsne/
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To evaluate the quality of generated approximate answers and alternative
queries, ten evaluators (graduate students in Computer Science, but none of
them knows the details of the methods) were asked to evaluate how well an
approximate answer satisfies the original query intention (Sat) and how similar
an alternative query is to the original one (Sim). The two metrics Sat and
Sim are rated on a 5-point scale: 0 corresponding to “negative”, 1 to “weakly
negative”, 2 to “neutral”, 3 to “weakly positive”, and 4 to “positive”. For each
empty-answer query, we presented top-k6 approximate answers and alternative
queries generated by our framework and four baselines to the evaluators. We also
employed Pearson Correlation Coefficient to analyze the correlation between the
evaluator ratings and similarity scores calculated by the corresponding models.
The Pearson Correlation Coefficient is a standard measure of the correlation
between two variables. The coefficient value ranges from −1 to +1, where −1
represents totally negative correlation, 0 represents no linear correlation, and
+1 represents totally positive correlation. Table 1 reports the average ratings
(Avg.Rating) of all five models and the Pearson Correlation Coefficients (PCC).
We can make the following observations:

Table 1. Results of overall effectiveness.

Top-k Top-1 Top-3 Top-5 Top-10 Top-20

Metric Sat Sim Sat Sim Sat Sim Sat Sim Sat Sim

Our method Avg. rating 3.5 3.25 3.15 3.03 2.72 2.61 1.86 1.82 1.41 1.40

PCC 0.54 0.51 0.52 0.48 0.53 0.48 0.52 0.49 0.53 0.49

Lite version
with TransE

Avg. rating 0.85 0.33 0.45 0.28 0.3 0.2 0.24 0.09 0.13 0.06

PCC 0.12 0.07 0.09 −0.03 0.06 −0.05 0.07 0.02 0.05 0.03

SB [7] Avg. rating 3.2 3.0 3.02 2.75 2.45 2.05 1.87 1.77 1.44 1.39

PCC 0.43 0.41 0.43 0.39 0.41 0.36 0.43 0.37 0.43 0.37

RB [14] Avg. rating 3.05 3.0 2.93 2.68 2.5 2.21 1.87 1.74 1.42 1.37

PCC 0.40 0.39 0.41 0.39 0.42 0.40 0.41 0.38 0.40 0.38

UPB [5] Avg. rating 2.85 2.75 2.42 2.07 2.11 1.6 1.45 1.21 1.22 0.97

PCC 0.33 0.29 0.31 0.27 0.32 0.26 0.33 0.27 0.34 0.28

CTB [9] Avg. rating 2.7 2.75 2.45 2.05 2.16 1.62 1.43 1.18 1.24 0.97

PCC - - - - - - - - - -

– Our framework achieved consistently significant improvement on Sat and Sim
compared with all the baselines, which demonstrates the effectiveness of our
framework. The reason is that we can directly compare the semantic simi-
larity between expected answers and approximate answers in the continuous
vector space. And the entity context preserving embedding model enables our
method to generate high quality approximate answers and alternative queries.

– The PCC of our framework is also higher than all other baselines, which indi-
cates that our similarity measuring mechanism (Eqs. (11) and (12)) is more

6 We set k ∈ {1, 3, 5, 10, 20} in this paper.
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identical with the perception of users. The reason is that the embeddings
are learned based on entity context information of the underlying RDF graph
which contains more precise and richer information than the ontological infor-
mation and statistical language models employed by other models.

– The performances of all methods were affected when increasing k to 20
because more irrelevant answers were generated. However, our method still
has its own advantage. Since our method lists approximate answers in a
descending order in terms of the similarity, users can obtain the most approx-
imate answers at the top.
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Fig. 5. Time costs of five methods on twenty failing SPARQL queries Q1 ∼ Q20.

3.3 Efficiency Evaluation

The average time cost of our method to process a failing query is 1.13 s. This
amount of time is acceptable for users to obtain approximate answers and alter-
native queries. We compared the time cost of our framework with other baselines.
Figure 5 illustrates the runtime results of solving twenty empty-answer SPARQL
queries. We can observe that the time cost of our framework is significantly less
than other baselines. The key reason is that our framework is driven and guided
by the approximate answer embeddings, which speeds up the generation of pos-
sible answers and alternative queries. Another reason is that the similarity com-
putation in the continuous vector space is more efficient than the conventional
graph-based computation method over a large RDF graph.

In summary, the evaluation results on effectiveness and efficiency show that
our framework can facilitate to generate high-quality approximate answers and
alternative queries.
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4 Related Work

This section discusses existing related research in the following aspects: RDF
query relaxation approaches and RDF graph embedding techniques.

Query relaxation approaches in the RDF context have been proposed to solve
the SPARQL empty-answer problem. These methods mainly focus on reformu-
lating the original query into a new relaxed query by removing or relaxing RDF
conditions. Four types of models, similarity-based, rule-based, user-preferences-
based, and cooperative-techniques-based models are utilized to generate multiple
relaxed query candidates. Similarity-based models [6,7] leverage lexical anal-
yses to determine appropriate relaxation candidates. Rule-based models [12–
14,19] exploit RDF schema semantics and rewriting rules to perform relaxation.
The user-preferences-based model [5] automatically relaxes over-constrained
RDF queries based on domain knowledge and user preferences. Cooperative-
techniques-based models [8,9] design pruning strategies to reduce the exponential
search space of finding Top-k optimal relaxed queries. However, relaxed queries
generated by query relaxation approaches may be rather different from initial
queries of users because these models cannot consider the expected answers
which do not occur in the query results. Over-relaxed queries and irrelevant
answers are not effective for the expectation of users.

Existing RDF graphs already include thousands of relation types, millions
of entities, and billions of RDF triples [1]. The RDF applications based on con-
ventional graph-based algorithms are compromised by the data sparsity and
computational inefficiency. To address these problems, RDF graph embedding
techniques [3,4,17,20,21] have been proposed to embed both entities and rela-
tions into continuous vector spaces. Among these methods, neural-language-
based models [4,20] only generate entity latent representations by training the
neural language model of input RDF graphs. As a result, semantically simi-
lar entities are close to each other in continuous vector spaces. But we cannot
infer relations between entities solely based on entity latent representations.
Translation-based models [3,17,21] are effective in modeling relations between
entities because of their translation mechanisms. But they do not guarantee that
semantically similar entities are close to each other in continuous vector spaces
since they regard the RDF graph as a set of independent triples during the learn-
ing processes. To sum up, none of the existing models meets the requirements
for modeling SPARQL triple patterns in our framework.

5 Conclusions and Future Work

In this paper, we solve the SPARQL empty-answer problem in the continuous
vector space. To make semantically similar entities close to each other in the
vector space, we propose a novel embedding model which utilizes the translation
mechanism to capture the relations between entities while considering the entity
context. Then, given a failing SPARQL query, we partition the SPARQL BGP
into several parts and compute approximate answers by leveraging RDF embed-
dings and the translation mechanism. We also generate alternative queries for
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approximate answers, which helps users recognize their information needs and
refine the original query. We conduct extensive experiments on the real-world
RDF dataset to validate the effectiveness and the efficiency of our framework.

In future work, we intend to improve the accuracy of variable embedding
computation through an iterative updating algorithm. Another development of
our research is to address the SPARQL empty-answer problem on graph patterns
which contain operators such as UNION, OPTIONAL, MINUS and so on.
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