
Pragmatic Ontology Evolution: Reconciling
User Requirements and Application

Performance

Francesco Osborne(&) and Enrico Motta

Knowledge Media Institute, The Open University,
Milton Keynes MK7 6AA, UK

{francesco.osborne,enrico.motta}@open.ac.uk

Abstract. Increasingly, organizations are adopting ontologies to describe their
large catalogues of items. These ontologies need to evolve regularly in response
to changes in the domain and the emergence of new requirements. An important
step of this process is the selection of candidate concepts to include in the new
version of the ontology. This operation needs to take into account a variety of
factors and in particular reconcile user requirements and application perfor-
mance. Current ontology evolution methods focus either on ranking concepts
according to their relevance or on preserving compatibility with existing
applications. However, they do not take in consideration the impact of the
ontology evolution process on the performance of computational tasks – e.g., in
this work we focus on instance tagging, similarity computation, generation of
recommendations, and data clustering. In this paper, we propose the Pragmatic
Ontology Evolution (POE) framework, a novel approach for selecting from a
group of candidates a set of concepts able to produce a new version of a given
ontology that (i) is consistent with the a set of user requirements (e.g., max
number of concepts in the ontology), (ii) is parametrised with respect to a
number of dimensions (e.g., topological considerations), and (iii) effectively
supports relevant computational tasks. Our approach also supports users in
navigating the space of possible solutions by showing how certain choices, such
as limiting the number of concepts or privileging trendy concepts rather than
historical ones, would reflect on the application performance. An evaluation of
POE on the real-world scenario of the evolving Springer Nature taxonomy for
editorial classification yielded excellent results, demonstrating a significant
improvement over alternative approaches.

Keywords: Ontology evolution � Domain ontologies � Bibliographic data
Scholarly data � Scholarly ontologies

1 Introduction

Increasingly, organizations are adopting ontologies to describe their large catalogues of
items. Indeed, ontologies have proved to be very useful in the context of a variety of
tasks [1], including the integration of data from different sources, domain reasoning,
classification [2], generation of recommendations [3], cluster analysis [4], community

© Springer Nature Switzerland AG 2018
D. Vrandečić et al. (Eds.): ISWC 2018, LNCS 11136, pp. 495–512, 2018.
https://doi.org/10.1007/978-3-030-00671-6_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00671-6_29&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00671-6_29&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00671-6_29&domain=pdf

detection [5], sentiment analysis, forecasting [6], and others. Naturally, ontologies need
to be regularly maintained and need to evolve according to changes in the domain or
new requirements from users or applications [7]. This process is called ontology
evolution and it is a critical part of the ontology lifecycle. While the literature proposes
a variety of frameworks for ontology evolution [8–11], essentially most agree on three
fundamental steps in the process: (i) detection of the need for the evolution, (ii) iden-
tification of candidate changes, and (iii) validation and assessment of these changes, to
ensure that the resulting ontology satisfies the given needs.

Hence, in the first instance, the evolved ontology normally has to comply with a set
of requirements, defined to ensure that the ontology remains compatible with the
current workflow and usable by the relevant stakeholders.

In the second instance, it is crucial to take into account the impact of the ontology
evolution process on relevant applications. Ontologies are often used to enable
semantic approaches to data mining, information filtering, trend detection, and other
tasks [12], whose performance needs to be taken in consideration when creating a new
version of the ontology. Crucially, user needs and applications performance are
sometimes in opposition. For example, a very comprehensive representation of items
and their features would generally improve the performance of a recommender system,
but users may prefer a less complex representation that it is easier to browse, memorize,
maintain, and incorporate in their workflow.

In the third instance, domain experts may have preferences about which concepts to
privilege that should be considered in the process. For example, they may decide to
privilege concepts which are currently trendier rather than historical ones, or those that
are more represented in their internal catalogue, rather than considering the full domain.

Finally, users need to be able to understand why a certain concept was selected or
discarded and how this relates to the requirements, the user preferences, and the
ontology support for some computational tasks.

The motivating scenario for this work concerns the evolution of the internal tax-
onomy at Springer Nature, which is used for classifying books, journals, and other
editorial products. Since this taxonomy is used by a lot of different users and software
systems, the evolution process needs to take in consideration both user needs and the
impact on applications. For instance, a recommender system for suggesting editorial
products described by an ontology [13] would perform differently according to the
ontology that it is using. In addition, the process need to be transparent, so that every
change can be justified in light of these factors.

Current solutions are not easily applicable to this problem. Most of the methods for
selecting the concepts to be included in an evolving ontology address this task by
ranking concepts according to a weight derived from information retrieval metrics
[14, 15], list of words [16], or online ontologies [11]. These solutions have the
advantage of being generic, but present two significant limitations: (i) they do not
assess the impact of the new version of the ontology on the performance of the relevant
applications, and (ii) they ignore concept synergy, by weighting the relevance of single
concepts rather than the overall impact of a combination of concepts. Some approaches
do focus on preserving consistency between the ontology and the dependent applica-
tions [17–21], however they do not consider the effect of the changes on the perfor-
mance of computational tasks.

496 F. Osborne and E. Motta

In this paper, we propose the Pragmatic Ontology Evolution (POE) framework, a
novel approach for selecting from a group of candidates a set of concepts able to
produce an ontology that (i) is consistent with the given requirements, (ii) is para-
metrised with respect to a number of dimensions (e.g., topological considerations), and
(iii) supports effectively relevant computational tasks, such as instance tagging, simi-
larity computation, generation of recommendations, and data clustering. POE supports
users in navigating the space of possible solutions by showing how certain choices,
such as limiting the number of concepts or privileging trendy concepts rather than
historical ones, would reflect on the application performance. It also makes it easy to
explain why a certain concept was included in the ontology on the basis of its con-
tribution to the performance of a specific task. Finally, it selects the new concepts not
only according to individual weights, but also considering their synergy with other
concepts.

The rest of the paper is organized as follows. In Sect. 2, we will present a moti-
vating scenario involving the evolution of an editorial taxonomy at Springer Nature. In
Sect. 3, we will review the literature regarding ontology evolution and, in particular,
the selection of candidate concepts. In Sect. 4, we will discuss POE in details and in
Sect. 5, we will evaluate it on a dataset of 1,218 Springer Nature books. Finally, in
Sect. 6, we summarize the main conclusions and outline future directions of research.

2 Motivating Scenario: Evolving Springer Nature Market
Codes

Springer Nature (SN) is one of the major academic publishing companies and has a
vast catalogue of books, journals, and conference proceedings. Like other companies in
this space, it has its own editorial classification system, called Product Market Codes
(PMC). PMC is a taxonomy of research fields that is used to tag editorial items with
relevant topics, e.g., “Artificial Intelligence” or “Software Engineering”. The resulting
metadata are then used for a variety of tasks, such as improving the discoverability of
products in digital and physical libraries, supporting marketing decision, and detecting
research trends.

It is crucial to keep PMC up to date with the evolution of the research landscape at
the right level of granularity. This is particularly challenging in the field of Computer
Science, where new areas evolve constantly and taxonomies tend to become obsolete
very quickly [22]. In the context of the collaboration between The Open University and
Springer Nature [2, 13], we focused on the issue of supporting the evolution of the
Computer Science portion of PMC, concentrating in particular on some branches that
had become obsolete.

This work builds on our earlier research, which has produced new methods able to
generate automatically taxonomies of research areas through large scale-mining of
scholarly data. In particular, by applying the Klink-2 algorithm [22] on the Rexplore
dataset [23], we generated the Computer Science Ontology (CSO) [24], a large-scale
ontology of research topics in Computer Science, which includes about 26K topics
linked by about 226K semantic relationships. CSO powers two tools used by SN for

Pragmatic Ontology Evolution 497

tagging and recommending books: Smart Topic Miner [2] and Smart Book Recom-
mender [13].

In accordance with the requirements provided by SN publishing editors, we focused
on the evolution of the branches under five concepts of the original PMC taxonomy
(“I21017-Artificial Intelligence (incl. Robotics)”, “I14029-Software Engineering”, and
three others – see details in Sect. 5) that we mapped to nine CSO concepts (in the given
example “Artificial Intelligence”, “Robotics”, “Software Engineering”, and “Software
Design”). We then extracted all their sub-concepts producing 2,451 candidate concepts.
However, producing a new version of PMC with all of them, would cause the Com-
puter Science portion of PMC to grow from 89 to 2,540 concepts. This is unfeasible for
a variety of pragmatic reasons, including the fact that many books are still manually
tagged and curated by editors. We thus needed to find a solution to the evolution of
PMC, which ensured that it remained under a certain size. It was also crucial that the
new version of the ontology would support effectively tasks such as generation of
recommendations, data clustering, and so on. Finally, we would need to be able to
produce a justification for the inclusion or the exclusion of a research topic.

This is a typical real-world case in which the first two steps of the ontology
evolution process, identifying the need for changes and producing candidate concepts,
are relatively easy, since it exists a clear need (new fields in Computer Science are
missing) and we already have a good selection of candidate concepts in CSO. On the
contrary, there was no clear solution for selecting a set of concepts that would comply
with the requirements and support relevant applications.

3 Related Work

Most of the ontology evolution frameworks [7–10] include a phase that regards the
verification and selection of candidate changes or concepts to be included in the new
version of the ontology. This step is labelled “change validation phase” in the
framework of Stojanovic [8], “verification and approval” in Klein and Noy [9], “ac-
cepting and rejecting changes” in Noy [10], and it is split in two different phases
labelled “validating changes” and “assessing the evolution impact” in the ontology
evolution cycle proposed by Zablith [7].

Traditionally, the candidate changes are validated at three different levels [7]:
(i) formal properties-based validation, which uses formal techniques to preserve the
consistency and coherence of the ontology, (ii) domain base validation, which exploits
domain information to assess the relevance of the candidate changes, and (iii) appli-
cation and usage impact, which measures the effects of the changes on data instances,
dependent ontologies, and relevant applications [25]. POE works at the second and
third levels, since it assesses the importance of concepts within a certain domain and it
evaluates the effect of alternative ontologies on computational tasks.

Approaches to domain base validation can be classified according to their focus,
which can be either on domain relevance [14–17, 26] or correctness [27]. Text2Onto
[14], a well-known system for ontology learning, falls in the first category, since it
weights the relevance of the candidate concepts by mean of information retrieval
measures, such as Relative Term Frequency (RTF), TF-IDF, and the C-value/NC-value

498 F. Osborne and E. Motta

method. SPRAT [15], a tool for automatic pattern-based ontology population, also uses
TF-IDF to select the relevant terms that should be included in the ontology. Similarly to
POE, they both focus on the inclusion of concepts or terms rather than entire state-
ments. The DINO Framework [16], assesses the relevance of a set of candidate triples
according to their Levenshtein distance from a set of wanted or unwanted words,
specified by domain experts. The Evolva framework [11] measures the relevance of a
statement by generating its ontological context from a set of online ontologies and
comparing it to the evolving ontology. The DINAMO-MAS system [26] assesses
relationships between terms by means of a confidence score that takes in consideration
their lexico-syntactic patterns. Some other systems focus on assessing the correctness
of statements. For instance, Sabou et al. [27] verify the correctness of the link between
two concepts by exploiting the path connecting the concepts in online ontologies.
Similarly to these solutions, POE aims to find the best set of concepts to be included in
an evolved ontology. However, it also consider application performance and concept
synergy.

Some other approaches focus on assessing the impact of evolution on data instances
[28, 29], applications [17–21, 30], and dependent ontologies [25]. Because of lack of
space, we will focus our review on the first two categories.

Qin and Atluri [28] propose a method to define and preserve the structural and
semantic validity of data instances that are described by an evolving ontology. Simi-
larly, Hartung et al. [29] introduce a generic framework for the study of the evolution of
ontologies and ontology-related mappings. We also take into consideration instances
and their mapping, but rather than checking their validity, we focus on the impact of
their representations on the relevant tasks.

Several approaches address the impact of the resulting ontology on dependent
applications, however they focus mainly on preserving consistency and compatibility.
For instance, Huang and Stuckenschmidt [17] present MORE, a system that uses
temporal logic to detect the consequences of changes. Xuan et al. [18] introduce the
floating version model, which preserves compatibility by not allowing a new version of
the ontology to falsify axioms that were previously true. Wang et al. [19] propose
another technique to maintain the consistency of dependent applications and suggest
resolution strategies. Liang et al. [20] present a system that analyses the queries sub-
mitted by dependent applications, detects if the relevant entities where changed during
the evolution process, and repairs broken queries. Similarly, Kondylakis and Plex-
ousakis [21] propose a formal approach for identifying the impact of ontology evo-
lution on queries and easing query migration. Finally, Groß et al. [30] introduce an
approach for measuring the stability of a ontology and show how ontology evolution
affected the level of significance of functional enrichment analyses in Biology. Dif-
ferently from all these systems, POE focuses on the performance of dependent com-
putational tasks rather than on consistency and compatibility, and aims to generate an
ontology that can effectively support these tasks.

Pragmatic Ontology Evolution 499

4 The POE Framework

4.1 Overview of POE

The Pragmatic Ontology Evolution (POE) framework was designed to produce an
ontology that complies with the given requirements and performs well on some input
tasks, as well as supporting users in exploring the space of solutions. POE takes as
input (i) an ontology, (ii) a collection of instances that could be described by the
concepts in the ontology, (iii) a set of additional candidate concepts (and their rela-
tionships with existing concepts), (iv) a set of requirements, (v) one or more tasks, and,
optionally, (vi) four additional parameters defining user preferences. It then finds the
combination of candidate concepts that generates the representation of the instances
which performs best on the given tasks by first searching in the space of four
parameters and then applying a variation of Recursive Feature Elimination [31].
Finally, it returns: (i) a new version of the ontology that complies with the input
requirements and effectively supports the relevant tasks, and (ii) a number of statistics
that allow users to assess the effect of their preferences (e.g., privileging conservative or
novel concepts) on the tasks.

In the PMC scenario, the input ontology is the portion of PMC covering the field of
Computer Science, while the instances are the metadata of books published by SN in
recent years and tagged with PMC concepts. The set of candidate concepts was built by
mapping the PMC concepts that needed to be enriched to relevant concepts in CSO and
then selecting all their sub-concepts, as discussed in Sect. 2. The mapping was done
semi-automatically by generating candidate mapping with statistical heuristics from
Klink-2 [22] and then revising them with the help of SN editors, as described in [2].
This operation yielded 2,451 candidate concepts.

The POE framework is structured in two main steps:

Parameter Optimization. It tests different combinations of four parameters (using
grid search) to weigh the candidate concepts. For each combination, it produces an
ontology that complies with the requirements, it annotates the instances with it, and it
measures the performance of this representation on the tasks. Finally, it returns a
ranked list of parameter combinations.

Recursive Concept Elimination. It uses the best parameter combination from pre-
vious steps to generate an ontology and applies on it a variation of the Recursive
Feature Elimination to iteratively eliminate the least important concepts, until the
desired number of concepts is reached.

POE allows users to set three kind of requirements: (1) the maximum number of
concepts in the ontology, (2) the minimum number of concepts in a branch, and (3) the
maximum number of concepts in a branch. Being able to control the dimension of
branches is important to produce structurally balanced ontologies. POE also allows the
users to define or restrict (within a range) four parameters that control the ranking of
the candidate concepts.

POE can be used with any task that uses an ontology-derived representation of the
instances and whose performance can be evaluated according to an objective metric. In

500 F. Osborne and E. Motta

particular, in the current prototype we support four tasks: instance tagging, similarity
computation, generation of recommendations, and data clustering.

In what follows, we will first discuss the basic functions of POE, i.e., the generation
of an ontology from a set of parameters (Sect. 4.2), and the evaluation of a ontology on
a task (Sect. 4.3). We will then address the two main steps of the POE framework that
employ these functionalities: parameter optimization in Sect. 4.4, and Recursive
Concept Elimination in Sect. 4.5.

4.2 Topic Ranking

In this phase, we consider the task of selecting a number of concepts to update an
ontology as a ranking problem, coherently with the state of the art (e.g., [11, 14–16]).
We thus want to assign a weight to every concept and then update the input ontology
with the first n concepts that comply with the requirements.

A typical way to do so is assessing a concept importance according to how fre-
quently it is represented in the instances. Intuitively, a concept that is often needed to
describe the instances should receive a higher weight than a rarer one. Indeed, previous
literature showed that term frequency and TF-IDF perform quite well on this task [14,
15]. We believe however that is possible to have a more comprehensive treatment of
this challenge by taking in consideration a number of additional factors. In particular,
here we consider four dimensions that can influence the value of a concept in the new
ontology and the strategy for mapping it to the instances.

Semantics. As already mentioned, a purely syntactical solution to weigh concepts is to
use the frequency of their label in the instances. For example, given the concept
temporal logic, we could weigh it according to the number of books that contains in the
title, abstract, or keyword field the string “temporal logic”. Alternatively, we could take
a more semantic approach and associate to a concept each instance that contains the
label of the concept or of any of its sub-concepts. For example, we could map the
concept temporal logic to each book that contains one of the alternative labels (e.g.,
“temporal logics”) or sub-concepts (e.g., “temporal operators”) in the CSO ontology.
This technique has been applied with good results in a variety of fields, such as
automatic classification of proceedings [2], technology forecasting [6], recommender
systems [3, 13], community detection [5], and others.

Temporal Dimension. It is also useful to consider when the instances were produced.
In the scenario of academic publishing, considering recent instances would prioritise
the trendiest research topics, which may keep growing and become more popular in the
future. However, focusing too much on recent instances, may exclude some significant
historical concepts that are still important and may risk prioritising concepts that are
experiencing only a transient burst of popularity.

Internal Versus External Instances. The instances can either derive from the cata-
logue of the organization that has adopted the ontology (e.g., SN books in Computer
Science) or they could be generic ones (e.g., all available books in Computer Science).
In the first case, the selected concepts will acquire the same biases of the internal
dataset. The resulting ontology will be tailored to those specific instances, but may

Pragmatic Ontology Evolution 501

exclude significant concepts that are currently under-represented in the catalogue.
Therefore, a company that wants to expand its catalogue and cover new fields may
prefer to consider all available instances, while one that is not interested in doing so,
may decide to produce a more internally-tailored ontology.

Structural Considerations. Considering only the weight of single concepts may
exclude some concepts that are less represented in the instances, but act as good
branching point in the ontology and keep the structure easy to browse and explore.
Therefore, in some cases it may be advisable to include concepts that are useful from a
structural standpoint, even if they appear less frequently in the instances.

We believe that it is useful to take in consideration each of these dimensions when
ranking concepts. Therefore, POE takes as input four parameters that can be tuned by
the user or optimized on a certain task:

• a (0−1). It controls whether POE uses the syntactic method, the semantic method,
or a combination of the two for mapping concepts to instances. If a = 0, it will use
only the label of a concept, with a = 1 it will consider all the sub-topics, otherwise
it will use a weighted average.

• bð0� 1Þ. It controls whether the weight will be computed only on instances from
an internal dataset or if it will consider also external entities. If b ¼ 0, POE will use
only the internal instances, with b ¼ 1 only external ones, otherwise it will use a
weighted average.

• c ð0� 1Þ. It modulates the importance of the most recently created instances on the
weight. If c = 0, POE will weight more recent instances, with c = 1 the time
dimension will not matter, otherwise it will use a weighted average.

• d (True, False). It controls whether POE will try to recover structurally important
concepts. In the current implementation, a concept is considered structurally
important if it has at least three sub-concepts that were selected.

The weight of each concept is computed with the following formula.

log
Xl
y¼f

siwy
y

 !
bþ log

Xl
y¼f

sewy
y

 !
1� bð Þ

 !
aþ log

Xl
y¼f

fiwy
y

 !
bþ log

Xl
y¼f

fewy
y

 !
1� bð Þ

 !
1� að Þ

Where siy, sey, fiy, fey are respectively, for a given year y, the semantic frequency in
the internal dataset, the semantic frequency in the external dataset, the syntactic fre-
quency in the internal dataset, and the syntactic frequency in the external dataset; f and
l are the first and last year of the analysed period; and wy ¼ 1

l�yþ 1ð Þ2c :

After ranking the concepts, POE selects the first n concepts that comply with the
input requirements. The POE framework can adopt any kind of requirements that can
be automatically verified by analysing the set of candidate concepts. In the current
prototype we take in consideration the minimum and maximum number of concepts for
each branch. POE enforces this requirements by first populating each branch with the
minimum number of concepts and then inserting the remaining concepts in the branch
that are still available until the maximum number of concepts is reached. If d is true,
POE also checks for structurally important concepts and inserts them in place of the

502 F. Osborne and E. Motta

ones with lowest weights. Finally, it creates a new version of the ontology which
incorporates the selected concepts.

It is also possible to define a list of invalid topics that will not be considered during
the selection phase. This option will be used during the Recursive Concept Elimination
(Sect. 4.5) to exclude topics that do not perform well on the tasks.

The approach described in this section can be used on its own in alternative to
generic methods [14, 15]. The main advantage is that it allows users to explore the
space of solutions, possibly with the support of domain experts, and understand how
different combination of parameters impact on the resulting ontology. However, it is
difficult even for human experts to assess how a new ontology will affect applications.
For this reason, we want to take a further step: evaluate the alternative ontologies on the
input tasks and suggest the one that yields the best performance.

4.3 Evaluating a Candidate Ontology on a Task

POE evaluates an ontology on some computational tasks by (i) using the ontology for
generating a representation of the instances, (ii) running the input tasks on this rep-
resentation, and (iii) evaluating the performance with the relevant metrics. The
instances are represented as a vector in which the elements correspond to the concepts
in the ontology and the values weigh the importance of a concept. In the case of PMC,
we used the Smart Topic API [13] for representing books as a vectors of research topics
in which each topic is assigned a value equal to the number of chapters in which it
appears. This is a convenient representation that can support several tasks. The Smart
Topic API is a service developed in collaboration with Springer Nature for tagging
publications with ontology concepts. It is described in details in [2, 13].

While some tasks (e.g., instance tagging) can be evaluated using simple metrics
(e.g., percentage of instances covered), others require a ground truth. For instance,
evaluating the performance of a clustering algorithm would usually require a correct set
of clusters to compare against. In some cases, such as in the PMC scenario, it is quite
expensive to produce a specific gold standard for each task. Therefore, we address this
issue by adopting a ground truth ontology that includes all candidate concepts and can
be used with every task. The intuition is that we want to select a candidate ontology
including no more than n concepts that would perform as well as possible as the full
ontology. In the case of PMC, we want to produce an ontology of about 120–200
concepts that can perform as closely as possible to the version which includes all 2,451
candidate concepts from CSO. In the following, we will refer to the candidate ontology
as Oc and to the full ontology, which serves as ground truth, as Of.

It is important to note that if the task in consideration is sensitive to irrelevant or
redundant features, the ground truth ontology needs to contain valid concepts and to
have been previously evaluated. This is indeed the case with CSO, which was previ-
ously tested on several tasks [24], including automatic tagging of scientific publications
[1], recommendation generation [2], clustering [5], and technology forecasting [6].
Alternatively, we suggest to pre-filter the candidate concepts [16] or to generate a task-
specific gold standard.

The current POE prototype implements four tasks that were developed for the PMC
scenario. The implementation of a new task is straightforward since it simple requires

Pragmatic Ontology Evolution 503

to define a representation of the instances, run the task on them, and evaluate the results
with a relevant metric. If the input includes several tasks, their overall performance is
computed as the average of the resulting metrics.

We will now discuss these tasks and their evaluation.

4.3.1 Instance Tagging
As first task, we consider the automatic tagging that associates each instance to a vector
of concepts (via the Smart Topic API [13]). The candidate ontology should enable to
generate a relatively granular representation of all the instances. Therefore, we evaluate
this task by computing the percentage of instances that are covered by the ontology.
Naturally, the definition and quality of the coverage varies according to the scenario
and the domain. In the case of PMC, it is important to associate each book to a
minimum number of topics, so that they can be browsed and searched with a good
granularity. Furthermore, the main topics have to be fairly representative and not
appear only in few chapters. We thus consider covered a publication that is associated
with at least three concepts that are present in at least three chapters.

4.3.2 Similarity Computation
Computing the similarity of a set of items is a common task that supports more
complex tasks such as record linkage, clustering, and so on. We evaluate this task by
computing the cosine similarity of each couple of instances according to both Oc and
Of, and then calculating their mean root-mean-squared error.

similarity performance ¼ 1�
ffiXn
i¼1

Xn
j¼1

cos bci ; bcJð Þ � cos bfi ; bfJ� �� �2vuut

Where cos bv1 ; bv2ð Þ is the cosine similarity between vectors bv1 and bv2 , bci is the

vector of instance i produced with the candidate ontology, bfi is the vector of instance
i produced with the full ontology, and n is the total number of instances. When the
result is near 1 the two ontologies are yielding similar results and thus the candidate
ontology is performing well.

4.3.3 Generation of Recommendations
Today several recommender systems use ontologies for enhancing semantically the
representation of items or users [3]. In particular, content-based recommenders use
feature representations of items to suggest other items that possess similar character-
istics. This is the case of Smart Book Recommender [13] which suggest SN books
relevant to a certain conference.

We generate for each instance, say I, a ranked list of recommendations composed
by the 100 instances most similar to I, according to both Oc and Of. This is realized by
computing the cosine similarity of the vector representations derived from the two
ontologies. We then assess the agreement of the lists produced by the two ontologies
using the Spearman’s rank correlation coefficient, a standard metric for evaluating
recommender systems. The Spearman’s coefficient between two variables equals to the

504 F. Osborne and E. Motta

Pearson correlation between the rank values of those two variables, and it is used when
it is important to compare the order of items in a list. It varies between −1 and 1, with 1
(or −1) indicating that the two list exhibit a perfect correlation and 0 indicating that the
order of two list is not correlated at all. The performance of Oc on this task is measured
according to the following formula:

recommender performance ¼ 1
n

Xn
i¼1

cov rci; rfið Þ
rrcirrfi

Where rrci and rrfi are the standard deviations of the ranked list of items according
to Oc and Of, and cov rci; rfið Þ is the covariance of the ranked lists.

4.3.4 Clustering
Cluster analysis is a powerful tool for exploring trends, generating analytics, and
informing marketing and political decisions. We first cluster the instances according to
both ontologies by using the K-Means++ algorithm and then compare the results with
the Rand index, which is a measure of the similarity between two sets of clusters. The
Rand index varies between 0 and 1, with 1 indicating that the data are clustered in the
same way and 0 indicating that the cluster sets are completely dissimilar.

clustering performance ¼ ai þ bi
n
2

� �

Where ai is the number of pairs of instances that are in the same cluster both in the
cluster set of Oc and in the cluster set of Of, and bi is the number of pairs that are in
different clusters.

4.4 Parameter Optimization

Parameter optimization is the first step of the POE approach. In this phase, POE
executes a grid search on the space of the four parameters described in Sect. 4.2,
produces a candidate ontology for every combination of parameters, and ranks them
according to their performance on the tasks, as illustrated in Sect. 4.3. The ontology
that performs best is the advisable solution in the space of parameters.

The result of this phase can be used for exploring the space of solutions and
assessing the effect of the parameters on the ability of an ontology to perform certain
tasks. A simple way to do so is testing if there is any correlation between a parameter
and the performance. For instance, Fig. 1 shows the relation between two parameters
and the performance obtained on the generation of recommendations task (Sect. 4.3.3)
when representing 718 SN books in the 2012–2014 period with the ontology produced
by including 40 additional topics to PMC. a is directly correlated with the recom-
mender performance, yielding a Pearson correlation coefficient of 0.69 (p < 0.0001). It
thus seems that mapping instances with the semantic approach works better when
optimizing the ontology for this task. Although, it is interesting to notice that the best

Pragmatic Ontology Evolution 505

results are obtained when 0.5 � a � 0.75, therefore a purely semantic approach may
be counterproductive. Conversely b exhibits a mild inverse correlation with the per-
formance, yielding a Pearson correlation coefficient of −0.36 (p < 0.0001). This
indicates that preferring the instances from the internal dataset tends to produce a
superior result on this task.

4.5 Recursive Concept Elimination

The previous step can outperform some more basic methods (see Sect. 5), but still
suffers from two main limitations. First, the optimization was limited to the space of
parameters, therefore a better solution may exist outside this space. Secondly, the
typical strategy of assigning weights to single concepts does not take into consideration
concept synergy. Conversely, it is possible that even if concept C1 has lower weight
than C2, its combination with the other concepts would yield a better overall perfor-
mance. For instance, two concepts may be redundant (e.g., “Linked Data” and “RDF”),
therefore after one of them is selected, adding also the other would yield only a
marginal advantage. In this section, we introduce a technique that addresses both
limitations.

A comprehensive search outside the space of parameters is computationally
intractable since it would need to test all possible permutations. For this reason, per-
forming feature selection in large dimensional input spaces usually involves greedy
algorithms. An approach to address this issue in the field of machine learning is the
Recursive Feature Elimination algorithm [31], often used with Support Vector
Machines and other classifiers. This approach iteratively constructs a model with a set
of features, computes their weights, and removes the least important features, until the
goal is reached. A crucial advantage of this method is that it takes into account the
feature synergy and preserves features whose usefulness requires other features.

We thus adopted a similar procedure, that we label Recursive Concept Elimination
(RCE), as the second step of POE. RCE generates an ontology composed of n concepts
by applying the following steps:

Fig. 1. Performance on the generation of recommendations task in function of a and b.

506 F. Osborne and E. Motta

1. It produces an ontology with m concepts (where m > n) using the best set of
parameters detected in the first phase (Sect. 4.4). If no ontology of m concepts
complies with the requirements, these are temporarily relaxed.

2. It ranks the concepts according to their importance for the tasks by generating
m − 1 representations of the instances, each of them lacking a concept, and eval-
uating them. Each concept is given a weight equal to 1 minus the metric yielded by
the evaluation of the representation from which it is absent [32].

3. It discards the j concepts with the smaller weights and returns to step 2, until it
reaches n concepts. Finally, it returns the optimized ontology and the ranked set of
parameters from the previous phase.

While it is technically possible to directly apply RCE to the full set of candidate
concepts, it would not be computationally feasible in most cases. Using the set of best
parameters to create an initial ontology of m concepts allows us to obtain a tractable
number of RCE iterations.

A further advantage of this method is that it allows users to understand exactly why
a concept is there and in which way it relates with the dimensions discussed in Sect. 4.2
and with its performance on a task. Indeed, the ranking order will still be consistent
with the set of parameters selected in the first phase and the absence of a concept from
the original ranked list would be due to its insufficient performance with regard to the
task. The user is thus able to review this information and test different solutions by
modulating the input parameters.

5 Evaluation

We tested POE on the task of evolving the PMC taxonomy and used as instances a
dataset of Springer Nature publications including 1,218 books in the 2012–2016 per-
iod. The evaluation had three aims. First, we wanted to compare POE versus alternative
baselines from the state of the art, such as the TF-IDF method adopted in Text2Onto
[14] and SPRAT [15]. Secondly, we intended to investigate whether optimizing for a
certain task would also yield good performance on related ones. Finally, we intended to
assess the effect of training POE on multiple tasks at once.

We thus compared the performance of the ontologies produced by different
approaches in supporting the four tasks implemented in POE: automatic tagging (Task
1), similarity computation (Task 2), generation of recommendations (Task 3), and
clustering (Task 4). In addition to the SN dataset, we adopted the Rexplore dataset [23]
as the external source from which to derive statistics, such as the concepts frequencies
described in Sect. 4.2 and TF-IDF. The Rexplore dataset is more generic than the SN
one and contains 16 million research papers in the field of Computer Science from a
variety of academic publishers.

We focused on the evolution of the branches under five concepts of the original
PMC taxonomy: I21017-Artificial Intelligence (incl. Robotics), I23050-Computational
Biology/Bioinformatics, I14050-Systems and Data Security, I14029-Software Engi-
neering, and I13022-Computer Communication Networks. These concepts were map-
ped to nine CSO concepts: Artificial Intelligence, Robotics, Bioinformatics,

Pragmatic Ontology Evolution 507

Cryptography, Access Control, Software Engineering, Software Design, Computer
Networks, and Wireless Telecommunication Systems. Finally, their 2,451 sub-topics
were selected as candidate concepts.

We tested fourteen alternative approaches:

• Term Frequency in the SN dataset (FS), ranking concepts according to their fre-
quency in SN dataset.

• Term Frequency in the Rexplore dataset (FR).
• TF-IDF in the SN dataset (TS) (as in [14, 15]), considering the instances under the

five branches for the TF and all the instances for the IDF.
• TF-IDF in the Rexplore dataset (TR).
• The parameter optimization in POE (Sect. 4.4), yielding the ontology produced

from the best combination of parameters for instance tagging (P1), similarity
computation (P2), generation of recommendations (P3), clustering (P4), and all
these tasks together (P5).

• The full POE framework returning an ontology optimized for instance tagging
(POE1), similarity computation (POE2), generation of recommendations (POE3),
clustering (POE4), and all these tasks together (POE5).

We simulated a realistic situation by training the approaches and computing all the
statistics (e.g., TF-IDF) in the 2012–2014 period and then evaluating their performance
in the 2015–2016 period. In order to do so, we split the instances dataset in a training
set of 718 books and a testing set of 500 books.

We then generated, for each approach, four evolved versions of PMC that included
20, 40, 60, and 80 new concepts and compared their performance using the metrics
described in Sect. 4.3. The minimum and maximum number of concepts allowed for
each of the five branches was set respectively to 4 and 25. RCE was performed by
setting m = n + 20 and eliminating one concept at each iteration. POE was imple-
mented in Python and ran on a 2.40 GHz Intel Xeon processor taking between 1
(POE1) and 8 (POE5) hours depending on the task. The computing time is usually not
an issue for this kind of task, but if needed it could be cut down by parallelising the
parameter optimization and the RCE phase. The existence of statistical differences
between the two approaches was explored with the non-parametric Wilcoxon’s signed
rank test for matched variables.

The material produced during the evaluation and further details about the settings of
the approaches are available at http://rexplore.kmi.open.ac.uk/POE.

Tables 1 and 2 show the performance of the approaches on the four tasks. The full
version of POE optimized for a task (e.g., POE1 for task 1) obtained the best average
result for the task in every case, outperforming both parameter optimization (p = 0.002
with Wilcoxon’s rank test), and the other baselines (p = 0.0004). It also obtained the
best result for each concept number, with the exception of few cases in which it was
outranked by a different version of POE optimized for a similar task. POE5, the version
optimized on all tasks at once, proved to be a good compromise by yielding on each
task a performance marginally inferior or equal (in case of task 3) to the version of POE
specifically optimized for the task (p � 0.10). In addition, the parameter optimization
step optimized for a task (e.g., P1 for task 1) yielded better results than FS, FR, TS, TR
on that same task (p = 0.0004).

508 F. Osborne and E. Motta

http://rexplore.kmi.open.ac.uk/POE

Furthermore, all the approaches optimized on one the four tasks (including POE5)
performed significantly better (p < 0.0001) than the ones that simply used statistical
techniques. Therefore, it seems that optimizing for one of these tasks holds benefits also
on the other ones.

Table 1. Performance in task 1 (instance tagging) on the left and task 2 (similarity computation)
on the right. In bold the best results. In light grey the version of POE optimized for the task.

Table 2. Performance in task 3 (generation of recommendations) on the left and task 4
(clustering) on the right. In bold the best results. In light grey the version of POE optimized for
the task.

Pragmatic Ontology Evolution 509

POE3, POE2, and POE5 yielded very good results on all tasks, obtaining the
highest average performances, respectively 0.960, 0.959 and 0.959. Interestingly, the
performance of POE2 and POE3 on task 4 (clustering) was only slightly inferior to
POE4, while the performance of POE4 on task 2 and 3 was not as good. This is
probably due to the fact that both task 2 and task 3 concern the similarity between
instances, which is also used by K-Means++ for producing the cluster set.

6 Conclusions

We presented the Pragmatic Ontology Evolution (POE) framework, a novel approach
that selects concepts to be included in an evolving ontology in accordance with user
requirements and their impact on computational tasks. The evaluation showed that the
full version of POE outperforms both parameter optimization (p = 0.002) and the other
baselines (p = 0.0004).

While POE was initially conceived in the context of tackling a concrete real-world
ontology evolution problem, the approach is generally applicable and opens up many
interesting avenues of work. In particular, we intend to apply POE on different kinds of
ontologies and computational tasks to derive some useful guidelines on how to balance
users and application needs. We also intend to further enrich POE by allowing it to
handle more complex candidate changes, involving different kinds of semantic rela-
tionships. Finally, on the technology transfer side, we will continue our collaboration
with Springer Nature, with the aim of supporting its deployment within the editorial
team, thus providing a powerful and user-friendly solution to facilitate the process of
maintaining and evolving their editorial ontologies.

Acknowledgements. We would like to thank Springer DE for providing us with access to their
large repositories of scholarly data.

References

1. Ding, L., Kolari, P., Ding, Z., Avancha, S.: Using ontologies in the semantic web: a survey.
In: Sharman, R., Kishore, R., Ramesh, R. (eds.) Ontologies. ISIS, vol. 14, pp. 79–113.
Springer, Boston (2007). https://doi.org/10.1007/978-0-387-37022-4_4

2. Osborne, F., Salatino, A., Birukou, A., Motta, E.: Automatic classification of Springer Nature
proceedings with smart topic miner. In: Groth, P., et al. (eds.) ISWC 2016. LNCS, vol. 9982,
pp. 383–399. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46547-0_33

3. Middleton, S.E., De Roure, D., Shadbolt, N.R.: Ontology-based recommender systems. In:
Staab, S., Studer, R. (eds.) Handbook on Ontologies. INFOSYS, pp. 779–796. Springer,
Berlin (2009). https://doi.org/10.1007/978-3-540-24750-0_24

4. Hotho, A., Staab, S., Stumme, G.: Ontologies improve text document clustering. In: Data
Mining, ICDM 2003. IEEE (2003)

5. Osborne, F., Scavo, G., Motta, E.: Identifying diachronic topic-based research communities
by clustering shared research trajectories. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin,
M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465, pp. 114–129. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-07443-6_9

510 F. Osborne and E. Motta

http://dx.doi.org/10.1007/978-0-387-37022-4_4
http://dx.doi.org/10.1007/978-3-319-46547-0_33
http://dx.doi.org/10.1007/978-3-540-24750-0_24
http://dx.doi.org/10.1007/978-3-319-07443-6_9

6. Osborne, F., Mannocci, A., Motta, E.: Forecasting the spreading of technologies in research
communities. In: K-CAP 2017, Austin, Texas, USA (2017)

7. Zablith, F., et al.: Ontology evolution: a process-centric survey. Knowl. Eng. Rev. 30(1), 45–
75 (2015)

8. Stojanovic, L.: Methods and tools for ontology evolution (2004)
9. Klein, M., Noy, N.F.: A component-based framework for ontology evolution. In: Workshop

on Ontologies and Distributed Systems at IJCAI, vol. 3, p. 4 (2003)
10. Noy, N.F., Chugh, A., Liu, W., Musen, M.A.: A framework for ontology evolution in

collaborative environments. In: Cruz, I., et al. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 544–
558. Springer, Heidelberg (2006). https://doi.org/10.1007/11926078_39

11. Zablith, F.: Evolva: a comprehensive approach to ontology evolution. In: Aroyo, L., et al.
(eds.) ESWC 2009. LNCS, vol. 5554, pp. 944–948. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-02121-3_87

12. Ristoski, P., Paulheim, H.: Semantic web in data mining and knowledge discovery: a
comprehensive survey. Web Seman.: Sci. Serv. Agents World Wide Web 36, 1–22 (2016)

13. Thanapalasingam, T., Osborne, F., Birukou, A., Motta, E.: Ontology-based recommendation
of editorial products. In: International Semantic Web Conference 2018, Monterey, CA, USA
(2018)

14. Cimiano, P., Völker, J.: Text2Onto. In: Montoyo, A., Muńoz, R., Métais, E. (eds.) NLDB
2005. LNCS, vol. 3513, pp. 227–238. Springer, Heidelberg (2005). https://doi.org/10.1007/
11428817_21

15. Maynard, D., Funk, A., Peters, W.: SPRAT: a tool for automatic semantic pattern-based
ontology population. In: International Conference for Digital Libraries and the Semantic
Web, Trento, Italy (2009)

16. Novacek, V., Handschuh, S.: Semi-automatic integration of learned ontologies into a
collaborative framework (2007)

17. Huang, Z., Stuckenschmidt, H.: Reasoning with multi-version ontologies: a temporal logic
approach. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS,
vol. 3729, pp. 398–412. Springer, Heidelberg (2005). https://doi.org/10.1007/11574620_30

18. Xuan, D.N., Bellatreche, L., Pierra, G.: A versioning management model for ontology-based
data warehouses. In: Tjoa, A.M., Trujillo, J. (eds.) DaWaK 2006. LNCS, vol. 4081, pp. 195–
206. Springer, Heidelberg (2006). https://doi.org/10.1007/11823728_19

19. Wang, Y., Liu, X., Ye, R.: Ontology evolution issues in adaptable information management
systems. In: 2008 IEEE International Conference on e-Business Engineering, ICEBE 2008,
pp. 753–758. IEEE (2008)

20. Liang, Y., Alani, H., Shadbolt, N.: Changing ontology breaks queries. In: Cruz, I., et al.
(eds.) ISWC 2006. LNCS, vol. 4273, pp. 982–985. Springer, Heidelberg (2006). https://doi.
org/10.1007/11926078_79

21. Kondylakis, H., Plexousakis, D.: Ontology evolution: assisting query migration. In: Atzeni,
P., Cheung, D., Ram, S. (eds.) ER 2012. LNCS, vol. 7532, pp. 331–344. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-34002-4_26

22. Osborne, F., Motta, E.: Klink-2: integrating multiple web sources to generate semantic topic
networks. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 408–424. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-25007-6_24

23. Osborne, F., Motta, E., Mulholland, P.: Exploring scholarly data with rexplore. In: Alani, H.,
et al. (eds.) ISWC 2013. LNCS, vol. 8218, pp. 460–477. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-41335-3_29

24. Salatino, A.A., Thanapalasingam, T., Mannocci, A., Osborne, F., Motta, E.: The computer
science ontology: a large-scale taxonomy of research areas. In: International Semantic Web
Conference 2018, Monterey, CA, USA (2018)

Pragmatic Ontology Evolution 511

http://dx.doi.org/10.1007/11926078_39
http://dx.doi.org/10.1007/978-3-642-02121-3_87
http://dx.doi.org/10.1007/978-3-642-02121-3_87
http://dx.doi.org/10.1007/11428817_21
http://dx.doi.org/10.1007/11428817_21
http://dx.doi.org/10.1007/11574620_30
http://dx.doi.org/10.1007/11823728_19
http://dx.doi.org/10.1007/11926078_79
http://dx.doi.org/10.1007/11926078_79
http://dx.doi.org/10.1007/978-3-642-34002-4_26
http://dx.doi.org/10.1007/978-3-319-25007-6_24
http://dx.doi.org/10.1007/978-3-642-41335-3_29

25. Klein, M.C., Fensel, D.: Ontology versioning on the Semantic Web. In: SWWS, pp. 75–91
(2001)

26. Sellami, Z., Camps, V., Aussenac-Gilles, N.: DYNAMO-MAS: a multi-agent system for
ontology evolution from text. J. Data Semant. 2(2–3), 145–161 (2013)

27. Sabou, M., Fernandez, M., Motta, E.: Evaluating semantic relations by exploring ontologies
on the semantic web. In: Horacek, H., Métais, E., Muñoz, R., Wolska, M. (eds.) NLDB
2009. LNCS, vol. 5723, pp. 269–280. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-12550-8_22

28. Qin, L., Atluri, V.: Evaluating the validity of data instances against ontology evolution over
the semantic web. Inf. Softw. Technol. 51(1), 83–97 (2009)

29. Hartung, M., Kirsten, T., Rahm, E.: Analyzing the evolution of life science ontologies and
mappings. In: Bairoch, A., Cohen-Boulakia, S., Froidevaux, C. (eds.) DILS 2008. LNCS,
vol. 5109, pp. 11–27. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
69828-9_4

30. Groß, A., Hartung, M., Prüfer, K., Kelso, J., Rahm, E.: Impact of ontology evolution on
functional analyses. Bioinformatics 28(20), 2671–2677 (2012)

31. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using
support vector machines. Mach. Learn. 46(1–3), 389–422 (2002)

32. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artif. Intell. 97(1–2), 273–
324 (1997)

512 F. Osborne and E. Motta

http://dx.doi.org/10.1007/978-3-642-12550-8_22
http://dx.doi.org/10.1007/978-3-642-12550-8_22
http://dx.doi.org/10.1007/978-3-540-69828-9_4
http://dx.doi.org/10.1007/978-3-540-69828-9_4

	Pragmatic Ontology Evolution: Reconciling User Requirements and Application Performance
	Abstract
	1 Introduction
	2 Motivating Scenario: Evolving Springer Nature Market Codes
	3 Related Work
	4 The POE Framework
	4.1 Overview of POE
	4.2 Topic Ranking
	4.3 Evaluating a Candidate Ontology on a Task
	4.3.1 Instance Tagging
	4.3.2 Similarity Computation
	4.3.3 Generation of Recommendations
	4.3.4 Clustering

	4.4 Parameter Optimization
	4.5 Recursive Concept Elimination

	5 Evaluation
	6 Conclusions
	Acknowledgements
	References

