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Abstract. Converting data from diverse data sources to custom RDF
datasets often faces several practical challenges related with the need
to restructure and transform the source data. Existing RDF mapping
languages assume that the resulting datasets mostly preserve the struc-
ture of the original data. In this paper, we present real cases that
highlight the limitations of existing languages, and describe D2RML,
a transformation-oriented RDF mapping language which addresses such
practical needs by incorporating a programming flavor in the mapping
process.
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1 Introduction

An RDF graph is a set of triples, each one of which consists of a subject, pred-
icate, and object. Thus, despite the powerful semantic interpretation of RDF
graphs, their machine representation is very simple: a table with a subject,
predicate and object column; actually, several relationally-backed RDF stores
use such tabular representations. So, when studying how mappings for diverse
data formats to RDF graphs can be defined, essentially we have to define how
the underlying data can be transformed to a logical tabular representation.

In this framework, much work has been done on transforming data from rela-
tional databases (summarized in [8]). Relational data are pretty simple, because
they are kept in tables, each row contains a single value for each column, and each
row has usually a unique key that can be used to generate unique identifiers.
Moreover, SQL is a powerful language that allows the generation of complex
custom view by joining tables, selecting data that meet certain conditions, and
performing simple data transformations. R2RML, the W3C language for map-
ping relational databases to RDF [5] is a powerful language, but owes its power
mostly to the inherent tabular nature of the source data and the power of SQL
which provides almost all needed data manipulation and restructuring.

Beyond relational data, closer to the tabular model are CSV documents and
spreadsheets [11,14]. Other formats, such as XML, differ considerably from tab-
ular data owing to their hierarchical structure, and the mapping systems rely
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on XSLT transformations, XPath and XQuery (e.g. [1,4]). To resolve the poly-
morphy of tools and define a uniform way to perform Data-to-RDF mapping,
xR2RML [13] and RML [7] extend R2RML to support other data formats.

All such approaches are practical as long as there is no need to alter the struc-
ture of the source data, and as long as the underlying source data manipulation
languages provide support for data transformations. In a multi-source support-
ing language, like RML, this is harder to achieve given that not all sources are
backed by powerful languages, such as SQL. In this paper, we propose D2RML,
a generic Data-to-RDF Mapping Language, which aims at facilitating the gen-
eration of custom RDF data stores by selectively collecting and integrating data
from diverse data sources and web services into high quality RDF data stores.
D2RML is based on a tabular data representation, on which restructuring, trans-
formation and filtering may be applied. D2RML pushes the limits of a mapping
language by incorporating ‘programming’ features. Although a mapping lan-
guage cannot substitute a programming language, the real world cases that we
discuss demonstrate that such features are essential if such languages aspire to
gain acceptance in practice. This paper is an extended version of [3], which
refines the restructuring features of D2RML and focuses on real word scenarios.

The rest of the paper has as follows: Sect. 2 gives an overview of R2RML and
RML on which our work is mostly based. Section 3 discusses real examples where
existing mapping languages turn out to be insufficient. In Sect. 4 we present the
simple data model underlying D2RML. In Sect. 5 we describe how several widely
used information sources can be cast onto that model, and in Sect. 6 we present
the definition of D2RML. Section 7, in place of an evaluation, demonstrates the
power of D2RML by describing how it can solve the practical needs outlined in
Sect. 3. Section 8 concludes the paper.

2 Related Work, R2RML and RML

RML and xR2RML are two R2RML-based RDF mappings languages that sup-
port both relational and non-relational data. As such they share several common
features, but differ in some of their focus points. E.g. xR2ML supports mapping
from mixed formats (e.g. relational tables with JSON values), and also RDF lists.
On the other hand, RML extended with FnO [12] supports interaction with data
sources using established vocabularies [6] and interaction with abstract data pro-
cessing functions. For both, R2RML is the starting point.

R2RML works with logical tables (rr:LogicalTable), which may be base
tables, views, or result sets obtained by an SQL query. Each logical table is
mapped to RDF triples using one or more triples maps. A triples map is a rule
that maps each logical table row to several RDF triples. The rule consists of
a subject map that generates the subject of all RDF triples for each row, and
several predicate-object maps, that consist of predicate and object or referencing
object maps. A predicate map determines predicates for the RDF triples, and an
object map their objects. A subject or predicate-object map may include one or
more graph maps, which specify a named graph for the resulting triples. Refer-
ring object maps allow joining of triples maps. A referring object map specifies
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a parent triples map (rr:parentTriplesMap), the subjects of which will act as
objects for the current triples map. RDF terms (i.e. concrete IRIs and literals for
the triples) are either declared constants (rr:constant), or obtained from the
underlying table, view or result set by specifying a column name (rr:column)
that will supply the values, or generated by a string template (rr:template) that
includes reference to columns. String templates offer very rudimentary options
to manipulate actual database values and generate custom IRIs and literals.

RML extends R2RML by allowing other sources (rml:LogicalSource, e.g.
JSON or XML files), by defining data iterators (rml:iterator) to split the data
from such sources into base elements (the equivalent of rows), and by allow-
ing particular references (rml:reference), in the form of subelement selectors
within the base element, to define the value sources for RDF terms. The iterators
and the references depend on the underlying data source, and may be XPath or
JSONPath expressions, CSV column names or SPARQL return variable names.
Their type is declared using rml:referenceFormulation. To describe access
to diverse data sources, RML suggests the use of vocabularies, such as DCAT,
CSVW, Hydra, and SPARQL-SD. However, these vocabularies in general do not
prescribe a way to formulate actual requests (e.g. to a web API that paginates
the results using next page access keys).

3 Motivating Examples

Here we present some examples that highlight the need for additional flexibility
from an RDF mapping language. All are adapted (to save space) real examples.

Example 1. Consider the following except from a database containing a timeline
of modern Greek history events. The database was modeled as a single table.
ID date summary senderA receiverBsourceA senderB receiverB sourceB keywords
304 21/11/

1940
Palairet calls
F.O. saying
that ...

Palairet F.O. F.O.371/
24907/
R8517

Palairet Halifax F.O.371/
24907/
R8879

J. Metaxas,
Greece -
Economy

Each row contains a date, summary and some keywords. Since each event
turned out to have in practice at most two references, the modeler of the database
included two sets of sender, receiver and source columns. Moreover, keywords are
included in a single column, separated by commas, but there may be multi-term
keywords in which terms are separated by a dash. xR2RML provides a solution
if the keywords entry were in a structured format (eg. JSON). An RDF graph
for the above, not inheriting the modeling problems, could be the following:

cge:304 [ a cge-t:Event ; cge-t:date "1940-11-21"^^xsd:date ; cge-t:summary "Palairet ..." ;
cge-t:reference [ a cge-t:Letter ; cge-t:source "F.O.371/24907/R8817" ;

cge-t:sender "Palairet" ; cge-t:receiver "F.O." ] ;
cge-t:reference [ a cge-t:Letter ; cge-t:source "F.O.371/24907/R8879" ;

cge-t:sender "Palairet" ; cge-t:receiver "Halifax" ] ;
cge-t:keyword [ a cge-t:Term ; kvoc-t:text "J. Metaxas" ] ;
cge-t:keyword [ a cge-t:Term ; kvoc-t:text "Greece", "Economy" ] .

The transformation of the keywords, which splits the entry at the commas
and then at the dashes to generate a nested structure, is problematic even using
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the SQL power of R2RML. For other data sources (e.g. CSV files) it would be
impossible to do anything more than copy the original data structure. Certainly,
this is a not an optimally designed database, but such cases do occur in practice.

Example 2. Consider the following excerpt from the PeriodO (http://perio.do/)
gazetteer of historic periods, which is available as a JSON document:

{ "periodCollections": {
"p0339m9": {

"id": "p0339m9", "type": "PeriodCollection",
"definitions": { ... ,

"p0339m9f72b": {
"id": "p0339m9f72b", "type": "PeriodDefinition", "start": "1204", "stop": "1453",
"spatialCoverage": [ {"id": "http://dbpedia.org/resource/Greece" } ],
"localizedLabels": { "eng": [ "Late Byzantine" ] } },

"p0339m9jq2m": {
"id": "p0339m9jq2m", ... }, ... } },

"p08nrfc": { ... }, ... } }

Using the SKOS model, we would like to generate the following RDF graph:

ark:p0339m9 [ a ark-t:PeriodCollection ] .
ark:p0339m9f72b [ a ark-t:PeriodDefinition ; rdfs:label "Late Byzantine"@en ;

ark-t:earliestYear "1204"^^xsd:gYear ; ark-t:latestYear "1453"^^xsd:gYear ;
skos:inScheme ark:p0339m9 ; dcterms:spatial dbpedia:Greece ] .

Using RML and JSONPath, we could specify a triples map to iterate over the
period collections, and then a triples map to iterate over the period definitions to
generate the respective triples; but inside a period definition we do not know the
enclosing period collection, to generate the skos:inScheme triple. Thus we cannot
use a referring object map (for period definitions inside period collections). We
could possibly specify a third triples map to iterate over the collections and
generate triples with object the collection id and subjects the included period
ids, but this violates a basic assumption in both R2RML and RML that each
iteration over the data should produce a unique subject.

Example 3. Geonames provides its gazetter data as a set of tab-delimited files.
Among them, file admin1Codes.txt contains top-level administrative regions for
all countries, XX.txt, where XX is a country code, a country’s locations, and
alternateNames/XX.txt alternate location names and links to other resources.
Consider line (GR.ESYE31; Attica; 6692632) from admin1Codes.txt, and lines

256601; Athens; Athinai,Athina; P; PPLC; GR; ESYE31; 445408
445408; Athens Prefecture; Athena,Athina; A; ADM2; GR; ESYE31; 445408
6692632; Attica; Attica,Attiki; A; ADM1; GR; ESYE31

177543; 264371; el; Athina; 1
1593954; 264371; en; Athens;
2919841; 264371; link; http://en.wikipedia.org/wiki/Athens;

from GR.txt and alternatenames/GR.txt, for Greece, respectively.
The column names are (admin1code, name, geonameid), (geonameid, name,

alternate names, feature class, feature code, country code, admin1 code, admin2
code) and (alternateNameid, geonameid, language, alternate name, is Preferred-
Name), respectively. From the above, we want to generate the following triples:

http://perio.do/
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geo:256601 [ a gn:Feature ; gn:name "Athens" ; gn:featureCode gn:P.PPLC ;
gn:officialName "Athina"@el ; gn:alternateName "Athens"@en ;
gn:wikipediaArticle <http://en.wikipedia.org/wiki/Athens> ;
gn:parentADM1 geo:6692632 ; gn:parentADM2 geo:445408 ] .

geo:445408 [ a gn:Feature ; gn:name "Athens Prefecture" ; gn:featureCode gn:A.ADM2 ;
gn:parentADM1 geo:6692632 ] .

geo:6692632 [ a gn:Feature ; gn:name "Attica" ; gn:featureCode geo-ont:A.ADM1 ] .

To achieve this we need some conditions (e.g. do not include a gn:parentADM2)
if in a line of GR.txt the geonameid and admin2 code coincide). Moreover, in the
triples map iterating over GR.txt, we need to include a referring object map to
perform a join with admin1Codes.txt, so as to know that GR.ESYE31 has geonameid
6692632. But to do the join we need to concatenate the country code GR with
the admin1 code ESYE31, which in GR.txt are provided in distinct columns. In
a relational database we could possibly formulate such queries, but with CSV
files we have much less flexibility. Even if we overcome somehow the problem of
generating a combined key for the join, iteratively joining large CSV files can
be inefficient. Instead, we could probably start building the RDF graph by first
mapping admin1Codes.txt, and then execute the mapping for GR.txt, exploiting
the contents of the up to then generated RDF graph. Furthermore, in each line
alternateNames/GR.txt, the value of the language column determines how to
interpret the alternate name. If we see link we should use gn:wikipediaArticle.
If we see a language code we should further check the last column: if it is 1 we use
gn:officialName otherwise gn:alternateName. To do this we need conditions and
case statements. If the data was relational, we could exploit SQL and define three
triples maps, one for each predicate; but with a CSV file this is not possible. Even
with relational data, a single triples map, with a conditional statement selecting
each time the right predicate, is probably a clearer, more concise, and possibly
more efficient, modeling since it requires a unique iteration over the data.

Example 4. Consider the row (4821; 1431-1433 AD; Samothrace; <inscription> )

of a CSV database of Christian and Byzantine inscriptions provided by the
University of Athens that contains an id, a chronology, a location and the actual
inscription text. We would like to generate the following RDF graph:

bci:4821 [ bci-t:Inscription ; bci-t:chronology "1431-1433 AD" ; bci-t:location "Samothrace" ;
kvoc-t:date [ a time:DateTimeInterval ;

time:hasBeginning tl-t:Y.1431 ; time:hasEnd tl-t:Y.1433 ] ;
kvoc-t:location geo:734358 ; kvoc-ont:period ark:p0339m9f72b ] .

In this case the mapping involves some processing using data analysis ser-
vices. A geonames linking service that links Samothrace to geo:734358, the geon-
ames resource for Samothrace, a date recognizer that transforms 1431-1433 AD

into a time description using OWL Time vocabulary, and finally a periodO link-
ing service that uses the geonames location and the OWL time date range to
classify the inscription to the Late Byzantine period ark:p0339m9f72b. The first
two services can be seen as data sources that require parameters taking values
from the original data; this is supported in RML. But for the third service we
need to specify parameters values that are results of the previous two services.
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Moreover, we might want to use the results of the two first services only as
intermediate results for the first service and not produce any triples for them.

4 Model

The above examples demonstrate that a practical RDF mapping language should
include provisions for complex mapping capabilities, that may result from the
actual structure or the data, from peculiarities of the data representation choices
or models, or from the need for structure altering transformations. To create a
general framework for such a language, we define first an abstract tabular data
model. Essentially, we assume that data coming from a data source give rise to
a tabular structure, which is extensible by the mapping language: new columns
may be added by transforming existing ones to generate input data for further
transformations. Each cell of the tabular structure may contain a set of values.

Definition 1. A set row of arity k is a tuple 〈D1, . . . , Dk〉, where D1, . . . , Dk

are sets of values. A name row of arity k is a tuple 〈n1, . . . , nk〉, where n1, . . . , nk

are names. A set table of arity k with m rows is a tuple S = 〈N, T 〉, where N
is a name row and T = [D1, . . . ,Dm] a list of set rows, all of arity k, such that
the i-th elements of D1, . . . ,Dm, for 1 ≤ i ≤ k, share all the same domain.

The names allow us to refer to particular elements of set rows and tables.
We denote the set of values that corresponds to name ni in a set row D by D[ni]
and by S[nk] (a column of S) the list [D1[nk], . . . ,Dm[nk]] of value sets that
are obtained from the several set rows of S. For a particular set row D and the
several ni, the sets D[ni] may have different numbers of values and in general
there is no alignment between the individual values among the several sets, and
all individual values are equivalent with respect to their relation to the values
of the other sets in the same set row.

Definition 2. A filter F over a set table S is a tuple 〈n, f〉, where n is a column
name and f a function, such that f(D[n]) ⊆ D[n] for all set rows D of S.

We denote the set value f(D[n]), obtained by applying F on a set row D by
F(D). A filter may be seen as the implementation of a condition.

Data for set tables are acquired from information sources. To accommodate
several possible information sources in our model, we consider, as in RML, that
the information source upon a request provides in a reply an effective data source,
a structure that groups data in several autonomous elements. The division of the
effective data source to these autonomous elements is achieved by an iterator,
which specifies a logical array, through whose items the iterator iterates. Each
item of a logical array may be a complex structure (another effective data source),
so in order to extract from it lists of values to construct set rows values, we need
some selectors. The selectors transform a logical array into a set table.

Definition 3. The triple A = 〈I, t,L〉, where I is an effective source specifica-
tion, t an iterator, and L a set of selectors, is a data acquisition pipeline.
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Each data acquisition pipeline A gives rise to a unique set table SA. A data
acquisition pipeline may be parametric. A parametric data acquisition pipeline
A′ that depends on A is a data acquisition pipeline whose parameters take values
from one or more columns of SA and is called a transformation of A.

Definition 4. A series of data acquisition pipelines A0, A1, . . ., Al, where each
Ai, for i > 1, is a transformation that depends on one or more Aj for j < i is
a set table specification. A0 is the primary data acquisition pipeline.

A set table specification gives rise to a unique set table: SA0 extended by
columns contributed by A1, . . ., Al. Each transformation is realized as a series
of requests to an information source, after binding the parameters to all possible
combinations of values obtained from the referred to columns of the set table
constructed from the preceding data acquisition pipelines. Thus, a set table
specification is evaluated serially. The primary data acquisition pipeline A0 gives
rise to set table SA0 . Then, for each set row D of SA0 , evaluating A1 gives rise to
a set table SA1(D). By flattening all rows of SA1(D) into a single row we obtain a
new set row that is appended to D. Doing this for all set rows D results in SA0A1 .
Proceeding this way, eventually SA0 is extended to set table SA0A1...Al

. More
formally, let n1, . . . , nk be the names, and [D1, . . . ,Dm] the rows of Ŝ .= SA0...Ai

.
Evaluating Ai+1 on each row of Ŝ produces set tables SAi+1(D1), . . ., SAi+1(Dm).
Since all these set tables are produced by the same data acquisition pipeline
Ai+1, they share the same arity, say k′, and let ŝ1, . . . , ŝk′ , be the selectors of
Ai+1. Thus SA0...Ai+1 = 〈N, T 〉, where N = 〈n1, . . . , nk,Ai+1.ŝ1, . . . ,Ai+1.ŝk′〉,
T = [D′

1, . . . ,D′
m], D′

j = [Dj [n1], . . . ,Dj [nk], D̂j1, . . . , D̂jk′ ] for 1 ≤ j ≤ m, and
D̂′

jl =
⋃

SAi+1(Dj)[ŝl] for 1 ≤ l ≤ k′.

Definition 5. A triples rule R over a set table S = 〈N, T 〉 is either (a) a triple
of filters 〈Fs,Fp,Fo〉, over S, called the subject, predicate and object filter,
respectively, or (b) a triple 〈Fs,Fp, R̂〉, over S, where Fs, Fp are the subject
and predicate filter, respectively, and R̂ another triples rule.

The implementation of R is the set of RDF triples {(s, p, o) | s ∈ Fs(D), p ∈
Fp(D), o ∈ Fo(D), D ∈ T } in case (a), and {(s, p, o) | s ∈ Fs(D), p ∈
Fp(D), o ∈ SR̂, D ∈ T } in case (b), where SR̂ are the subjects of the imple-
mentation of R̂.

A set of triples rules over some set tables defines a Data-to-RDF mapping.
The relevant RDF dataset is the implementation of all its triples rules.

5 Retrieving and Interpreting Data

To define general data acquisition pipelines in practice, we consider that an
information source, in response to a request, provides some source data. An
information source may be either a server (RDBMS, web server/RESTful web
service, SPARQL endpoint), the local file system, or a local data model (e.g. an
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in-memory RDF model). The source data may be an instance of a particular data
model (e.g. a SQL result set) or a document (e.g. a JSON or XML document). To
obtain source data from an information source we need to specify a request (e.g.
an HTTP GET request, an SQL query), as summarized in Table 1. Source data
obtained as data models (e.g. SQL result sets) have a unique interpretation, but a
document may be interpreted as one of several models. The effective data source
is the source data interpreted: SQL and SPARQL results sets denote themselves,
a JSON document a JSON Tree, an XML/HTML document a DOM or XDM,
and a CSV document a table. In some cases, to obtain an effective data source,
we need an intermediate interpretation of the source data as a new information
source. This is the case e.g. with an RDF document, which should be seen first
as an RDF dataset, from which SPARQL result sets can then be obtained.

Table 1. Information sources, requests and source data

Information source Request Source data

RDBMS SQL SELECT
Query

SQL Result Set

Web Server/
RESTful Service

HTTP GET/
POST Request

JSON/XML/CSV/HTML/
RDF/TXT Document

SPARQL Endpoint/
RDF model

SPARQL
SELECT Query
and Graph IRIs
via API

SPARQL Result Set

File System File Request JSON/XML/CSV/HTML/
RDF/TXT Document

Table 2. Effective data sources, iterators and selectors

Effective data source Type Iterator Selector

SQL Result Set Tabular Row Iterator Column Name

SPARQL Result Set Tabular Row Iterator Variable Name

JSON Tree Hierarchical JSONPath JSONPath

XDM Hierarchical XPath/XQuery XPath/XQuery

DOM Hierarchical CSS Selector CSS Selector

CSV Document Tabular Row Iterator Column Name/Number

Text Document Flat Regular Expression Regular Expression

The model-specific iterators and selectors needed to convert effective data
sources to set tables are shown in Table 2. For example, an SQL (SPARQL
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result set) obtained through an SQL (SPARQL) SELECT query q that speci-
fies attributes (variables) n1, . . . , nk in the SELECT statement for the returned
columns (variables), returns a list of rows [〈v11, . . . , v1k〉, . . . , 〈vn1, . . . , vnk〉].
Using a row iterator and the column (variable) names n1, . . . , nk as selectors, we
obtain the set table 〈〈n1, . . . , nk〉, [〈{v11}, . . . , {v1k}〉, . . . , 〈{vn1}, . . . , {vnk}〉]〉.
Similarly, a JSONPath (XPath/XQuery, CSS) expression q splits a JSON tree
[2] (XDM [15], DOM) interpretation of a JSON (XML/HTML) document T into
a logical array of smaller JSON trees (XDMs, DOMs) T1, . . . , Tn. By executing
as selectors JSONPath (XPath/XQuery, CSS) expressions q1, . . . qk over each
T1, . . . , Tn we get the set table 〈〈q1, . . . , qk〉, [〈C11, . . . , C1k〉, . . . , 〈Cn1, . . . , Cnk〉]〉,
where Cij is either the set of values (string values of text or attribute nodes)
contained in the array (node set) that results from applying qj on Ti.

6 D2RML Specification

D2RML draws significantly from R2RML and RML, and follows the same strat-
egy for defining mappings: triples maps, consisting of a subject map and several
predicate-object maps. From RML it adopts and extends the interaction with
information sources through requests, iterators and selectors. It also extends the
expressive capabilities of R2RML and RML by allowing transformations, condi-
tional and case statements, and custom RDF term generation functions. For its
semantics, it relies on the data model of Sect. 4. Each triples map corresponds
to a set table (Definition 5) and a set of triple rules (Definition 4) with the same
subject filter over the common underlying set table. The information source,
request and iterator for the original data acquisition pipeline are provided in
the triples map definition. Any additional transformations are declared in the
order of their application and extend incrementally the underlying set table. The
selectors are implicitly declared in the included subject, predicate, object and
graph maps.

6.1 Triples Maps

Triples maps are defined as in RML, but tabular data providing information
sources are clearly distinguished from non-tabular ones. The inclusion of Trans-
formation and DefinedColumn lists allow extending the primary set table.
TriplesMap ← a rr:TriplesMap

(rr:logicalTable 〈LogicalTable〉 | dr:logicalSource 〈LogicalSource〉)?
(dr:transformations ( 〈Transformation〉+ ))?

(dr:definedColumns ( 〈DefinedColumn〉+ ))?

(rr:graphMap 〈GraphMap〉)*
rr:subjectMap 〈SubjectMap〉 | rr:subject iri

(rr:predicateObjectMap 〈PredObjMap〉)*
PredObjMap ← a rr:PredicateObjectMap

(rr:predicateMap 〈PredicateMap〉 | rr:predicate iri)+

(rr:objectMap (〈ObjectMap〉|〈RefObjectMap〉) | rr:object (iri|lit))+
(rr:graphMap 〈GraphMap〉 | rr:graph iri)*
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6.2 Logical Tables and Logical Sources

A LogicalTable or LogicalSource specifies a data acquisition pipeline (excluding
the separators). In the case of query supporting information sources (RDBMSs’
and SPARQL services), for compatibility with R2RML, they contain also the
query-relevant details of the request. The is:parameters predicate helps declare
parameters in queries of parametric data acquisition pipelines. For other informa-
tion sources, the request and any parameters are part of the InformSource speci-
fication. For non-tabular data information sources, LogicalSource should contain
the definition of the iterator (dr:iterator and dr:referenceFormulation)
used to split the effective data source.

D2RML introduces two special sources: The first dr:CurrentModel, rep-
resents the RDF model of the current RDF dataset generated by the
D2RML processor, and is interpreted as an SPARQLTable. Since the model
is constantly updated, we need to define an execution order for the triples
maps. Thus, a D2RML document using dr:CurrentModel must specify a
is:TriplesMapOrder, whose is:mapOrder defines the execution order of the
triple maps as a list. The second source, dr:SetTable, allows the generation of
a new table from the values of some selected columns (dr:transferredColumns)
of the dependent on set table. The dr:SetTable instance is generated by taking
the values of each column of the current row, in order of appearance, and putting
them into a new table, by aligning values having the same order. Thus it restruc-
tures the data: it converts, one or more sets of values, into a table where each
column in each row contains aligned single values. If used as a LogicalSource,
dr:SetTable allows, as in xR2RML, interpreting row values as structured doc-
uments (eg. JSON, XML).

LogicalTable1 ← a rr:LogicalTable a dr:CurrentModel

dr:source 〈InformSource〉
SQLTable | SPARQLTable | CSVTable SPARQLTable

(is:parameters ( 〈DataVariable〉+ ))?

LogicalTable2 ← a dr:SetTable ; (dr:transferedColumns ( 〈ValueRef 〉+ ))?

LogicalSource ← (a dr:LogicalSource ; dr:source 〈InformSource〉) | LogicalTable2
dr:iterator lit ; dr:referenceFormulation iri

An SQLTable is defined as in R2RML. A SPARQLTable must specify a
query (dr:sparqlQuery) and any default or named graphs (dr:defaultGraph,
dr:namedGraph). Finally a, CSVTable must specify a delimiter (dr:delimiter),
whether there is a header line (dr:headerline), and possibly a quote, comment,
escape, or record separator characters.

6.3 Information Sources

An information source may be a RDBMS, an HTTP server, a SPARQL end-
point, or the file system.
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InformSource ← RDMSSource | SPARQLSource | HTTPSource | FileSource

An RDMBSSource must specify the type of the RDMBS (is:rdbms), the
location (is:location) and any needed information for establishing the con-
nection (e.g. username, password). An HTTPSource should either specify a sin-
gle URI (is:uri) or prescribe a full HTTP request (is:request). The latter
is specified in using the W3C’s ‘HTTP Vocabulary in RDF 1.0’ [9] and ‘Rep-
resenting Content in RDF 1.0’ vocabularies [10]. An HTTPSource may contain
a list of parameters (is:parameter). To account for result pagination, it may
contain a request iterator in the parameter list. A request iterator may be a
KeyRequestIterator or a CountRequestIterator. Both of them should provide the
parameter name (is:name) which should appear in the URI of the HTTPRe-
quest, and an initial value (is:initialValue). A key request iterator must spec-
ify how to extract each time the new parameter value from the current server
results in order to formulate the subsequent request, while a count request iter-
ator must specify an increment (is:increment) and possibly a maximum value
(is:maxValue). The set of iteration policies is extensible. A SPARQLSource
must specify simply the URI of the service (is:uri). A FileSource must specify
the location of one or more files (is:path) and their encoding (is:encoding).
Note that, following the earlier discussion, e.g. a FileSource that fetches an RDF
file used in conjunction with a SPARQLTable, is interpreted as a RDF model
information source.

6.4 Transformations and Defined Columns

A Transformation extends the underlying set table. Since it is a parametric data
acquisition pipeline, its definition includes a LogicalTable or LogicalSource and
one or more ParameterBindings to assign parameter values. The latter consists
of a reference to a value (ValueRef ) or a constant value, and the parameter name
(dr:parameter) in the corresponding information source the value will be bound
to. A DefinedColumn allows for in-line set table transformations: to add new
columns by applying a series of transformations on particular set table column
values without consulting external sources. A DefinedColumn should declare the
new column name dr:name, the function (dr:function) to generate the values
(eg. op:regex, op:replace), and a list of arguments (dr:parameterBinding).
It is assumed that the parameter names are provided by the function definition.

Because a Transformation may need to work not directly with the value sets
of the underlying set table at the level of the selectors (where any alignment
between values is lost), but first with higher level iterators that preserve the
alignment and then with the value set producing selectors, a transformation
may declare one such iterator (dr:bindingIterator) for each transformation
that provides parameter bindings. When, executed, the values for parameter
bindings will be generated aligned according to the iterator.
Transformation ← a dr:Transformation

rr:logicalTable 〈LogicalTable〉 | dr:logicalSource 〈LogicalSource〉
(dr:parameterBinding 〈ParameterBinding〉)+
(dr:bindingIterator 〈BindingIterator〉)*
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DefinedColumn ← a dr:DefinedColumn ; dr:name lit ; dr:function iri

(dr:parameterBinding 〈ParameterBinding〉)+
ParameterBinding ← a dr:ParameterBinding

dr:parameter lit ; rr:constant lit | ValueRef

BindingIterator ← rr:column lit | dr:reference lit

(dr:transformationReference 〈Transformation〉)?

6.5 Term Maps and Conditions

The definition of a TermMap (SubjectMap, PredicateMap, ObjectMap, GraphMap
and LanguageMap) follows the R2RML specification with the support for filters.

SubjectMap ← a rr:SubjectMap ; IRIRef | BlankNodeRef
(SubjBody CSubjBody*) | CSubjBody+

PredicateMap ← a rr:PredicateMap ; (PredBody CPredBody*) | CPredBody+

ObjectMap ← a rr:ObjectMap ; (ObjBody CObjBody*) | CObjBody+

GraphMap ← a rr:GraphMap ; (GraphBody CGraphBody*) | CGraphBody+

LanguageMap ← a rr:LangMap ; (LangBody CLangBody*) | CLangBody+

SubjBody ← (rr:class IRI)* ; (rr:graphMap 〈GraphMap〉 | rr:graph IRI)*
(dr:condition 〈Condition〉)?

[Pred |Graph]Body ← IRIRef ; (dr:condition 〈Condition〉)?
ObjBody ← IRIRef | BlankNodeRef | LiteralRef ; (dr:condition 〈Condition〉)?
LangBody ← LiteralRef ; (dr:condition 〈Condition〉)?
C[Subj |Pred |Obj |Graph |Lang]Body ← dr:cases ( 〈[Subj |Pred |Obj |Graph |Lang]Body〉+ )

Condition ← (ValueRef )? ; (dr:booleanOperator iri)?
(operator (ValueRef | lit) | dr:operand 〈Condition〉)+

RefObjectMap ← a rr:RefObjectMap ; rr:parentTriplesMap 〈TriplesMap〉
((rr:joinCondition 〈JoinCondition〉)+ |

(dr:parameterBinding 〈ParameterBinding〉)+ )?

JoinCondition ← a rr:Join ; rr:child lit ; rr:parent lit

To implement filters, a TermMap may contain a condition (dr:condition)
and/or a case statement (dr:cases). If it contains a condition, it will be eval-
uated and the corresponding RDF term will be taken into account only if the
condition holds. A condition statement must specify the actual value on which
it will operate, and may include several tests which will be jointly evaluated
using the operator specified by dr:booleanOperator (op:and or op:or). A test
is specified either through an operator (op:eq, op:le, etc.) and a literal or
ValueRef which define the value(s) with which the actual value will be compared
using operator, or as a nested condition. Due to the underlying set table model,
in general a behaviour of the operators for set arguments should be defined. In
the current implementation it is assumed that a condition holds if it holds for a
single value pair, but this is a point of further refinement of the language. The
operation type (eg. number/string comparison) depends on the operand XSD
types. A case statement includes a list of alternative realizations of a TermMap,
each along with a condition. If the condition evaluates to true, the corresponding
TermMap is realized, otherwise control flows to the next case.
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Finally, a referring object map (RefObjectMap) may be defined either as
in R2RML or using a ParameterBinding , in the case the LogicalTable or Logi-
calSource of the referring object’s triples map is a parametric data acquisition
pipeline: the ParameterBinding provides the parameters values to be used in the
parametric data acquisition pipeline of the referring object map.

6.6 RDF Terms

RDF terms are specified as in RML, but to account for values coming from trans-
formations, RDF terms are generated through value references, specified by two
components: a compulsory rr:column, rr:template or dr:reference, and an
optional dr:transformationReference to specify the underlying transforma-
tion for the rr:column, rr:template or dr:reference. If missing, the primary
logical array is assumed. To overcome the limited data manipulation options
offered by rr:template, a value reference may include local defined columns
(dr:definedColumns) that are need to generate a particular RDF Term.

IRIRef ← rr:constant iri | ValueRef ; (rr:termType rr:IRI)?

LiteralRef ← rr:constant lit | ValueRef ; (rr:termType rr:Literal)?
((dr:languageMap 〈LanguageMap〉 | rr:language lit) |

rr:datatype iri)?

BlankNodeRef ← ValueRef ; (rr:termType rr:BlankNode)?

ValueRef ← rr:column lit | rr:template lit | dr:reference lit
(dr:transformationReference 〈Transformation〉)?
(dr:definedColumns ( 〈DefinedColumn〉+ ) )?

7 Evaluation

In Sect. 3 we identified cases where the desired mappings could not be achieved
using existing RDF mapping languages. In fact, all cases were real and arose
in the context of a project aiming to provide semantic analysis services over
a repository of heterogeneous cultural data. This provided a real testbed for
the usefulness of D2RML; here we discuss how it helped solving such mappings
needs. (To save space we omit the dr:referenceFormulation declarations and
write dr:transformationReference as dr:tRef).

Example 1 involved data restructuring: split each joint keyword into a distinct
keywords and separate the each keyword’s terms. To do this, we first extend the
primary set table with a defined column containing the set of split keywords
for each row (op:split splits its input on the provided separator). Then in a
referring object map, we build a new table (dr:SetTable) from each keyword
set, and perform there the splitting on the dashes. In this way we achieve a
restructuring that preserves the connection of each term with the source keyword:

<#EventMap>
rr:logicalTable [ dr:source <#FOSource> ; rr:tableName "Events" ] ;
dr:definedColumns ( [

dr:name "KW" ; dr:function op:split ;
dr:parameterBinding [ dr:parameter "input" ; rr:column "keywords" ] ;
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dr:parameterBinding [ dr:parameter "separator" ; rr:constant "," ] ] ) ;
rr:subjectMap [ rr:template {@tl}{ID}" ; rr:class cge-t:Event ] ;
rr:predicateObjectMap [

rr:predicate cge-t:keyword ;
rr:objectMap [

rr:parentTriplesMap [
rr:logicalTable [ a dr:SetTable ; dr:transferedColumns ( [ rr:column "KW" ] ) ] ;
rr:subjectMap [ rr:class cge-t:Term ; rr:termType rr:BlankNode ] ;
rr:predicateObjectMap [

rr:predicate kvoc-t:text ;
rr:objectMap [

dr:definedColumns ( [
dr:name "TERM" ; dr:function op:split ;
dr:parameterBinding [ dr:parameter "input" ; rr:column "KW" ] ;
dr:parameterBinding [ dr:parameter "separator" ; rr:constant "-" ] ] ) ;

rr:column "TERM"; rr:termType rr:Literal ] ] ] ] ] .

In Example 2 we needed maps generating more than one subjects for each
row to link periods with period collections. The solution is to define first a map to
declare each collection as a skos:ConceptScheme, and then a second multi-subject
map to link periods with period collections:

<#CollectionMap1>

dr:logicalSource [ dr:source <#PeriodoSource> ; dr:iterator "$.periodCollections.*" ] ;

rr:subjectMap [ rr:template "{@ark}{$.id}" ;

rr:class periodo:PeriodCollection ; rr:class skos:ConceptScheme ] .

<#CollectionMap2>

dr:logicalSource [ dr:source <#PeriodoSource> ; dr:iterator "$.periodCollections.*" ] ;

rr:subjectMap [ rr:template "{@ark}{$.definitions.*.id}" ] ;

rr:predicateObjectMap [ rr:predicate skos:inScheme ;

rr:objectMap [ rr:template "{@ark}{$.id}" ; rr:termType rr:IRI ] ] .

In Example 3, to avoid joining CSV files, we needed to generate triples
linking admin codes to their geonames ids, and then consult these triples to
resolve admin code references when generating triples for a country’s locations.
To achieve this, we first define ADMIN1Map. Because ADMIN1Map should be executed
first, we include a triples map order statement. According to that ordering,
next is executed CountryMap. This map uses the transformation ADMIN1Trans,
which extends the primary set table by a new column with the geonames id of
the locations admin code. ADMIN1Trans operates on the dr:CurrentModel logical
table, so as to has access to the triples generated by ADMIN1Map. Last comes the
AlternateNamesMap which processes the file with the alternate names and con-
tains conditional statements to decide which predicate it should use for each
entry:

<#Order>

dr:mapOrder ( <#ADMIN1Map> <#CountryMap> <#AlternateNamesMap> ) .

<#ADMIN1Map>

rr:logicalTable [ dr:source <#ADMIN1Source> ; dr:delimiter ";" ] ;

rr:subjectMap [ rr:template "{@geo}{##3}/" ] ;

rr:predicateObjectMap [ rr:predicate gn:code ;

rr:objectMap [ rr:column "##1" ; rr:termType rr:Literal ] ] .

<#ADMIN1Trans>

rr:logicalTable [

a dr:CurrentModel ;

dr:sparqlQuery "SELECT ?admin1uri WHERE {?admin1uri gn:code \"{@@name@@}\" }" ] ;

dr:parameterBinding [ dr:parameter "name" ; rr:template "{##6}.{##7}" ] .

<#CountryMap>

rr:logicalTable [ dr:source <#CountrySource> ; dr:delimiter ";" ] ;

dr:transformations ( <#ADMIN1Trans> ) ;
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rr:subjectMap [ rr:template "{@geo}{##1}/" ; rr:class gn:Feature ] ;

rr:predicateObjectMap [

rr:predicate gn:parentADM1 ;

rr:objectMap [ rr:column "admin1uri" ; dr:tRef <#ADMIN1Trans> ; rr:termType rr:IRI ] ] .

<#AlternateNamesMap>

rr:logicalTable [ dr:source <#AlternateNamesSource> ; dr:delimiter ";" ] ;

rr:subjectMap [ rr:template "{@geo}{##2}/" ; rr:termType rr:IRI ] ;

rr:predicateObjectMap [

rr:predicateMap [

dr:cases ( [ rr:constant gn:officialName ;

dr:condition [ rr:column "##5" ; op:eq "1" ] ]

[ rr:constant gn:alternateName ] ) ] ;

rr:objectMap [

rr:column "##4" ; rr:termType rr:Literal ; dr:languageMap [ rr:column "##3" ] ;

dr:condition [ rr:column "##3" ; op:neq "link" ] ] ] ;

rr:predicateObjectMap [

rr:predicate gn:wikipediaArticle ;

rr:objectMap [ rr:column "##4" ; rr:termType rr:IRI ;

dr:condition [ rr:column "##3" ; op:eq "link" ] ] ] ] .

In Example 4 we needed to define three transformations on the primary set
table, the last one of which depended on the first two. The first two (DateMap,
LocationMap) are simple triples maps that use a date/location identification infor-
mation sources. We assume that DateMap returns a JSON array with elements of
the form { "start": start-date-uri, ‘‘end’’: end-date-uri }, as it may iden-
tify several ranges in the input. Similarly, LocationMap returns an array of {
"place": place-uri }. Thus, executing these on the primary set table, we get
the table extended with two new logical columns. Taking values from the new
columns, we can then execute the PeriodoMap transformation. However, we need
to match start with end dates; for this we need to specify a BindingIterator to
declare that we need to iterate on the top level array returned by DateMap:

<#DateMap>

dr:logicalSource [ dr:source <#DatifyService> ; dr:iterator "$" ] ;

dr:parameterBinding [ dr:parameter "text" ; rr:column "chronology" ] .

<#LocationMap>

dr:logicalSource [ dr:source <#LocalifyService> ; dr:iterator "$" ] ;

dr:parameterBinding [ dr:parameter "text" ; rr:column "location" ] .

<#PeriodoMap>

dr:logicalSource [ dr:source <#PeriodoService> ; dr:iterator "$" ] ;

dr:bindingIterator [ dr:transformationReference <#DateMap> ; dr:reference "$" ] ;

dr:parameterBinding [ dr:parameter "start" ;

dr:reference "$.start" ; dr:transformationReference <#DateMap> ] ;

dr:parameterBinding [ dr:parameter "end" ;

dr:reference "$.end" ; dr:transformationReference <#DateMap> ] ;

dr:parameterBinding [ dr:parameter "place" ;

dr:reference "$.place" ; dr:transformationReference <#LocationMap> ] .

<#InscriptionsMap>

rr:logicalTable [ dr:source <#InscriptionsSource> ; dr:delimiter "\t" ] ;

dr:transformations ( <#DateMap> <#LocationMap> <#PeriodoMap> ) ;

rr:subjectMap [ rr:template "{@bci}{##1}" ; rr:class bci-t:Inscription ] ;

rr:predicateObjectMap [

rr:predicate kvoc-t:location ;

rr:objectMap [ rr:reference "$.uri" ; dr:tRef <#LocationMap> ; rr:termType rr:IRI ] ] ;

rr:predicateObjectMap [

rr:predicate kvoc-t:date ;

rr:objectMap [

rr:parentTriplesMap [

rr:subjectMap [ rr:class time:DateTimeInterval ; rr:termType rr:BlankNode ] ;

rr:predicateObjectMap [

rr:predicate time:hasBeginning ;

rr:objectMap [ dr:reference "$.start" ; dr:tRef <#DateMap> ] ] ;
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rr:predicateObjectMap [

rr:predicate time:hasEnd ;

rr:objectMap [ dr:reference "$.end" ; dr:tRef <#DateMap> ] ] ] ] ] ;

rr:predicateObjectMap [

rr:predicate kvoc-t:period ;

rr:objectMap [ rr:column "$.uri" ; dr:transformationReference <#PeriodoMap> ] ] .

Our D2RML processor is available at http://apps.islab.ntua.gr/d2rml/.

8 Conclusions

Motivated by practical cases of more complex RDF mapping needs not covered
by existing languages, we presented D2RML, an extension of R2RML and RML,
which, based on an abstract underlying data model, allows the orchestrated
retrieval of data from diverse information sources, their transformation using
relevant web services, their filtering and manipulation using simple operations,
and finally their limited restructuring and mapping to RDF triples.

To offer such capabilities, D2RML adds a programming language flavor to the
mapping process, but we claim that this is necessary if such languages are ever
going to be widely accepted and used in practice. If in a real mapping problem
scenario, the source data do not exactly reflect the structure of the target model,
and the modeler needs extended data manipulation capabilities, they usually
resort to a programming language, thus invalidating the very usefulness of a
mapping language. Our aim was to design a mapping language that would limit
the cases where this occurs and where writing custom code turns out to be
unavoidable. Further extensions to the language will most probably be needed
to accommodate other needs, but the underlying abstract data model provides
a solid ground on which to incorporate such extensions.
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2. Bourhis, P., Reutter, J.L., Suárez, F., Vrgoc, D.: JSON: data model, query lan-
guages and schema specification. In: PODS, pp. 123–135. ACM (2017)

3. Chortaras, A., Stamou, G.: D2RML: integrating heterogeneous data and web ser-
vices into custom RDF graphs. In: LDOW. CEUR Workshop Proceedings (2018)

4. Connolly, D.: Gleaning resource descriptions from dialects of languages (GRDDL)
(2007). https://www.w3.org/TR/grddl/

5. Das, S., Sundara, S., Cyganiak, R.: R2RML: RDB to RDF mapping language
(2012). https://www.w3.org/TR/r2rml/

http://apps.islab.ntua.gr/d2rml/
https://www.w3.org/TR/grddl/
https://www.w3.org/TR/r2rml/


Mapping Diverse Data to RDF in Practice 457

6. Dimou, A., Nies, T.D., Verborgh, R., Mannens, E., de Walle, R.V.: Automated
metadata generation for linked data generation and publishing workflows. In:
LDOW. CEUR Workshop Proceedings, vol. 1593 (2016)

7. Dimou, A., Sande, M.V., Colpaert, P., Verborgh, R., Mannens, E., de Walle, R.V.:
RML: a generic language for integrated RDF mappings of heterogeneous data. In:
LDOW. CEUR Workshop Proceedings, vol. 1184 (2014)

8. Hert, M., Reif, G., Gall, H.C.: A comparison of RDB-to-RDF mapping languages.
In: I-SEMANTICS, ACM International Conference Proceeding Series, pp. 25–32.
ACM (2011)

9. Koch, J., Velasco, C.A., Ackermann, P.: HTTP vocabulary in RDF 1.0 (2017).
https://www.w3.org/TR/HTTP-in-RDF10/

10. Koch, J., Velasco, C.A., Ackermann, P.: Representing content in RDF 1.0 (2017).
https://www.w3.org/TR/Content-in-RDF10/
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